Advertisement

Finding delay-resistant line concepts using a game-theoretic approach

  • Anita SchöbelEmail author
  • Silvia Schwarze
Article

Abstract

We present a game-theoretic model for the line planning problem in public transportation, in which each line acts as player. Each player aims to minimize its own delay, which is dependent on the traffic load along its edges. We show that there exists a line plan at equilibrium, which minimizes the probability of delays of the transportation system. This result is achieved by showing that a potential function exists. Numerical results using close-to-real world data in the LinTim framework clearly show that our method indeed produces delay-resistant line concepts.

Keywords

Line planning Network game Equilibrium Delays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borndörfer, R., Grötschel, M., Pfetsch, M.E. (2007). A column generation approach to line planning in public transport. Transportation Science, 41, 123–132.CrossRefGoogle Scholar
  2. 2.
    Bussieck, M.R., Kreuzer, P., Zimmermann, U.T. (1996). Optimal lines for railway systems. European Journal of Operational Research, 96(1), 54–63.CrossRefGoogle Scholar
  3. 3.
    Bussieck, M.R. (1998). Optimal lines in public rail transport. PhD thesis. University of Braunschweig.Google Scholar
  4. 4.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., Schöbel, A. (2009). Recoverable robustness in shunting and timetabling. In R.K. Ahuja, R.H. Möhring, C.D. Zaroliagis (Eds.), Robust and online large-scale optimization, lecture notes in computer science (Vol. 5868, pp. 28–60). Berlin: Springer.Google Scholar
  5. 5.
    Claessens, M.T., van Dijk, N.M., Zwaneveld, P.J. (1998). Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110(3), 474–489.CrossRefGoogle Scholar
  6. 6.
    D’Angelo, G., Di Stefano, G., Navarra, A., Pinotti, C.M. (2009). Recoverable robust timetables on trees. In D.-Z. Du, X. Hu, P.M. Pardalos (Eds.), Combinatorial optimization and applications, lecture notes in computer science (Vol. 5573, pp. 451–462). Berlin: Springer.Google Scholar
  7. 7.
    De Giovanni, L., Heilporn, G., Labbé, M. (2008) Optimization models for the single delay management problem in public transportation. European Journal of Operational Research, 189(3), 762–774.CrossRefGoogle Scholar
  8. 8.
    Dienst, H. (1978). Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. Ph.D. thesis. Technische Universität Braunschweig (in German).Google Scholar
  9. 9.
    Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A. (2012). Delay management with re-routing of passengers. Transportation Science, 46(1), 74–89.CrossRefGoogle Scholar
  10. 10.
    Facchinei, F., & Kanzow, C. (2010). Generalized Nash equilibrium problems. Annals of Operations Research, 175, 177–211.CrossRefGoogle Scholar
  11. 11.
    Fischetti, M., & Monaci, M. (2009). Light robustness. In R.K. Ahuja, R.H. Möhring, C.D. Zaroliagis (Eds.), Robust and online large-scale optimization, lecture notes in computer science (Vol. 5868, pp. 61–84). Berlin: Springer.Google Scholar
  12. 12.
    Goerigk, M., Schöbel, A. LinTim - integrated optimization in public transportation. Homepage. see http://lintim.math.uni-goettingen.de/. Accessed 4 Nov 2013.
  13. 13.
    Goerigk, M., Schachtebeck, M., Schöbel, A. (2013). Evaluating line concepts using travel times and robustness: Simulations with the Lintim toolbox. In Public Transport, 5(3), 267–284.CrossRefGoogle Scholar
  14. 14.
    Goerigk, M., Schöbel, A. (2010). An empirical analysis of robustness concepts for timetabling. In T. Erlebach & Lübbecke, M. (Eds.),s Proceedings of ATMOS10, OpenAccess Series in informatics (OASIcs) (Vol. 14, 584 pp. 100–113). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum für Informatik.Google Scholar
  15. 15.
    Goerigk, M., Schöbel, A. (2011). Engineering the modulo network simplex heuristic for the periodic timetabling problem. In P.M. Pardalos, & S. Rebennack (Eds.), Proceedings of the 10th international symposium on experimental algorithms (SEA), lecture notes in computer science (Vol. 6630, pp. 181–192). Berlin: Springer.Google Scholar
  16. 16.
    Goossens, J., van Hoesel, C.P.M., Kroon, L.G. (2004). A branch and cut approach for solving line planning problems. Transportation Science, 38, 379–393.CrossRefGoogle Scholar
  17. 17.
    Harker, P.T. (1991). Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, 54, 81–94.CrossRefGoogle Scholar
  18. 18.
    Kepaptsoglou, K., & Karlaftis, M. (2009). Transit route network design problem: review. Journal of Transportation Engineering, 135(8), 491–505.CrossRefGoogle Scholar
  19. 19.
    Kliewer, N., & Suhl, L. (2011). A note on the online nature of the railway delay management problem. Networks, 57(1), 28–37.CrossRefGoogle Scholar
  20. 20.
    Kontogiannis, S., & Zaroliagis, C. (2008). Robust line planning under unknown incentives and elasticity of frequencies. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.Google Scholar
  21. 21.
    Krumke, S., Thielen, C., Zeck, C. (2011). Extensions to online delay management on a single train line: new bounds for delay minimization and profit maximization. Mathematical Methods of Operations Research, 74(1), 53–75.CrossRefGoogle Scholar
  22. 22.
    Laporte, G., Mesa, J.A., Ortega, F.A., Sevillano, I. (2005). Maximizing trip coverage in the location of a single rapid transit alignment. Annals of Operations Research, 136, 49–63.CrossRefGoogle Scholar
  23. 23.
    Liebchen, C., Schachtebeck, M., Schöbel, A., Stiller, S., Prigge, A. (2010). Computing delay-resistant railway timetables. Computers and Operations Research, 37, 857–868.CrossRefGoogle Scholar
  24. 24.
    Milchtaich, I. (1996). Congestion games with player-specific payoff functions. Games and Economic Behavior, 13, 111–124.CrossRefGoogle Scholar
  25. 25.
    Monderer, D., & Shapley, L.S. (1996). Potential games. Games and Economic Behavior, 14, 124–143.CrossRefGoogle Scholar
  26. 26.
    Nachtigall, K., & Jerosch, K. (2008). Simultaneous network line planning and traffic assignment. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.Google Scholar
  27. 27.
    Nachtigall, K., & Opitz, J. (2008). Solving periodic timetable optimisation problems by modulo simplex calculations. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.Google Scholar
  28. 28.
    Puerto, J., Schöbel, A., Schwarze, S. (2012). On equilibria in generalized Nash games with applications to games on polyhedral sets. Technical report, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen.Google Scholar
  29. 29.
    Schachtebeck, M., & Schöbel, A. (2010). To wait or not to wait and who goes first? Delay management with priority decisions. Transportation Science, 44(3), 307–321.CrossRefGoogle Scholar
  30. 30.
    Schöbel, A. (2006). Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. New York: Springer.Google Scholar
  31. 31.
    Schöbel, A. (2009). Capacity constraints in delay management. Public Transportation, 1(2), 135–154.CrossRefGoogle Scholar
  32. 32.
    Schöbel, A. (2012). Line planning in public transportation: models and methods. OR Spectrum, 34(3), 491–510.CrossRefGoogle Scholar
  33. 33.
    Schöbel, A., & Kratz, A. (2009). A bicriteria approach for robust timetabling. In R.K. Ahuja, R.H. Möhring, C.D. Zaroliagis (Eds.), Robust and online large-scale optimization, lecture notes in computer science (Vol. 5868, pp. 119–144). Berlin: Springer.Google Scholar
  34. 34.
    Schöbel, A., & Scholl, S. (2006). Line planning with minimal travel time. In L.G. Kroon, & R.H. Möhring (Eds.), Proceedings of the 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl Seminar. Germany: Dagstuhl.Google Scholar
  35. 35.
    Schöbel, A., & Schwarze, S. (2006). A game-theoretic approach to line planning. In R. Jacob, & M. Müller-Hannemann (Eds.), Proceedings of the 6th workshop on algorithmic methods and models for optimization of railways, number 06002 in Dagstuhl Seminar. Germany: Dagstuhl.Google Scholar
  36. 36.
    Schwarze, S. (2008). Path player games: analysis and applications. New York: Springer.Google Scholar
  37. 37.
    Shi, X., & Vanelslander, T. (2010). Design and evaluation of transportation networks: constructing transportation networks from perspectives of service integration, infrastructure investment and information system implementation. Netnomics, 11(1), 1–4.CrossRefGoogle Scholar
  38. 38.
    Torres, L.M., Torres, R., Borndörfer, R., Pfetsch, M.E. (2008). Line planning on paths and tree networks with applications to the Quito trolebús system. In M. Fischetti, & P. Widmayer (Eds.), ATMOS 2008 - 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems. Germany: Dagstuhl.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsGöttingenGermany
  2. 2.Institute of Information SystemsHamburgGermany

Personalised recommendations