Finding delay-resistant line concepts using a game-theoretic approach

Abstract

We present a game-theoretic model for the line planning problem in public transportation, in which each line acts as player. Each player aims to minimize its own delay, which is dependent on the traffic load along its edges. We show that there exists a line plan at equilibrium, which minimizes the probability of delays of the transportation system. This result is achieved by showing that a potential function exists. Numerical results using close-to-real world data in the LinTim framework clearly show that our method indeed produces delay-resistant line concepts.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Borndörfer, R., Grötschel, M., Pfetsch, M.E. (2007). A column generation approach to line planning in public transport. Transportation Science, 41, 123–132.

    Article  Google Scholar 

  2. 2.

    Bussieck, M.R., Kreuzer, P., Zimmermann, U.T. (1996). Optimal lines for railway systems. European Journal of Operational Research, 96(1), 54–63.

    Article  Google Scholar 

  3. 3.

    Bussieck, M.R. (1998). Optimal lines in public rail transport. PhD thesis. University of Braunschweig.

  4. 4.

    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., Schöbel, A. (2009). Recoverable robustness in shunting and timetabling. In R.K. Ahuja, R.H. Möhring, C.D. Zaroliagis (Eds.), Robust and online large-scale optimization, lecture notes in computer science (Vol. 5868, pp. 28–60). Berlin: Springer.

    Google Scholar 

  5. 5.

    Claessens, M.T., van Dijk, N.M., Zwaneveld, P.J. (1998). Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110(3), 474–489.

    Article  Google Scholar 

  6. 6.

    D’Angelo, G., Di Stefano, G., Navarra, A., Pinotti, C.M. (2009). Recoverable robust timetables on trees. In D.-Z. Du, X. Hu, P.M. Pardalos (Eds.), Combinatorial optimization and applications, lecture notes in computer science (Vol. 5573, pp. 451–462). Berlin: Springer.

    Google Scholar 

  7. 7.

    De Giovanni, L., Heilporn, G., Labbé, M. (2008) Optimization models for the single delay management problem in public transportation. European Journal of Operational Research, 189(3), 762–774.

    Article  Google Scholar 

  8. 8.

    Dienst, H. (1978). Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. Ph.D. thesis. Technische Universität Braunschweig (in German).

  9. 9.

    Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A. (2012). Delay management with re-routing of passengers. Transportation Science, 46(1), 74–89.

    Article  Google Scholar 

  10. 10.

    Facchinei, F., & Kanzow, C. (2010). Generalized Nash equilibrium problems. Annals of Operations Research, 175, 177–211.

    Article  Google Scholar 

  11. 11.

    Fischetti, M., & Monaci, M. (2009). Light robustness. In R.K. Ahuja, R.H. Möhring, C.D. Zaroliagis (Eds.), Robust and online large-scale optimization, lecture notes in computer science (Vol. 5868, pp. 61–84). Berlin: Springer.

    Google Scholar 

  12. 12.

    Goerigk, M., Schöbel, A. LinTim - integrated optimization in public transportation. Homepage. see http://lintim.math.uni-goettingen.de/. Accessed 4 Nov 2013.

  13. 13.

    Goerigk, M., Schachtebeck, M., Schöbel, A. (2013). Evaluating line concepts using travel times and robustness: Simulations with the Lintim toolbox. In Public Transport, 5(3), 267–284.

    Article  Google Scholar 

  14. 14.

    Goerigk, M., Schöbel, A. (2010). An empirical analysis of robustness concepts for timetabling. In T. Erlebach & Lübbecke, M. (Eds.),s Proceedings of ATMOS10, OpenAccess Series in informatics (OASIcs) (Vol. 14, 584 pp. 100–113). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

  15. 15.

    Goerigk, M., Schöbel, A. (2011). Engineering the modulo network simplex heuristic for the periodic timetabling problem. In P.M. Pardalos, & S. Rebennack (Eds.), Proceedings of the 10th international symposium on experimental algorithms (SEA), lecture notes in computer science (Vol. 6630, pp. 181–192). Berlin: Springer.

  16. 16.

    Goossens, J., van Hoesel, C.P.M., Kroon, L.G. (2004). A branch and cut approach for solving line planning problems. Transportation Science, 38, 379–393.

    Article  Google Scholar 

  17. 17.

    Harker, P.T. (1991). Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, 54, 81–94.

    Article  Google Scholar 

  18. 18.

    Kepaptsoglou, K., & Karlaftis, M. (2009). Transit route network design problem: review. Journal of Transportation Engineering, 135(8), 491–505.

    Article  Google Scholar 

  19. 19.

    Kliewer, N., & Suhl, L. (2011). A note on the online nature of the railway delay management problem. Networks, 57(1), 28–37.

    Article  Google Scholar 

  20. 20.

    Kontogiannis, S., & Zaroliagis, C. (2008). Robust line planning under unknown incentives and elasticity of frequencies. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.

  21. 21.

    Krumke, S., Thielen, C., Zeck, C. (2011). Extensions to online delay management on a single train line: new bounds for delay minimization and profit maximization. Mathematical Methods of Operations Research, 74(1), 53–75.

    Article  Google Scholar 

  22. 22.

    Laporte, G., Mesa, J.A., Ortega, F.A., Sevillano, I. (2005). Maximizing trip coverage in the location of a single rapid transit alignment. Annals of Operations Research, 136, 49–63.

    Article  Google Scholar 

  23. 23.

    Liebchen, C., Schachtebeck, M., Schöbel, A., Stiller, S., Prigge, A. (2010). Computing delay-resistant railway timetables. Computers and Operations Research, 37, 857–868.

    Article  Google Scholar 

  24. 24.

    Milchtaich, I. (1996). Congestion games with player-specific payoff functions. Games and Economic Behavior, 13, 111–124.

    Article  Google Scholar 

  25. 25.

    Monderer, D., & Shapley, L.S. (1996). Potential games. Games and Economic Behavior, 14, 124–143.

    Article  Google Scholar 

  26. 26.

    Nachtigall, K., & Jerosch, K. (2008). Simultaneous network line planning and traffic assignment. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.

  27. 27.

    Nachtigall, K., & Opitz, J. (2008). Solving periodic timetable optimisation problems by modulo simplex calculations. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.

  28. 28.

    Puerto, J., Schöbel, A., Schwarze, S. (2012). On equilibria in generalized Nash games with applications to games on polyhedral sets. Technical report, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen.

  29. 29.

    Schachtebeck, M., & Schöbel, A. (2010). To wait or not to wait and who goes first? Delay management with priority decisions. Transportation Science, 44(3), 307–321.

    Article  Google Scholar 

  30. 30.

    Schöbel, A. (2006). Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. New York: Springer.

  31. 31.

    Schöbel, A. (2009). Capacity constraints in delay management. Public Transportation, 1(2), 135–154.

    Article  Google Scholar 

  32. 32.

    Schöbel, A. (2012). Line planning in public transportation: models and methods. OR Spectrum, 34(3), 491–510.

    Article  Google Scholar 

  33. 33.

    Schöbel, A., & Kratz, A. (2009). A bicriteria approach for robust timetabling. In R.K. Ahuja, R.H. Möhring, C.D. Zaroliagis (Eds.), Robust and online large-scale optimization, lecture notes in computer science (Vol. 5868, pp. 119–144). Berlin: Springer.

  34. 34.

    Schöbel, A., & Scholl, S. (2006). Line planning with minimal travel time. In L.G. Kroon, & R.H. Möhring (Eds.), Proceedings of the 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl Seminar. Germany: Dagstuhl.

  35. 35.

    Schöbel, A., & Schwarze, S. (2006). A game-theoretic approach to line planning. In R. Jacob, & M. Müller-Hannemann (Eds.), Proceedings of the 6th workshop on algorithmic methods and models for optimization of railways, number 06002 in Dagstuhl Seminar. Germany: Dagstuhl.

  36. 36.

    Schwarze, S. (2008). Path player games: analysis and applications. New York: Springer.

  37. 37.

    Shi, X., & Vanelslander, T. (2010). Design and evaluation of transportation networks: constructing transportation networks from perspectives of service integration, infrastructure investment and information system implementation. Netnomics, 11(1), 1–4.

    Article  Google Scholar 

  38. 38.

    Torres, L.M., Torres, R., Borndörfer, R., Pfetsch, M.E. (2008). Line planning on paths and tree networks with applications to the Quito trolebús system. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anita Schöbel.

Additional information

This work was partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL) and by the grant SCHO 1140/3-2 within the DFG programme Algorithm Engineering

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schöbel, A., Schwarze, S. Finding delay-resistant line concepts using a game-theoretic approach. Netnomics 14, 95–117 (2013). https://doi.org/10.1007/s11066-013-9080-x

Download citation

Keywords

  • Line planning
  • Network game
  • Equilibrium
  • Delays