Abstract
Within-individual blood oxygen level-dependent (BOLD) signal variability, intrinsic moment-to-moment signal fluctuations within a single individual in specific voxels across a given time course, is a relatively new metric recognized in the neuroimaging literature. Within-individual BOLD signal variability has been postulated to provide information beyond that provided by mean-based analysis. Synthesis of the literature using within-individual BOLD signal variability methodology to examine various cognitive domains is needed to understand how intrinsic signal fluctuations contribute to optimal performance. This systematic review summarizes and integrates this literature to assess task-based cognitive performance in healthy groups and few clinical groups. Included papers were published through October 17, 2022. Searches were conducted on PubMed and APA PsycInfo. Studies eligible for inclusion used within-individual BOLD signal variability methodology to examine BOLD signal fluctuations during task-based functional magnetic resonance imaging (fMRI) and/or examined relationships between task-based BOLD signal variability and out-of-scanner behavioral measure performance, were in English, and were empirical research studies. Data from each of the included 19 studies were extracted and study quality was systematically assessed. Results suggest that variability patterns for different cognitive domains across the lifespan (ages 7–85) may depend on task demands, measures, variability quantification method used, and age. As neuroimaging methods explore individual-level contributions to cognition, within-individual BOLD signal variability may be a meaningful metric that can inform understanding of neurocognitive performance. Further research in understudied domains/populations, and with consistent quantification methods/cognitive measures, will help conceptualize how intrinsic BOLD variability impacts cognitive abilities in healthy and clinical groups.
Similar content being viewed by others
Availability of Data and Materials
Not applicable.
References
Alavash, M., Lim, S.-J., Thiel, C., Sehm, B., Deserno, L., & Obleser, J. (2018). Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. NeuroImage, 15, 341–356. https://doi.org/10.1016/j.neuroimage.2018.01.048
Aris, I. M., Rifas-Shiman, S. L., Jimenez, M. P., Li, L.-J., Hivert, M.-F., Oken, E., & James, P. (2021). Neighborhood Child Opportunity Index and adolescent cardiometabolic risk. Pediatrics, 147, e2020018903. https://doi.org/10.1542/peds.2020-018903
Armbruster-Genc, D. J. N., Ueltzhoffer, K., & Fiebach, C. J. (2016). Brain signal variability differentially affects cognitive flexibility and cognitive stability. The Journal of Neuroscience, 36, 3978–3987. https://doi.org/10.1523/JNEUROSCI.2517-14.2016
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
Bonakdarpour, B., Beeson, P. M., DeMarco, A. T., & Rapcsak, S. Z. (2015). Variability in blood oxygen level dependent (BOLD) signal in patients with stroke-induced and primary progressive aphasia. NeuroImage: Clinical, 8, 87–94. https://doi.org/10.1016/j.nicl.2015.03.014
Boylan, M. A., Foster, C. M., Pongpipat, E. E., Webb, C. E., Rodrigue, K. M., & Kennedy, K. M. (2021). Greater BOLD variability is associated with poorer cognitive function in an adult lifespan sample. Cerebral Cortex, 1–13. https://doi.org/10.1093/cercor/bhaa243
Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21. https://doi.org/10.1080/17470215808416249
Burzynska, A. Z., Wong, C. N., Voss, M. W., Cooke, G. E., Gothe, N. P., Fanning, J., McAuley, E., & Kramer, A. F. (2015a). Physical activity is linked to greater moment-to-moment variability in spontaneous brain activity in older adults. PloS One, 10, e0134819. https://doi.org/10.1371/journal.pone.0134819
Burzynska, A. Z., Wong, C. N., Voss, M. W., Cooke, G. E., McAuley, E., & Kramer, A. F. (2015b). White matter integrity supports BOLD signal variability and cognitive performance in the aging human brain. PloS One, 10, e0120315. https://doi.org/10.1371/journal.pone.0120315
Calamia, M., Markon, K., & Tranel, D. (2013). The robust reliability of neuropsychological measures: meta-analyses of test–retest correlations. The Clinical Neuropsychologist, 27, 1077–1105. https://doi.org/10.1080/13854046.2013.809795
Clark, S. V., Semmel, E. S., Aleksonis, H. A., Steinberg, S. N., & King, T. Z. (2021). Cerebellar-subcortical-cortical systems as modulators of cognitive functions. Neuropsychology Review, 31, 422–446. https://doi.org/10.1007/s11065-020-09465-1
Cools, R. (2007). Dopaminergic modulation of flexible cognitive control: the role of the striatum. In Bunge, S.A. & Wallis, J.D. (Eds.) Neuroscience of rule-guided behavior. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195314274.003.0017
Cools, R., & D’Esposito, M. (2010). Dopaminergic modulation of flexible cognitive control in humans. In Iversen, L., Iversen, S., Dunnett, S., & Bjorklund, A. (Eds.) Dopamine handbook. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195373035.003.0017
Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69, e113-125. https://doi.org/10.1016/j.biopsych.2011.03.028
Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., & Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33, 1914–1928. https://doi.org/10.1002/hbm.21333
Day, T. K. M., Madhyastha, T. M., Lee, A., Zabetian, C. P., Montine, T. J., & Grabowski, T. J. (2019). Effect of dopaminergic medications on blood oxygen level-dependent variability and functional connectivity in Parkinson’s disease and healthy aging. Brain Connectivity, 9, 554–565. https://doi.org/10.1089/brain.2019.0677
Depue, B. E., Burgess, G. C., Wilcutt, E. G., Bidwell, L. C., Ruzic, L., & Banich, M. T. (2010). Symptom-correlated brain regions in young adults with combined-type ADHD: Their organization, variability, and relation to behavioral performance. Psychiatry Research, 182, 96–102. https://doi.org/10.1016/j.pscychresns.2009.11.011
Diamond, A. (2012). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Dotson, V. M., & Duarte, A. (2019). The importance of diversity in cognitive neuroscience. Annals of the New York Academy of Sciences, 1464, 181–191. https://doi.org/10.1111/nyas.14268
Easson, A. K., & McIntosh, A. R. (2019). BOLD signal variability and complexity in children and adolescents with and without autism spectrum disorder. Developmental Cognitive Neuroscience, 36, 100630. https://doi.org/10.1016/j.dcn.2019.100630
Fox, M., & King, T. Z. (2018). Functional connectivity in adult brain tumor patients: A systematic review. Brain Connectivity, 8, 381–397. https://doi.org/10.1089/brain.2018.0623
Galambos, A., Szabo, E., Nagy, Z., Edes, A. E., Kocsel, N., Juhasz, G., & Kokonyei, G. (2019). A systematic review of structural and functional MRI studies on pain catastrophizing. Journal of Pain Research, 12, 1155–1178. https://doi.org/10.2147/JPR.S192246
Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2010). Blood oxygen level-dependent signal variability is more than just noise. The Journal of Neuroscience, 30, 4914–4921. https://doi.org/10.1523/JNEUROSCI.5166-09.2010
Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The importance of being variable. The Journal of Neuroscience, 31, 4496–4503. https://doi.org/10.1523/JNEUROSCI.5641-10.2011
Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A. R., & Grady, C. L. (2013a). Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience and Biobehavioral Reviews, 37, 610–624. https://doi.org/10.1016/j.neubiorev.2013.02.015
Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2013b). The modulation of BOLD signal variability between cognitive states varies by age and cognitive performance. Cerebral Cortex, 23, 684–693. https://doi.org/10.1093/cercor/bhs055
Garrett, D. D., McIntosh, A. R., & Grady, C. L. (2014). Brain signal variability is parametrically modifiable. Cerebral Cortex, 24, 2931–2940. https://doi.org/10.1093/cercor/bht150
Garrett, D. D., Nagel, I. E., Preuschhof, C., Burzynska, A. Z., Marchner, J., Wiegert, S., Jungehulsing, G. J., Nyberg, L., Villringer, A., Li, S.-C., Heekeren, H. R., Backman, L., & Lindenberger, U. (2015). Amphetamine modulates brain signal variability and working memory in younger and older adults. PNAS, 112, 7593–7598. https://doi.org/10.1073/pnas.1504090112
Garrett, D. D., Lindenberger, U., Hoge, R. D., & Gauthier, C. J. (2017). Age differences in brain signal variability are robust to multiple vascular controls. Scientific Reports, 7, 10149. https://doi.org/10.1038/s41598-017-09752-7
Garrett, D. D., Epp, S. M., Perry, A., & Lindenberger, U. (2018). Local temporal variability reflects functional integration in the human brain. NeuroImage, 183, 776–787. https://doi.org/10.1016/j.neuroimage.2018.08.019
Garrett, D. D., Epp, S. M., Kleemeyer, M., Lindenberger, U., & Polk, T. A. (2020). Higher performers upregulate brain signal variability in response to more feature-rich visual input. NeuroImage, 217, 116836. https://doi.org/10.1016/j.neuroimage.2020.116836
Garrett, D. D., Skowron, A., Wiegert, S., Adolf, J., Dahle, C. L., Lindenberger, U., & Raz, N. (2021). Lost dynamics and the dynamics of Loss: Longitudinal compression of brain signal variability is coupled with declines in functional integration and cognitive performance. Cerebral Cortex. https://doi.org/10.1093/cercor/bhab154
Gaut, G., Turner, B., Lu, Z-L., Li, X., Cunningham, W.A., & Steyvers, M. (2019a). Predicting task and subject differences with functional connectivity and blood-oxygen-level-dependent variability. Brain Connectivity, 9. https://doi.org/10.1089/brain.2018.0632
Gaut, G., Li, X., Lu, Z-L., & Steyvers, M. (2019b). Experimental design modulates variance in BOLD activation: the variance design general linear model. Human Brain Mapping, 40, 3918–3929. https://doi.org/10.1002/hbm.24677
Gimenez, M., Guinea-Izquierdo, A., Villalta-Gil, V., Martinez-Zalacain, I., Segalas, C., Subira, M., Real, E., Pujol, J., Harrison, B. J., Haro, J. M., Sato, J. R., Hoexter, M. Q., Cardoner, N., Alonso, P., Menchon, J. M., & Soriano-Mas, C. (2017). Brain alterations in low-frequency fluctuations across multiple bands in obsessive compulsive disorder. Brain Imaging and Behavior, 11, 1690–1706. https://doi.org/10.1007/s11682-016-9601-y
Good, T. J., Villafuerte, J., Ryan, J. D., Grady, C. L., & Barense, M. D. (2020). Resting state BOLD variability of the posterior medial temporal lobe correlates with cognitive performance in older adults with and without risk for cognitive decline. eNeuro, 7. https://doi.org/10.1523/ENEURO.0290-19.2020
Grady, C. L., & Garrett, D. D. (2014). Understanding variability in the BOLD signal and why it matters for aging. Brain Imaging & Behavior, 8, 274–283. https://doi.org/10.1007/s11682-013-9253-0
Grady, C. L., & Garrett, D. D. (2018). Brain signal variability is modulated as a function of internal and external demand in younger and older adults. NeuroImage, 169, 510–523. https://doi.org/10.1016/j.neuroimage.2017.12.031
Guitart-Masip, M., Salami, A., Garrett, D., Rieckmann, A., Lindenberger, U., & Bäckman, L. (2016). BOLD variability is related to dopaminergic neurotransmission and cognitive aging. Cerebral Cortex, 26, 2074–2083. https://doi.org/10.1093/cercor/bhv029
Halliday, D. W. R., Mulligan, B. P., Garrett, D. D., Schmidt, S., Hundza, S. R., Garcia-Barrera, M. A., Stawski, R. S., & MacDonald, S. W. S. (2018). Mean and variability in functional brain activations differentially predict executive function in older adults: an investigation employing functional near-infrared spectroscopy. Neurophotonics, 5, 011013. https://doi.org/10.1117/1.NPh.5.1.011013
Heisz, J. J., Shedden, J. M., & McIntosh, A. R. (2012). Relating brain signal variability to knowledge representation. NeuroImage, 63, 1384–1392. https://doi.org/10.1016/j.neuroimage.2012.08.018
Ito, T., Brincat, S. L., Siegel, M., Mill, R. D., He, B. J., Miller, E. K., Rotstein, H. G., & Cole, M. W. (2020). Task-evoked activity quenches neural correlations and variability across cortical areas. PloS Computational Biology, 16, e1007983. https://doi.org/10.1371/journal.pcbi.1007983
Jacola, L. M., Willard, V. W., Ashford, J. M., Ogg, R. J., Scoggins, M. A., Jones, M. M., Wu, S., & Conklin, H. M. (2014). Clinical utility of the n-back task in functional neuroimaging studies of working memory. Journal of Clinical and Experimental Neuropsychology, 36, 875–886. https://doi.org/10.1080/13803395.2014.953039
Kannurpatti, S. S., Motes, M. A., Rypma, B., & Biswal, B. B. (2011a). Increasing measurement accuracy of age-related BOLD signal change: Minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Human Brain Mapping, 32, 1125–1140. https://doi.org/10.1002/hbm.21097
Kannurpatti, S. S., Motes, M. A., Rypma, B., & Biswal, B. B. (2011b). Non-neural BOLD variability in block and event-related paradigms. Magnetic Resonance Imaging, 29, 140–146. https://doi.org/10.1016/j.mri.2010.07.006
Kebets, V., Favre, P., Houenou, J., Polosan, M., Perroud, N., Aubry, J. M., Van De Ville, D., & Piguet, C. (2021). Fronto-limbic neural variability as a transdiagnostic correlate of emotion dysregulation. Translational Psychiatry, 11, 545. https://doi.org/10.1038/s41398-021-01666-3
Kelly, R. A., Jr., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., Kanellopoulos, D., Jia, Z., Lim, K. O., & Hoptman, M. J. (2010). Visual inspection of independent components: Defining a procedure for artifact removal from fMRI data. Journal of Neuroscience Methods, 189, 233–245. https://doi.org/10.1016/j.jneumeth.2010.03.028
Kind, A. J. H., & Buckingham, W. (2018). Making neighborhood disadvantage metrics accessible: The neighborhood atlas. New England Journal of Medicine, 378, 2456–2458. https://doi.org/10.1056/NEJMp1802313
King, J. B., Pinheiro, L. C., Ringel, J. B., Bress, A. P., Shimbo, D., Muntner, P., Reynolds, K., Cushman, M., Howard, G., Manly, J. J., & Safford, M. M. (2022). Multiple social vulnerabilities to health disparities and hypertension and death in the REGARDS study. Hypertension, 79, 196–206. https://doi.org/10.1161/HYPERTENSIONAHA.120.15196
King, T. Z., Na, S., & Mao, H. (2015). Neural underpinnings of working memory in adult survivors of childhood brain tumors. Journal of the International Neuropsychological Society, 21, 1–12. https://doi.org/10.1017/S135561771500051X
King, T. Z., Ailion, A. S., Fox, M. E., & Hufstetler, S. M. (2019). Neurodevelopmental model of long-term outcomes of adult survivors of childhood brain tumors. Child Neuropsychology, 25, 1–21. https://doi.org/10.1080/09297049.2017.1380178
Kumral, D., Sansal, F., Cesnaite, E., Mahjoory, K., Al, E., Gaebler, M., Nikulin, V. V., & Villringer, A. (2020). BOLD and EEG signal variability at rest differently relate to aging in the human brain. NeuroImage, 207, 116373. https://doi.org/10.1016/j.neuroimage.2019.116373
Lalwani, P., Garrett, D. D., & Polk, T. A. (2021). Dynamic recovery: GABA agonism restores neural variability in older, poorer performing adults. The Journal of Neuroscience, 10, 9350–9360. https://doi.org/10.1523/JNEUROSCI.0335-21.2021
Malins, J. G., Pugh, K. R., Buis, B., Frost, S. J., Hoeft, F., Landi, N., Mencl, W. E., Kurian, A., Staples, R., Molfese, P. J., Sevcik, R., & Morris, R. (2018). Individual differences in reading skill are related to trial-by-trial neural activation variability in the reading network. The Journal of Neuroscience, 12, 2981–2989. https://doi.org/10.1523/JNEUROSCI.0907-17.2018
Mansson, K. N. T., Waschke, L., Manzouri, A., Furmark, T., Fischer, H., & Garrett, D. D. (2022). Moment-to-moment brain signal variability predicts psychiatric treatment outcome. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2021.09.026
Martin, A., Schurz, M., Kronbichler, M., & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36, 1963–1981. https://doi.org/10.1002/hbm.22749
Martino, M., Magioncalda, P., Huang, Z., Conio, B., Piaggio, N., Duncan, N. W., Rocchi, G., Escelsior, A., Marozzi, V., Wolff, A., Inglese, M., Amore, M., & Northoff, G. (2016). Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proceedings of the National Academy of Sciences of the United States of America, 113, 4824–4829. https://doi.org/10.1073/pnas.1517558113
McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased brain signal variability accompanies lower behavioral variability in development. PloS Computational Biology, 4, e1000106. https://doi.org/10.1371/journal.pcbi.1000106
Millar, P. R., Ances, B. M., Gordon, B. A., Benzinger, T. L. S., Fagan, A. M., Morris, J. C., & Balota, D. A. (2020a). Evaluating resting-state BOLD variability in relation to biomarkers of preclinical Alzheimer’s disease. Neurobiology of Aging, 96, 233–245. https://doi.org/10.1016/j.neurobiolaging.2020.08.007
Millar, P. R., Petersen, S. E., Ances, B. M., Gordon, B. A., Benzinger, T. L. S., Morris, J. C., & Balota, D. A. (2020b). Evaluating the sensitivity of resting-state BOLD variability to age and cognition after controlling for motion and cardiovascular influences: A network-based approach. Cerebral Cortex, 30, 5686–5701. https://doi.org/10.1093/cercor/bhaa138
Millar, P. R., Ances, B. M., Gordon, B. A., Benzinger, T. L. S., Morris, J. C., & Balota, D. A. (2021). Evaluating cognitive relationships with resting-state and task-driven BOLD variability. Journal of Cognitive Neuroscience, 33, 279–302. https://doi.org/10.1162/jocn_a_01645
Misic, B., Mills, T., Taylor, M. J., & McIntosh, A. R. (2010). Brain noise is task dependent and region specific. Journal of Neurophysiology, 104, 2667–2676. https://doi.org/10.1152/jn.00648.2010
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000a). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. https://doi.org/10.1006/cogp.1999.0734
Miyake, A., Emerson, M. J., & Friedman, N. P. (2000b). Assessment of executive functions in clinical settings: Problems and recommendations. Seminars in Speech and Language, 21, 169–184. https://doi.org/10.1055/s-2000-7563
Neumann, J., Lohmann, G., Zysset, S., & von Cramon, D. Y. (2003). Within-subject variability of BOLD response dynamics. NeuroImage, 19, 784–796. https://doi.org/10.1016/S1053-8119(03)00177-0
Nilsson, L.-G., Backman, L., Erngrund, K., Nyberg, L., Adolfsson, R., Bucht, G., Karlsson, S., Widing, M., & Winblad, B. (1997). The Betula prospective cohort study: Memory, health, and aging. Aging, Neuropsychology, & Cognition, 4, 1–32. https://doi.org/10.1080/13825589708256633
Noelke, C., McArdle, N., Baek, M., Huntington, N., Huber, R., Hardy, E., & Acevedo-Garcia, D. (2020). Childhood Opportunity Index 2.0 technical documentation. Available at: https://www.diversitydatakids.org/sites/default/files/2020-02/ddk_coi2.0_technical_documentation_20200212.pdf. Accessed October 17, 2022.
Nomi, J. S., Bolt, T. S., Chiemeka Ezie, C. E., Uddin, L. Q., & Heller, A. S. (2017). Moment-to-moment BOLD signal variability reflects regional changes in neural flexibility across the lifespan. The Journal of Neuroscience, 37, 5539–5548. https://doi.org/10.1523/JNEUROSCI.3408-16.2017
Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2010). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117, 1885–1901. https://doi.org/10.1016/j.clinph.2006.01.017
Olivé, I., Makris, N., Densmore, M., McKinnon, M. C., & Lanius, R. (2021). Altered basal forebrain BOLD signal variability at rest in posttraumatic stress disorder: A potential candidate vulnerability mechanism for neurodegeneration in PTSD. Human Brain Mapping, 42, 3561–3575. https://doi.org/10.1002/hbm.25454
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chao, R., Glanville, J., Grimshaw, J. M., Hrobjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10. https://doi.org/10.1186/s13643-021-01626-4
Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. https://doi.org/10.1037/h0049234
Petracca, M., Saiote, C., Bender, H., Arias, F., Farrell, C., Magioncalda, P., Martino, M., Miller, A., Northoff, G., Lublin, F., & Inglese, M. (2017). Synchronization and variability imbalance underlie cognitive impairment in primary-progressive multiple sclerosis. Scientific Reports, 7, 46411. https://doi.org/10.1038/srep46411
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665–678. https://doi.org/10.1016/j.neuron.2011.09.006
Protzner, A. B., Kovacevic, N., Cohn, M., & McAndrews, M. P. (2013). Characterizing functional integrity: Intraindividual brain signal variability predicts memory performance in patients with medial temporal lobe epilepsy. The Journal of Neuroscience, 33, 9855–9865. https://doi.org/10.1523/jneurosci.3009-12.2013
Pudas, S., Persson, J., Nilsson, L.-G., & Nyberg, L. (2014). Midlife memory ability accounts for brain activity differences in healthy aging. Neurobiology of Aging, 35, 2495–2503. https://doi.org/10.1016/j.neurobiolaging.2014.05.022
Rao, N. K., Motes, M. A., & Rypma, B. (2014). Investigating the neural bases for intra-subject cognitive efficiency changes using functional magnetic resonance imaging. Frontiers in Human Neuroscience, 8, 840. https://doi.org/10.3389/fnhum.2014.00840
Ricciardi, E., Handjaras, G., Bernardi, G., Pietrini, P., & Furey, M. L. (2013). Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention. Neuropharmacology, 64, 305–313. https://doi.org/10.1016/j.neuropharm.2012.07.003
Rieck, J. R., DeSouza, B., Baracchini, G., & Grady, C. L. (2022). Reduced modulation of BOLD signal variability as a function of cognitive load in healthy aging. Neurobiology of Aging, 112, 215–230. https://doi.org/10.1016/j.neurobiolaging.2022.01.010
Roberts, R. P., Wiebels, K., Sumner, R. L., van Mulukom, V., Grady, C. L., Schacter, D. L., & Addis, D. R. (2017). An fMRI investigation of the relationship between future imagination and cognitive flexibility. Neuropsychologia, 95, 156–172. https://doi.org/10.1016/j.neuropsychologia.2016.11.019
Roberts, R. P., Grady, C. L., & Addis, D. R. (2020). Creative, internally-directed cognition is associated with reduced BOLD variability. NeuroImage, 219, 116758. https://doi.org/10.1016/j.neuroimage.2020.116758
Samanez-Larkin, G. R., Kuhnen, C. M., Yoo, D. J., & Knutson, B. (2010). Variability in nucleus accumbens activity mediates age-related suboptimal financial risk taking. The Journal of Neuroscience, 30, 1426–1434. https://doi.org/10.1523/JNEUROSCI.4902-09.2010
Scarapicchia, V., Mazerolle, E. L., Fisk, J. D., Ritchie, L. J., & Gawryluk, J. R. (2018). Resting state BOLD variability in Alzheimer’s disease. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00039
Scarapicchia, V., Garcia-Barrera, M., MacDonald, S., & Gawryluk, J. R. (2019). Resting state BOLD variability is linked to white matter vascular burden in healthy aging but not in older adults with subjective cognitive decline. Frontiers in Human Neuroscience, 13, 429. https://doi.org/10.3389/fnhum.2019.00429
Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 28, 3095–3114. https://doi.org/10.1093/cercor/bhx179
Schel, M. A., Kuhn, S., Brass, M., Haggard, P., Ridderinkhof, K. R., & Crone, E. A. (2014). Neural correlates of intentional and stimulus-driven inhibition: A comparison. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00027
Seitzman, B. A., Gratton, C., Marek, S., Raut, R. V., Dosenbach, N. U. F., Schlaggar, B. L., Petersen, S. E., & Greene, D. J. (2020). A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. NeuroImage, 206, 116290. https://doi.org/10.1016/j.neuroimage.2019.116290
Semmel, E. S., Fox, M. E., Na, S. D., Kautiainen, R., Latzman, R. D., & King, T. Z. (2019). Caregiver- and clinician-reported adaptive functioning in Rett Syndrome: A systematic review and evaluation of measurement strategies. Neuropsychology Review, 29, 465–483. https://doi.org/10.1007/s11065-019-09420-9
Sheng, J., Zhang, L., Feng, J., Liu, J., Li, A., Chen, W., Shen, Y., Wang, J., He, Y., & Xue, G. (2021). The coupling of BOLD signal variability and degree centrality underlies cognitive functions and psychiatric diseases. NeuroImage, 237, 118187. https://doi.org/10.1016/j.neuroimage.2021.118187
Steinberg, S. N., Malins, J. G., Liu, J., & King, T. Z. (2022). Within-individual BOLD signal variability in the N-back task and its associations with vigilance and working memory. Neuropsychologia, 31, 108280. https://doi.org/10.1016/j.neuropsychologia.2022.108280
Stuss, D. T., Stethem, L. L., & Pelchat, G. (1988). Three tests of attention and rapid information processing: An extension. The Clinical Neuropsychologist, 2, 246–250. https://doi.org/10.1080/13854048808520107
Suchy, Y., & Brothers, S. L. (2022). Reliability and validity of composite scores from the timed subtests of the D-KEFS battery. Psychological Assessment, 34, 483–495. https://doi.org/10.1037/pas0001081
Thompson, A., Schel, M. A., & Steinbeis, N. (2021). Changes in BOLD variability are linked to the development of variable response inhibition. Neuroimage, 228, 117691. https://doi.org/10.1016/j.neuroimage.2020.117691
Tsvetanov, K. A., Henson, R. N. A., Tyler, L. K., Davis, S. W., Shafto, M. A., Taylor, J. R., Williams, N., Cam-Can, & Rowe, J. B. (2015). The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Human Brain Mapping, 36, 2248–2269. https://doi.org/10.1002/hbm.22768
Tsvetanov, K. A., Henson, R. N. A., Jones, P. S., Mutsaerts, H.-J., Fuhrmann, D., Tyler, L. K., Cam-CAN, & Rowe, J. B. (2019). The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology, 58, e13714. https://doi.org/10.1111/psyp.13714
Tsvetanov, K. A., Henson, R. N. A., & Rowe, J. B. (2021a). Separating vascular and neuronal effects of age on fMRI BOLD signals. Philosophical Transactions of the Royal Society of London: Series b, Biological Sciences, 376, 20190631. https://doi.org/10.1098/rstb.2019.0631
Tsvetanov, K. A., Henson, R. N. A., Jones, P. S., Mutsaerts, H., Fuhrmann, D., Tyler, L. K., CAN-C., & Rowe, J. B. (2021b). The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology, 58, e13714. https://doi.org/10.1111/psyp.13714
Uddin, L. (2020). Bring the noise: Reconceptualizing spontaneous neural activity. Trends in Cognitive Sciences, 24, 734–746. https://doi.org/10.1016/j.tics.2020.06.003
van Holstein, M., Aarts, E., van der Schaaf, M. E., Geurts, D. E. M., Verkes, R. J., Franke, B., van Schouwenburg, M. R., & Cools, R. (2011). Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology (berl), 218, 567–578. https://doi.org/10.1007/s00213-011-2340-2
Wang, H., Ghaderi, A., Long, X., Reynolds, J. E., Lebel, C., & Protzner, A. B. (2021). The longitudinal relationship between BOLD signal variability changes and white matter maturation during early childhood. Neuroimage, 242, 118448. https://doi.org/10.1016/j.neuroimage.2021.118448
Waschke, L., Kloosterman, N. A., Obleser, J., & Garrett, D. D. (2021). Behavior needs neural variability. Neuron, 109, 751–766. https://doi.org/10.1016/j.neuron.2021.01.023
Wechsler, D. (1985). Manual for the Wechsler Adult Intelligence Scale-Revised. The Psychological Corporation.
Wechsler, D. (1997). Wechsler Memory Scale – Third edition. Administration and scoring manual. San Antonio, TX: The Psychological Corporation.
Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). Pearson.
Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., Carlozzi, N. E., Slotkin, J., & Blitz., D., Wallner-Allen, K., Fox, N.A., Beaumont, J.L., Mungas, D., Nowinski, C.J., Richler, J., Deocampo, J.A., Anderson, J.E., Manly, J.J., Borosh, B., … Gershon, R.C. (2013). Cognition assessment using the NIH Toolbox. Neurology, 12, S54–S64. https://doi.org/10.1212/WNL.0b013e3182872ded
Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III Tests of Achievement. Riverside Publishing.
World Health Organization. (2022). World mental health report: Transforming mental health for all. Available at https://www.who.int/publications/i/item/9789240049338. Accessed October 17, 2022.
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165. https://doi.org/10.1152/jn.00338.2011
Zhang, L., Zuo, X.-N., Ng, K. K., Chong, J. S. X., Shim, H. Y., Ong, M. Q. W., Loke, Y. M., Choo, B. L., Chong, E. J. Y., Wong, Z. X., Hilal, S., Venketasubramanian, N., Tan, B. Y., Chen, C.L.-H., & Zhou, J. H. (2020). Distinct BOLD variability changes in the default mode and salience networks in Alzheimer’s disease spectrum and associations with cognitive decline. Scientific Reports, 10, 6457. https://doi.org/10.1038/s41598-020-63540-4
Zhang, P-W., Qu, X-J., Qian, S-F., Wang, X-B., Wang, R-D., Li, Q-Y., Liu, S-Y., Chen, L., & Liu, D-Q. (2018). Distinction between variability-based modulation and mean-based activation revealed by BOLD-fMRI and eyes-open/eyes-closed contrast. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00516
Zhang, Y., Yang, R., & Cai, X. (2021). Frequency-specific alternations in the moment-to-moment BOLD signals variability in schizophrenia. Brain Imaging and Behavior, 15, 68–75. https://doi.org/10.1007/s11682-019-00233-1
Zhao, R., Su, Q., Chen, Z., Sun, H., Liang, M., & Xue., Y. (2020). Neural correlates of cognitive dysfunctions in cervical spondylotic myelopathy patients: A resting-state fMRI study. Frontiers in Neurology, 11, 596795. https://doi.org/10.3389/fneur.2020.596795
Zoller, D., Schaer, M., Scariati, E., Padula, M. C., Eliez, S., & Van De Ville, D. (2017). Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome. NeuroImage, 149, 85–97. https://doi.org/10.1016/j.neuroimage.2017.01.064
Zoller, D., Padula, M. C., Sandini, C., Schneider, M., Scariati, E., Van De Ville, D., Schaer, M., & Eliez, S. (2018). Psychotic symptoms influence the development of anterior cingulate BOLD variability in 22q11.2 deletion syndrome. Schizophrenia Research, 193, 319–328. https://doi.org/10.1016/j.schres.2017.08.003
Funding
The first author (SNS) was funded by the Georgia State University Research on the Challenges of Acquiring Language and Literacy Graduate Fellowship. No other funds, grants, or other support was received.
Author information
Authors and Affiliations
Contributions
SNS: idea for the review article, literature search and data extraction/synthesis, draft and critically revise manuscript; TZK: critically revise manuscript.
Corresponding author
Ethics declarations
Ethical Approval
Not applicable.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
List of References for Neuromodulatory Implications of Within-Individual BOLD Signal Variability
-
Alavash et al. (2018)
-
Cools (2007)
-
Cools and D’Esposito (2010)
-
Cools and D’Esposito (2011)
-
Day et al. (2019)
-
Garrett et al. (2015)
-
Guitart-Masip et al. (2016)
-
Lalwani et al. (2021)
-
Ricciardi et al. (2013)
-
van Holstein et al. (2011)
Appendix 2
References for resting-state within-individual BOLD signal variability in clinical groups
Reference | Clinical group |
---|---|
Easson and McIntosh (2019) | Autism Spectrum Disorder |
Good et al. (2020) | Alzheimer’s Disease |
Martino et al. (2016) | Bipolar Depression, Mania |
Millar et al. (2020a) | Alzheimer’s Disease |
Nomi et al. (2017) | Attention-Deficit Hyperactivity Disorder |
Olivé et al. (2021) | Post-Traumatic Stress Disorder |
Petracca et al. (2017) | Multiple Sclerosis |
Scarapicchia et al. (2018) | Alzheimer’s Disease |
Scarapicchia et al. (2019) | Subjective Cognitive Decline |
Zhang et al. (2020) | Alzheimer’s Disease |
Zhang et al. (2021)a | Broad “psychiatric disease” |
Zhao et al. (2020) | Cervical Spondylotic Myelopathy |
Zoller et al. (2017) | 22q11.2 Deletion Syndrome |
Zoller et al. (2018) | 22q11.2 Deletion Syndrome |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Steinberg, S.N., King, T.Z. Within-Individual BOLD Signal Variability and its Implications for Task-Based Cognition: A Systematic Review. Neuropsychol Rev (2023). https://doi.org/10.1007/s11065-023-09619-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11065-023-09619-x