Skip to main content
Log in

Evolutionary game-theoretic model for dynamic congestion pricing in multi-class traffic networks

  • Published:
NETNOMICS: Economic Research and Electronic Networking Aims and scope Submit manuscript

Abstract

This paper describes an evolutionary game-theoretic learning model for dynamic congestion pricing in urban road networks, taking into account route choice stochasticity and reliability considerations, and the heterogeneity of users, in terms of their value of travel time and real-time information acquisition. The learning model represents the dynamic adjustments of users to travel cost changes which may take place in the day-to-day as well as the within-day timescales. The implementation into a simplified and a real urban road network signifies the important implications of modeling the dynamic and stochastic learning components of users’ behavior for accommodating the efficient deployment of congestion pricing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pigou, A. C. (1920). The economics of welfare. London, U.K.: Macmillan.

    Google Scholar 

  2. Knight, F. (1924). Some fallacies in the interpretation of social cost. The Quarterly Journal of Economics, 38, 582–606. doi:https://doi.org/10.2307/1884592.

    Article  Google Scholar 

  3. Yang, H. (1999). Evaluating the benefits of a combined route guidance and road pricing system in a traffic network with recurrent congestion. Transportation, 26(3), 299–322. doi:https://doi.org/10.1023/A:1005129309812.

    Article  Google Scholar 

  4. Walters, A. A. (1961). The theory and measurement of private and social cost of highway congestion. Econometrica, 29(4), 676–699. doi:https://doi.org/10.2307/1911814.

    Article  Google Scholar 

  5. Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic Review, 59(2), 251–260.

    Google Scholar 

  6. Dafermos, S. C., & Sparrow, F. T. (1971). Optimal resource allocation and toll patterns in user-optimized transport networks. Journal of Transport Economics and Policy, 5(2), 184–200.

    Google Scholar 

  7. Yang, H., Meng, Q., & Lee, D. H. (2004). Trial-and-error implementation of marginal-cost pricing on networks in the absence of demand functions. Transportation Research Part B, 38(6), 477–493. doi:https://doi.org/10.1016/S0191-2615(03)00077-8.

    Article  Google Scholar 

  8. Zhao, Y., & Kockelman, K. M. (2006). On-line marginal-cost pricing across networks: Incorporating heterogeneous users and stochastic equilibria. Transportation Research Part B, 40(5), 424–435. doi:https://doi.org/10.1016/j.trb.2005.08.001.

    Article  Google Scholar 

  9. Henderson, J. V. (1974). Road congestion: A reconsideration of pricing theory. Journal of Urban Economics, 1(3), 346–365. doi:https://doi.org/10.1016/0094-1190(74)90012-6.

    Article  Google Scholar 

  10. Arnott, R., De Palma, A., & Lindsey, R. (1990). Departure time and route choice for the morning commute. Transportation Research Part B, 24(3), 209–228. doi:https://doi.org/10.1016/0191-2615(90)90018-T.

    Article  Google Scholar 

  11. Carey, M., & Srinivasan, A. (1993). Externalities, average and marginal costs, and tolls on congested networks with time-varying flows. Operations Research, 41(1), 217–231.

    Article  Google Scholar 

  12. Huang, H. J., & Yang, H. (1996). Optimal variable road-use pricing on a congested network of parallel routes with elastic demand. In J. B. Lesort (Ed.), Proceedings of the 13th international symposium on transportation and traffic theory (pp. 479–500). Oxford: Elsevier.

    Google Scholar 

  13. Chow, A. H. F. (2007). Toward a general framework for dynamic road pricing. In B. Heydecker (Ed.), Proceedings of the 4th IMA international conference on mathematics in transport (pp. 245–257). Elsevier.

  14. Wie, B. (2007). Dynamic Stackelberg equilibrium congestion pricing. Transportation Research Part C, 15(3), 154–174. doi:https://doi.org/10.1016/j.trc.2007.03.002.

    Article  Google Scholar 

  15. Sandholm, W. H. (2002). Evolutionary implementation and congestion pricing. The Review of Economic Studies, 69(3), 667–689. doi:https://doi.org/10.1111/1467-937X.t01-1-00026.

    Article  Google Scholar 

  16. Friesz, T. L., Bernstein, D., & Kydes, N. (2004). Dynamic congestion pricing in disequilibrium. Networks and Spatial Economics, 4(2), 181–202. doi:https://doi.org/10.1023/B:NETS.0000027772.43771.94.

    Article  Google Scholar 

  17. De Palma, A., Kilani, M., & Lindsey, R. (2005). Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS. Transportation Research Part A, 39(7–9), 588–611.

    Google Scholar 

  18. Wie, B., & Tobin, R. L. (1998). Dynamic congestion pricing models for general traffic networks. Transportation Research Part B, 32(5), 313–327. doi:https://doi.org/10.1016/S0191-2615(97)00043-X.

    Article  Google Scholar 

  19. Yang, F. (2008). Day-to-day dynamic optimal tolls with elastic demand. In Proceedings of the transportation research board 87th annual meeting. Washington, D.C.

  20. Joksimovic, D., Bliemer, M. C. J., Bovy, P. H. L., & Verwater-Lukszo, Z. (2005). Dynamic road pricing for optimizing network performance with heterogeneous users. In IEEE proceedings of the international conference in networking, sensing and control. Tucson, AZ (pp. 407–412). Los Alamitos, CA, USA: IEEE Computer Society Press.

    Google Scholar 

  21. Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  22. Mailath, G. J., & Samuelson, L. (2006). Repeated games and reputations. Long-run relationships. Oxford, U.K: Oxford University Press.

    Book  Google Scholar 

  23. Mahmassani, H. S., & Jayakrishnan, R. (1991). System performance and user response under real-time information in a congested traffic corridor. Transportation Research Part A, 25(5), 293–307. doi:https://doi.org/10.1016/0191-2607(91)90145-G.

    Article  Google Scholar 

  24. Yang, F. (2004). An evolutionary game theory approach to the day-to-day traffic dynamics. Unpublished Ph.D. dissertation, Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, WI.

  25. Dimitriou, L., Tsekeris, T., & Stathopoulos, A. (2007). Evolutionary game-theoretic model for performance reliability assessment of road networks. In Proceedings of the 3rd international symposium on transportation network reliability. The Hague, Netherlands.

  26. Friesz, T. L., Kwon, C., & Mookherjee, R. (2007). A computable theory of dynamic congestion pricing. In R. E. Allsop, M. G. H. Bell, & B. G. Heydecker (Eds.), Proceedings of the 17th international symposium on transportation and traffic theory (pp. 1–26). Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Tsekeris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitriou, L., Tsekeris, T. Evolutionary game-theoretic model for dynamic congestion pricing in multi-class traffic networks. Netnomics 10, 103–121 (2009). https://doi.org/10.1007/s11066-008-9027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11066-008-9027-9

Keywords

Navigation