Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1–1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Similar content being viewed by others
Availability of Data and Materials
The datasets supporting the conclusions of this article are included in the supplementary file.
References
Abend, R., Sar-El, R., Gonen, T., Jalon, I., Vaisvaser, S., Bar-Haim, Y., & Hendler, T. (2019). Modulating emotional experience using electrical stimulation of the medial-prefrontal cortex: A preliminary tDCS-fMRI study. Neuromodulation: Technology at the Neural Interface, 22(8), 884–893.
Aboulafia-Brakha, T., Manuel, A. L., & Ptak, R. (2016). Prefrontal transcranial direct current stimulation facilitates affective flexibility. Neuropsychologia, 86, 13–18.
Adenzato, M., Brambilla, M., Manenti, R., De Lucia, L., Trojano, L., Garofalo, S., & Cotelli, M. (2017). Gender differences in cognitive Theory of Mind revealed by transcranial direct current stimulation on medial prefrontal cortex. Scientific Reports, 7, 41219. https://doi.org/10.1038/srep41219
Adenzato, M., Cavallo, M., & Enrici, I. (2010). Theory of mind ability in the behavioural variant of frontotemporal dementia: An analysis of the neural, cognitive, and social levels. Neuropsychologia, 48(1), 2–12. https://doi.org/10.1016/j.neuropsychologia.2009.08.001
Adenzato, M., Manenti, R., Enrici, I., Gobbi, E., Brambilla, M., Alberici, A., & Cotelli, M. (2019a). Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: A randomized, double-blind, sham-controlled study. Translational Neurodegeneration, 8(1), 1–13.
Adenzato, M., Manenti, R., Gobbi, E., Enrici, I., Rusich, D., & Cotelli, M. (2019b). Aging, sex and cognitive Theory of Mind: A transcranial direct current stimulation study. Scientific Reports, 9(1), 1–10.
Alizadehgoradel, J., Nejati, V., Movahed, F. S., Imani, S., Taherifard, M., Mosayebi-Samani, M., & Salehinejad, M. A. (2020). Repeated stimulation of the dorsolateral-prefrontal cortex improves executive dysfunctions and craving in drug addiction: A randomized, double-blind, parallel-group study. Brain Stimulation, 13(3), 582–593.
Allaert, J., De Raedt, R., Sanchez-Lopez, A., Baeken, C., & Vanderhasselt, M. A. (2022). Mind the social feedback: Effects of tDCS applied to the left DLPFC on psychophysiological responses during the anticipation and reception of social evaluations. Social Cognitive and Affective Neuroscience, 17(1), 131–141. https://doi.org/10.1093/scan/nsaa066
André, S., Heinrich, S., Kayser, F., Menzler, K., Kesselring, J., Khader, P. H., & Mylius, V. (2016). At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. Journal of the Neurological Sciences, 369, 185–190.
Angius, L., Santarnecchi, E., Pascual-Leone, A., & Marcora, S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience, 419, 34–45. https://doi.org/10.1016/j.neuroscience.2019.08.052
Arciniega, H., Gozenman, F., Jones, K. T., Stephens, J. A., & Berryhill, M. E. (2018). Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Front Aging Neurosci, 10, 57. https://doi.org/10.3389/fnagi.2018.00057
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177–185.
Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., & Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28(9), 1419–1432.
Baddeley, A. (1992). Working memory: The interface between memory and cognition. Journal of Cognitive Neuroscience, 4(3), 281–288.
Bahji, A., Forth, E., Yang, C.-C., & Khalifa, N. (2021). Transcranial direct current stimulation for empathy: A systematic review and meta-analysis. Social Neuroscience, 16(3), 232–255.
Bashir, S., Al-Hussain, F., Hamza, A., Asim Niaz, T., Albaradie, R., & Habib, S. S. (2019). Cognitive function assessment during 2 mA transcranial direct current stimulation in DLPFC in healthy volunteers. Physiological Reports, 7(20), e14264. https://doi.org/10.14814/phy2.14264
Bestmann, S., de Berker, A. O., & Bonaiuto, J. (2015). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19(1), 13–20.
Blumberg, E. J., Peterson, M. S., & Parasuraman, R. (2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9, 3.
Bogdanov, M., & Schwabe, L. (2016). Transcranial stimulation of the dorsolateral prefrontal cortex prevents stress-induced working memory deficits. Journal of Neuroscience, 36(4), 1429–1437. https://doi.org/10.1523/JNEUROSCI.3687-15.2016
Boggio, P. S., Khoury, L. P., Martins, D. C., Martins, O. E., De Macedo, E., & Fregni, F. (2009). Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of Neurology, Neurosurgery & Psychiatry, 80(4), 444–447.
Brunoni, A. R., & Vanderhasselt, M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition, 86, 1–9. https://doi.org/10.1016/j.bandc.2014.01.008
Bryant, A. M. (2020). Effects of transcranial direct current stimulation on working memory performance in older adults: Potential moderators: Ohio University.
Campanella, S., Schroder, E., Monnart, A., Vanderhasselt, M.-A., Duprat, R., Rabijns, M., & Baeken, C. (2017). Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: A double-blind ERP study in a male population. Clinical EEG and Neuroscience, 48(3), 176–188.
Cespón, J., Miniussi, C., & Pellicciari, M. C. (2018). Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Research Reviews, 43, 81–98.
Cespón, J., Rodella, C., Miniussi, C., & Pellicciari, M. (2019). Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer’s disease patients: A pilot study. Clinical Neurophysiology, 130(11), 2038–2052.
Cespón, J., Rodella, C., Rossini, P. M., Miniussi, C., & Pellicciari, M. C. (2017). Anodal transcranial direct current stimulation promotes frontal compensatory mechanisms in healthy elderly subjects. Frontiers in Aging Neuroscience, 9, 420.
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4(2), 81–89. https://doi.org/10.1080/17588928.2013.768221
Chryssolouris, G. (1996). Flexibility and its measurement. CIRP Annals, 45(2), 581–587.
Cirillo, G., Di Pino, G., Capone, F., Ranieri, F., Florio, L., Todisco, V., & Di Lazzaro, V. (2017). Neurobiological after-effects of non-invasive brain stimulation. Brain Stimulation, 10(1), 1–18.
Clarke, P. J. F., Van Bockstaele, B., Marinovic, W., Howell, J. A., Boyes, M. E., & Notebaert, L. (2020). The effects of left DLPFC tDCS on emotion regulation, biased attention, and emotional reactivity to negative content. Cognitive, Affective, & Behavioral Neuroscience, 20(6), 1323–1335. https://doi.org/10.3758/s13415-020-00840-2
Cosmo, C., Baptista, A. F., de Araújo, A. N., do Rosário, R. S., Miranda, J. G. V., Montoya, P., & de Sena, E. P. (2015). A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention-deficit/hyperactivity disorder. PLoS ONE, 10(8), e0135371.
Costanzo, F., Varuzza, C., Rossi, S., Sdoia, S., Varvara, P., Oliveri, M., & Menghini, D. (2016). Reading changes in children and adolescents with dyslexia after transcranial direct current stimulation. NeuroReport, 27(5), 295–300.
Cotelli, M., Adenzato, M., Cantoni, V., Manenti, R., Alberici, A., Enrici, I., & Borroni, B. (2018). Enhancing theory of mind in behavioural variant frontotemporal dementia with transcranial direct current stimulation. Cognitive, Affective, & Behavioral Neuroscience, 18(6), 1065–1075. https://doi.org/10.3758/s13415-018-0622-4
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423.
de Boer, N. S., Schluter, R. S., Daams, J. G., van der Werf, Y. D., Goudriaan, A. E., & van Holst, R. J. (2021). The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 125, 122–147. https://doi.org/10.1016/j.neubiorev.2021.01.013
Deldar, Z., Rustamov, N., Blanchette, I., & Piché, M. (2019). Improving working memory and pain inhibition in older persons using transcranial direct current stimulation. Neuroscience Research, 148, 19–27.
Deldar, Z., Rustamov, N., Bois, S., Blanchette, I., & Piche, M. (2018). Enhancement of pain inhibition by working memory with anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex. The Journal of Physiological Sciences, 68(6), 825–836. https://doi.org/10.1007/s12576-018-0598-4
Dibbets, P., & Jolles, J. (2006). The Switch Task for Children: Measuring mental flexibility in young children. Cognitive Development, 21(1), 60–71.
Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., & Camprodon, J. A. (2019). tDCS to the left DLPFC modulates cognitive and physiological correlates of executive function in a state-dependent manner. Brain Stimulation, 12(6), 1456–1463. https://doi.org/10.1016/j.brs.2019.06.006
Ellis, D. M., Veloria, G. K., Arnett, C. R., Vogel, A. E., Pitães, M., & Brewer, G. A. (2020). No evidence for enhancing prospective memory with anodal Transcranial direct current stimulation across dorsolateral prefrontal cortex. Journal of Cognitive Enhancement, 4(3), 333–339.
Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Théoret, H., Boggio, P. S., & Fregni, F. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. Journal of Neuroscience, 27(23), 6212–6218. https://doi.org/10.1523/JNEUROSCI.0314-07.2007
Fertonani, A., & Miniussi, C. (2017). Transcranial electrical stimulation: What we know and do not know about mechanisms. The Neuroscientist, 23(2), 109–123.
Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742–753.
Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., & Paulus, W. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23–30.
Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204.
Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of ‘theory of mind.’ Trends in Cognitive Sciences, 7(2), 77–83.
Ghanavati, E., Nejati, V., & Salehinejad, M. A. (2018). Transcranial direct current stimulation over the posterior parietal cortex (PPC) enhances figural fluency: Implications for creative cognition. Journal of Cognitive Enhancement, 2(1), 88–96.
Ghanavati, E., Salehinejad, M. A., Nejati, V., & Nitsche, M. A. (2019). Differential role of prefrontal, temporal and parietal cortices in verbal and figural fluency: Implications for the supramodal contribution of executive functions. Science and Reports, 9(1), 3700. https://doi.org/10.1038/s41598-019-40273-7
Gill, J., Shah-Basak, P. P., & Hamilton, R. (2015). It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulation, 8(2), 253–259. https://doi.org/10.1016/j.brs.2014.10.018
Greeley, B., Barnhoorn, J. S., Verwey, W. B., & Seidler, R. D. (2022). Anodal transcranial direct current stimulation over prefrontal cortex slows sequence learning in older adults. Frontiers in Human Neuroscience, 16, 814204.
He, Z., Lin, Y., Xia, L., Liu, Z., Zhang, D., & Elliott, R. (2018). Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Social Cognitive and Affective Neuroscience, 13(4), 357–366. https://doi.org/10.1093/scan/nsy026
Higgins, J. P., Green, S., & Scholten, R. J. (2008). 3 Maintaining reviews: Updates, amendments and feedback. Cochrane Handbook for Systematic Reviews of Interventions.
Hill, A. T., Fitzgerald, P. B., & Hoy, K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: A systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation, 9(2), 197–208. https://doi.org/10.1016/j.brs.2015.10.006
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550.
Imburgio, M. J., & Orr, J. M. (2018). Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia, 117, 156–166. https://doi.org/10.1016/j.neuropsychologia.2018.04.022
Jarrold, C., & Towse, J. N. (2006). Individual differences in working memory. Neuroscience, 139(1), 39–50. https://doi.org/10.1016/j.neuroscience.2005.07.002
Jeon, S. Y., & Han, S. J. (2012). Improvement of the working memory and naming by transcranial direct current stimulation. Annals of Rehabilitation Medicine, 36(5), 585–595.
Jo, J. M., Kim, Y.-H., Ko, M.-H., Ohn, S. H., Joen, B., & Lee, K. H. (2009). Enhancing the working memory of stroke patients using tDCS. American Journal of Physical Medicine & Rehabilitation, 88(5), 404–409.
Jongkees, B. J., Immink, M. A., Boer, O. D., Yavari, F., Nitsche, M. A., & Colzato, L. S. (2019). The effect of cerebellar tDCS on sequential motor response selection. The Cerebellum, 18(4), 738–749.
Ke, Y. F., Wang, N. C., Du, J. L., Kong, L. H., Liu, S., Xu, M. P., & Ming, D. (2019). The Effects of transcranial direct current stimulation (tDCS) on working memory training in healthy young adults. Frontiers in Human Neuroscience, 13, 10. https://doi.org/10.3389/fnhum.2019.00019
Khan, A., Wang, X., Ti, C. H. E., Tse, C.-Y., & Tong, K.-Y. (2020). Anodal transcranial direct current stimulation of anterior cingulate cortex modulates subcortical brain regions resulting in cognitive enhancement. Frontiers in Human Neuroscience, 14, 584136.
Koizumi, K., Ueda, K., Li, Z. Y., & Nakao, M. (2020). Effects of transcranial direct current stimulation on brain networks related to creative thinking. Frontiers in Human Neuroscience, 14, 541052. https://doi.org/10.3389/fnhum.2020.541052
Krueger, F., Barbey, A. K., & Grafman, J. (2009). The medial prefrontal cortex mediates social event knowledge. Trends in Cognitive Sciences, 13(3), 103–109.
Kwon, Y. H., & Kwon, J. W. (2013). Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex. Journal of Physical Therapy Science, 25(9), 1083–1086.
Lanina, A. A., Feurra, M., & Gorbunova, E. S. (2018). No effect of the right posterior parietal cortex tDCS in dual-target visual search. Frontiers in Psychology, 9, 2112. https://doi.org/10.3389/fpsyg.2018.02112
Lau, C. I., Liu, M. N., Chang, K. C., Chang, A., Bai, C. H., Tseng, C. S., & Wang, H. C. (2019). Effect of single-session transcranial direct current stimulation on cognition in Parkinson’s disease. CNS Neuroscience & Therapeutics, 25(11), 1237–1243. https://doi.org/10.1111/cns.13210
Lauro, L. J. R., Rosanova, M., Mattavelli, G., Convento, S., Pisoni, A., Opitz, A., & Vallar, G. (2014). TDCS increases cortical excitability: Direct evidence from TMS–EEG. Cortex, 58, 99–111.
Lee, J., Bestmann, S., & Evans, C. (2021). A future of current flow modelling for transcranial electrical stimulation? Current Behavioral Neuroscience Reports, 8(4), 150–159.
Leite, J., Carvalho, S., Fregni, F., Boggio, P. S., & Goncalves, O. F. (2013). The effects of cross-hemispheric dorsolateral prefrontal cortex transcranial direct current stimulation (tDCS) on task switching. Brain Stimulation, 6(4), 660–667. https://doi.org/10.1016/j.brs.2012.10.006
Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 2238–2247.
Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J., & Hagger, M. S. (2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5(5), e00332.
Loo, C. K., Alonzo, A., Martin, D., Mitchell, P. B., Galvez, V., & Sachdev, P. (2012). Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. The British Journal of Psychiatry, 200(1), 52–59.
Loo, C. K., Sachdev, P., Martin, D., Pigot, M., Alonzo, A., Malhi, G. S., & Mitchell, P. (2010). A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. The International Journal of Neuropsychopharmacology, 13(1), 61–69.
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659.
Lu, H., Gong, Y., Huang, P., Zhang, Y., Guo, Z., Zhu, X., & You, X. (2021). Effect of repeated anodal HD-tDCS on executive functions: Evidence from a pilot and single-blinded fNIRS study. Frontiers in Human Neuroscience, 14, 583730.
Lukasik, K. M., Lehtonen, M., Salmi, J., Meinzer, M., Joutsa, J., & Laine, M. (2018). No effects of stimulating the left ventrolateral prefrontal cortex with tDCS on verbal working memory updating. Frontiers in Neuroscience, 11, 738. https://doi.org/10.3389/fnins.2017.00738
Luque-Casado, A., Rodríguez-Freiría, R., Fogelson, N., Iglesias-Soler, E., & Fernández-del-Olmo, M. (2020). An integrative clustering approach to tDCS individual response variability in cognitive performance: Beyond a null effect on working memory. Neuroscience, 443, 120–130.
Mai, X., Zhang, W., Hu, X., Zhen, Z., Xu, Z., Zhang, J., & Liu, C. (2016). Using tDCS to explore the role of the right temporo-parietal junction in theory of mind and cognitive empathy. Frontiers in Psychology, 7, 380. https://doi.org/10.3389/fpsyg.2016.00380
Makovski, T., & Lavidor, M. (2014). Stimulating occipital cortex enhances visual working memory consolidation. Behavioural Brain Research, 275, 84–87.
Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. Journal of Cognitive Neuroscience, 28(8), 1063–1089.
Martin, A. K., Dzafic, I., Ramdave, S., & Meinzer, M. (2017a). Causal evidence for task-specific involvement of the dorsomedial prefrontal cortex in human social cognition. Social Cognitive and Affective Neuroscience, 12(8), 1209–1218. https://doi.org/10.1093/scan/nsx063
Martin, A. K., Huang, J., & Meinzer, M. (2018). Dissociable roles for the rTPJ and dmPFC in self-other processing: A HD-tDCS study. bioRxiv, 306183.
Martin, A. K., Huang, J., Hunold, A., & Meinzer, M. (2017b). Sex mediates the effects of high-definition transcranial direct current stimulation on “mind-reading.” Neuroscience, 366, 84–94.
Martin, A. K., Su, P., & Meinzer, M. (2021). Improving cross-cultural “mind-reading” with electrical brain stimulation. Neuroscience, 455, 107–112. https://doi.org/10.1016/j.neuroscience.2020.12.007
Martin, D. M., Liu, R., Alonzo, A., Green, M., & Loo, C. K. (2014). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: Effect of timing of stimulation. Experimental Brain Research, 232, 3345–3351.
Martínez-Pérez, V., Campoy, G., Palmero, L. B., & Fuentes, L. J. (2020). Examining the dorsolateral and ventromedial prefrontal cortex involvement in the self-attention network: A randomized, sham-controlled, parallel group, double-blind, and multichannel HD-tDCS study. Frontiers in Neuroscience, 14, 683.
Mashal, N., & Metzuyanim-Gorelick, S. (2019). New information on the effects of transcranial direct current stimulation on n-back task performance. Experimental Brain Research, 237(5), 1315–1324.
May, A., Hajak, G., Gänssbauer, S., Steffens, T., Langguth, B., Kleinjung, T., & Eichhammer, P. (2007). Structural brain alterations following 5 days of intervention: Dynamic aspects of neuroplasticity. Cerebral Cortex, 17(1), 205–210.
Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5(2), 110–115.
Metzuyanim-Gorlick, S., & Mashal, N. (2016). The effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on cognitive inhibition. Experimental Brain Research, 234(6), 1537–1544.
Mitroi, J., Burroughs, L. P., Moussa-Tooks, A. B., Bolbecker, A. R., Lundin, N. B., O’Donnell, B. F., & Hetrick, W. P. (2020). Polarity- and intensity-independent modulation of timing during delay eyeblink conditioning using cerebellar transcranial direct current stimulation. Cerebellum, 19(3), 383–391. https://doi.org/10.1007/s12311-020-01114-w
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.
Moreno, M. L., Goerigk, S. A., Bertola, L., Suemoto, C. K., Razza, L. B., Moffa, A. H., & Gattaz, W. F. (2020). Cognitive changes after tDCS and escitalopram treatment in major depressive disorder: Results from the placebo-controlled ELECT-TDCS trial. Journal of Affective Disorders, 263, 344–352.
Mulquiney, P. G., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology, 122(12), 2384–2389.
Mylius, V., Jung, M., Menzler, K., Haag, A., Khader, P. H., Oertel, W. H., & Lefaucheur, J. P. (2012). Effects of transcranial direct current stimulation on pain perception and working memory. European Journal of Pain, 16(7), 974–982. https://doi.org/10.1002/j.1532-2149.2011.00105.x
Nejati, V., Alavi, M. M., & Nitsche, M. A. (2021). The impact of attention deficit-hyperactivity disorder symptom severity on the effectiveness of transcranial direct current stimulation (tDCS) on inhibitory control. Neuroscience, 466, 248–257.
Nilsson, J., Lebedev, A. V., & Lövdén, M. (2015). No significant effect of prefrontal tDCS on working memory performance in older adults. Frontiers in Aging Neuroscience, 7, 230. https://doi.org/10.3389/fnagi.2015.00230
Nitsche, M. A., Kuo, M.-F., Paulus, W., & Antal, A. (2015). Transcranial direct current stimulation: protocols and physiological mechanisms of action. Textbook of Neuromodulation: Principles, Methods and Clinical Applications, 101–111.
O'Donnell, H. E. (2020). Learning preferences as an index of individual differences in cognitive flexibility: Drexel University.
Ohn, S. H., Park, C. I., Yoo, W. K., Ko, M. H., Choi, K. P., Kim, G. M., & Kim, Y. H. (2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. NeuroReport, 19(1), 43–47. https://doi.org/10.1097/WNR.0b013e3282f2adfd
Osimo, S. A., Korb, S., & Aiello, M. (2019). Obesity, subliminal perception and inhibition: Neuromodulation of the prefrontal cortex. Behaviour Research and Therapy, 119, 103408.
Ouellet, J. (2015). Enhancing decision-making and impulse control with transcranial direct current stimulation (tDCS) of the orbitofrontal cortex (OFC): A randomized and sham-controlled study.
Oyama, F., Ishibashi, K., & Iwanaga, K. (2017). Cathodal transcranial direct-current stimulation over right posterior parietal cortex enhances human temporal discrimination ability. Journal of Physiological Anthropology, 36(1), 1–10.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Brennan, S. E. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 1–11.
Palmisano, A., Bossi, F., Barlabà, C., Febbraio, F., Loconte, R., Lupo, A., & Rivolta, D. (2021). Anodal tDCS effects over the left dorsolateral prefrontal cortex (L-DLPFC) on the rating of facial expression: Evidence for a gender-specific effect. Heliyon, 7(11), e08267. https://doi.org/10.1016/j.heliyon.2021.e08267
Razza, L. B., Luethi, M. S., Zanão, T., De Smet, S., Buchpiguel, C., Busatto, G., & Moreno, M. (2023). Transcranial direct current stimulation versus intermittent theta-burst stimulation for the improvement of working memory performance. International Journal of Clinical and Health Psychology, 23(1), 100334.
Rohatgi, A. (2015). WebPlotDigitizer user manual version 3.4. Austin, Texas.
Rushby, J. A., De Blasio, F. M., Logan, J. A., Wearne, T., Kornfeld, E., Wilson, E. J., & McDonald, S. (2021). tDCS effects on task-related activation and working memory performance in traumatic brain injury: A within group randomized controlled trial. Neuropsychological Rehabilitation, 31(5), 814–836.
Saldanha, J. S., Zortea, M., Deliberali, C. B., Nitsche, M. A., Kuo, M.-F., Torres, I. L. D. S., & Caumo, W. (2020). Impact of age on tDCS effects on pain threshold and working memory: Results of a proof of concept cross-over randomized controlled study. Frontiers in Aging Neuroscience, 12, 189.
Salehinejad, M. A., Paknia, N., Hosseinpour, A. H., Yavari, F., Vicario, C. M., Nitsche, M. A., & Nejati, V. (2021). Contribution of the right temporoparietal junction and ventromedial prefrontal cortex to theory of mind in autism: A randomized, sham-controlled tDCS study. Autism Research, 14(8), 1572–1584. https://doi.org/10.1002/aur.2538
Salehinejad, M. A., Wischnewski, M., Nejati, V., Vicario, C. M., & Nitsche, M. A. (2019). Transcranial direct current stimulation in attention-deficit hyperactivity disorder: A meta-analysis of neuropsychological deficits. PLoS ONE, 14(4), e0215095.
Schachar, R., Mota, V. L., Logan, G. D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 28(3), 227–235.
Shaker, H. A., Sawan, S. A. E., Fahmy, E. M., Ismail, R. S., & Elrahman, S. A. E. A. (2018). Effect of transcranial direct current stimulation on cognitive function in stroke patients. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 54(1), 1–8.
Sierawska, A., Splittgerber, M., Moliadze, V., Siniatchkin, M., & Buyx, A. (2023). Transcranial direct current stimulation (tDCS) in pediatric populations—–Voices from typically developing children and adolescents and their parents. Neuroethics, 16(1), 3.
Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.
Smith, R. C., Boules, S., Mattiuz, S., Youssef, M., Tobe, R. H., Sershen, H., & Davis, J. M. (2015). Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: A randomized controlled study. Schizophrenia Research, 168(1–2), 260–266.
Soff, C., Sotnikova, A., Christiansen, H., Becker, K., & Siniatchkin, M. (2017). Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. Journal of Neural Transmission, 124(1), 133–144. https://doi.org/10.1007/s00702-016-1646-y
Soltaninejad, Z., Nejati, V., & Ekhtiari, H. (2019). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. Journal of Attention Disorders, 23(4), 325–332. https://doi.org/10.1177/1087054715618792
Soyata, A. Z., Aksu, S., Woods, A. J., İşçen, P., Saçar, K. T., & Karamürsel, S. (2019). Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder. European Archives of Psychiatry and Clinical Neuroscience, 269(3), 275–284.
Steenbergen, L., Sellaro, R., Hommel, B., Lindenberger, U., Kühn, S., & Colzato, L. S. (2016). “Unfocus” on foc.us: Commercial tDCS headset impairs working memory. Experimental Brain Research, 234(3), 637–643. https://doi.org/10.1007/s00221-015-4391-9
Stewart, J.-A. L., & Tannock, R. (1999). Inhibitory control differences following mild head injury. Brain and Cognition, 41(3), 411–416.
Strobach, T., Antonenko, D., Schindler, T., Floel, A., & Schubert, T. (2016). Modulation of executive control in the task switching paradigm with transcranial direct current stimulation (tDCS). Journal of Psychophysiology, 30(2), 55–65. https://doi.org/10.1027/0269-8803/a000155
Talsma, L. J., Broekhuizen, J. A., Huisman, J., & Slagter, H. A. (2018). No evidence that baseline prefrontal cortical excitability (3T-MRS) predicts the effects of prefrontal tDCS on WM performance. Frontiers in Neuroscience, 12, 481. https://doi.org/10.3389/fnins.2018.00481
Tang, J.-L., & Liu, J. L. (2000). Misleading funnel plot for detection of bias in meta-analysis. Journal of Clinical Epidemiology, 53(5), 477–484.
Trémolière, B., Maheux-Caron, V., Lepage, J.-F., & Blanchette, I. (2018). tDCS stimulation of the dlPFC selectively moderates the detrimental impact of emotion on analytical reasoning. Frontiers in Psychology, 9, 568.
Tsujimoto, S. (2008). The prefrontal cortex: Functional neural development during early childhood. The Neuroscientist, 14(4), 345–358.
van Steenburgh, J. J., Varvaris, M., Schretlen, D. J., Vannorsdall, T. D., & Gordon, B. (2017). Balanced bifrontal transcranial direct current stimulation enhances working memory in adults with high-functioning autism: A sham-controlled crossover study. Molecular Autism, 8, 15. https://doi.org/10.1186/s13229-017-0152-x
Wang, J., Tian, J., Hao, R., Tian, L., & Liu, Q. (2018). Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory. PeerJ, 6, e4906.
Weidacker, K., Weidemann, C. T., Boy, F., & Johnston, S. J. (2016). Cathodal tDCS improves task performance in participants high in Coldheartedness. Clinical Neurophysiology, 127(9), 3102–3109.
Weintraub-Brevda, R. R. (2017). Understanding the role of the ventrolateral prefrontal cortex in emotional memory using transcranial direct current stimulation & transcranial magnetic stimulation: City University of New York.
Weintraub-Brevda, R. R., & Chua, E. F. (2019). Transcranial direct current stimulation over the right and left VLPFC leads to differential effects on working and episodic memory. Brain and Cognition, 132, 98–107.
Wolkenstein, L., & Plewnia, C. (2013). Amelioration of cognitive control in depression by transcranial direct current stimulation. Biological Psychiatry, 73(7), 646–651.
Wu, Y.-J., Tseng, P., Chang, C.-F., Pai, M.-C., Hsu, K.-S., Lin, C.-C., & Juan, C.-H. (2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91, 87–94. https://doi.org/10.1016/j.bandc.2014.09.002
Ye, H., Chen, S., Huang, D., Zheng, H., Jia, Y., & Luo, J. (2015). Modulation of neural activity in the temporoparietal junction with transcranial direct current stimulation changes the role of beliefs in moral judgment. Frontiers in Human Neuroscience, 9, 659.
Zhu, R., Luo, Y., Wang, Z., & You, X. (2020). Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain and Cognition, 145, 105630.
Živanović, M., Paunović, D., Konstantinović, U., Vulić, K., Bjekić, J., & Filipović, S. R. (2021). The effects of offline and online prefrontal vs parietal transcranial direct current stimulation (tDCS) on verbal and spatial working memory. Neurobiology of Learning and Memory, 179, 107398.
Zmigrod, S., Zmigrod, L., & Hommel, B. (2016). Transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex affects stimulus conflict but not response conflict. Neuroscience, 322, 320–325. https://doi.org/10.1016/j.neuroscience.2016.02.046
Author information
Authors and Affiliations
Contributions
Conceived and designed the experiments: AN and FA. Performed the experiments: AN and FA. Analyzed the data: AN and FA. Contributed reagents/materials/analysis tools: AN and FA. Wrote the paper: AN and FA. Agreed with the manuscript’s results and conclusions: AN and FA. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethical Approval
Not Applicable.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Narmashiri, A., Akbari, F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev (2023). https://doi.org/10.1007/s11065-023-09627-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11065-023-09627-x