Abstract
Thalamus function and structure are known predictors of individual differences in the risk of age-related neurocognitive disorders (NCD), such as dementia. However, to date, little is known about their role in the perioperative setting. Here, we provide a narrative review of brain-imaging studies of preoperative and postoperative thalamus scanning parameters associated with risks of developing perioperative NCD, such as postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) during the postoperative phase. These findings are discussed in light of the concept of reserve capacity.
Similar content being viewed by others
Availability of Data and Materials
Not applicable.
References
Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322(5903), 876–880.
Bagarinao, E., Watanabe, H., Maesawa, S., Kawabata, K., Hara, K., Ohdake, R., et al. (2022). Reserve and maintenance in the aging brain: A longitudinal study of healthy older adults. eNeuro, 9(1), 1–10.
Biessels, G. J., Deary, I. J., & Ryan, C. M. (2008). Cognition and diabetes: A lifespan perspective. Lancet Neurology, 7(2), 184–190.
Bocchetta, M., Malpetti, M., Todd, E. G., Rowe, J. B, & Rohrer, J. D. (2021). Looking beneath the surface: the importance of subcortical structures in frontotemporal dementia. Brain Communications, 3(3).
Borchers, F., Spies, C. D., Feinkohl, I., Brockhaus, W. R., Kraft, A., Kozma, P., et al. (2021). Methodology of measuring postoperative cognitive dysfunction: A systematic review. British Journal of Anaesthesia, 126(6), 1119–1127.
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1759558
Cavallari, M., Dai, W., Guttmann, C. R. G., Meier, D. S., Ngo, L. H., Hshieh, T. T., et al. (2016). Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI. Brain, 139(4), 1282–1294.
Davis, D. H. J., Skelly, D. T., Murray, C., Hennessy, E., Bowen, J., Norton, S., et al. (2015). Worsening cognitive impairment and neurodegenerative pathology progressively increase risk for delirium. The American Journal of Geriatric Psychiatry, 23(4), 403–415.
Evered, L. A., & Silbert, B. S. (2018). Postoperative cognitive dysfunction and noncardiac surgery. Anesthesia and Analgesia, 127(2), 496–505.
Feinkohl, I., Winterer, G., Spies, C. D., & Pischon, T. (2017). Cognitive reserve and the risk of postoperative cognitive dysfunction - A systematic review and meta-analysis. Deutsches Ärzteblatt International, 114(7), 110–117.
Fislage, M., Feinkohl, I., Borchers, F., et al. (2023). Preoperative thalamus volume is not associated with preoperative cognitive impairment (preCI) or postoperative cognitive dysfunction (POCD). Science and Reports, 13, 11732. https://doi.org/10.1038/s41598-023-38673-x
Fislage, M., Feinkohl, I., Pischon, T., Spies, C. D., Borchers, F., Winterer, G., et al. (2022a). Presurgical thalamus volume in postoperative delirium: A longitudinal observational cohort study in older patients. Anesthesia and Analgesia, 135(1), 136–142.
Fislage, M., Winzeck, S., Stamatakis, E., Correia, M. M., Preller, J., Feinkohl, I., et al. (2022b). Presurgical diffusion metrics of the thalamus and thalamic nuclei in postoperative delirium: A prospective two-centre cohort study in older patients. NeuroImage: Clinical, 36.
Halassa, M. M., & Kastner, S. (2017). Thalamic functions in distributed cognitive control. Natural Neuroscience, 20(12), 1669–1679. https://doi.org/10.1038/s41593-017-0020-1
Herrero, M. T., Barcia, C., & Navarro, J. M. (2002). Functional anatomy of thalamus and basal ganglia. Child’s Nervous System, 18(8), 386–404.
Hilal, S., Amin, S. M., Venketasubramanian, N., Niessen, W. J., Vrooman, H., Wong, T. Y., et al. (2015). Subcortical atrophy in cognitive impairment and dementia. Journal of Alzheimer’s Disease, 48(3), 813–823.
Hshieh, T. T., Yang, T., Gartaganis, S. L., Yue, J., & Inouye, S. K. (2018). Hospital elder life program: Systematic review and meta-analysis of effectiveness. The American Journal of Geriatric Psychiatry, 26(10), 1015–1033.
Huang, C., Mårtensson, J., Gögenur, I., & Asghar, M. S. (2018). Exploring postoperative cognitive dysfunction and delirium in noncardiac surgery using MRI: A systematic review. Neural Plasticity, 2018, 1–12. Available from: https://www.hindawi.com/journals/np/2018/1281657/
Hudetz, A. G. (2012). General anesthesia and human brain connectivity. Brain Connectivity, 2(6), 291–302.
Hudetz, A. G., & Mashour, G. A. (2016). Disconnecting consciousness: Is there a common anesthetic end point? Anesthesia and Analgesia, 123(5), 1228–1240. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27331780
Johnson, M. D., & Ojemann, G. A. (2000). The role of the human thalamus in language and memory: Evidence from electrophysiological studies. Brain and Cognition, 42(2), 218–230.
Kalaria, R. N., Kenny, R. A., Ballard, C. G., Perry, R., Ince, P., & Polvikoski, T. (2004). Towards defining the neuropathological substrates of vascular dementia. Journal of the Neurological Sciences, 226(1–2), 75–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15537525
Kantonen, O., Laaksonen, L., Alkire, M., et al. (2023). Decreased thalamic activity is a correlate for disconnectedness during anesthesia with propofol, dexmedetomidine and sevoflurane but not S-ketamine. Journal of Neuroscience, 43(26), 4884–4895.
Koch, S., Windmann, V., Chakravarty, S., Kruppa, J., Yürek, F., Brown, E. N., et al. (2021). Perioperative electroencephalogram spectral dynamics related to postoperative delirium in older patients. Anesthesia and Analgesia, 133(6), 1598–1607.
Leslie, D. L., Marcantonio, E. R., Zhang, Y., Leo-Summers, L., & Inouye, S. K. (2008). One-year health care costs associated with delirium in the elderly population. Archives of Internal Medicine, 168(1), 27–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18195192
MacLullich, A. M. J., Ferguson, K. J., Deary, I. J., Seckl, J. R., Starr, J. M., & Wardlaw, J. M. (2002). Intracranial capacity and brain volumes are associated with cognition in healthy elderly men. Neurology, 59(2), 169–174.
Mahanna-Gabrielli, E., Schenning, K. J., Eriksson, L. I., Browndyke, J. N., Wright, C. B., Evered, L., et al. (2019). State of the clinical science of perioperative brain health: Report from the American Society of Anesthesiologists Brain Health Initiative Summit 2018. British Journal of Anaesthesia, 123(4), 464–478. https://doi.org/10.1016/j.bja.2019.07.004
Mcmanus, J., Pathansali, R., Stewart, R., Macdonald, A., & Jackson, S. (2007). Delirium post-stroke. Age and Ageing, 36(6), 613–618.
Neuropathology Group of the Medical Research Council Cognitive Function and Aging Study. (2001). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet (London, England), 357(9251), 169–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11213093
Newman, M. F., Grocott, H. P., Mathew, J. P., White, W. D., Landolfo, K., Reves, J. G., et al. (2001). Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke, 32(12), 2874–2879.
Nitchingham, A., Pereira, J. V., Wegner, E. A., Oxenham, V., Close, J., & Caplan, G. A. (2023). Regional cerebral hypometabolism on 18F-FDG PET/CT scan in delirium is independent of acute illness and dementia. Alzheimer’s & Dementia, 19(1), 97–106.
Oh, J., Shin, J. E., Yang, K. H., Kyeong, S., Lee, W. S., Chung, T., et al. (2019). Cortical and subcortical changes in resting-state functional connectivity before and during an episode of postoperative delirium. Australian & New Zealand Journal of Psychiatry, 53(8), 794–806. Available from: http://journals.sagepub.com/doi/10.1177/0004867419848826
Orhun, G., Esen, F., Özcan, P. E., et al. (2019). Neuroimaging findings in sepsis-induced brain dysfunction: Association with clinical and laboratory findings. Neurocritical Care, 30, 106–117.
Pang, J. C., Aquino, K. M., Oldehinkel, M., et al. (2023). Geometric constraints on human brain function. Nature, 618(7965), 566–574.
Power, B. D., & Looi, J. C. L. (2015). The thalamus as a putative biomarker in neurodegenerative disorders. Australian and New Zealand Journal of Psychiatry, 49(6), 502–518.
Rasmussen, L. S., Larsen, K., Houx, P., et al. (2001). The assessment of postoperative cognitive function. Acta Anaesthesiologica Scandinavica, 45(3), 275–289. https://doi.org/10.1034/j.1399-6576.2001.045003275.x
Rikhye, R. V., Gilra, A., & Halassa, M. M. (2018). Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 21(12), 1753–1763. https://doi.org/10.1038/s41593-018-0269-z
Sato, C., Sekiguchi, A., Kawai, M., Kotozaki, Y., Nouchi, R., Tada, H., et al. (2015). Postoperative structural brain changes and cognitive dysfunction in patients with breast cancer. PLoS ONE, 10(11), 1–16.
Satz, P., Cole, M. A., Hardy, D. J., & Rassovsky, Y. (2011). Brain and cognitive reserve: Mediator(s) and construct validity, a critique. Journal of Clinical and Experimental Neuropsychology, 33(1), 121–130.
Schmahmann, J. D. (2003). Vascular syndromes of the thalamus. Stroke, 34(9), 2264–2278.
Schmitt, L. I., Wimmer, R. D, Nakajima, M., Happ, M., Mofakham, S., & Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545(7653), 219–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28467827
Schreckenberger, M., Lange-Asschenfeldt, C., Lochmann, M., Mann, K., Siessmeier, T., & Buchholz, H.-G., et al. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: A combined PET/EEG study with lorazepam challenge in humans. Neuroimage, 22(2), 637–644. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15193592
Sele, S., Liem, F., Mérillat, S., & Jäncke, L. (2020). Decline variability of cortical and subcortical regions in aging: A longitudinal study. Frontiers in Human Neuroscience, 14, 363.
Shine, J. M., Lewis, L. D., Garrett, D. D., et al. (2023). The impact of the human thalamus on brain-wide information processing. Nature Reviews Neuroscience, 24, 416–430.
Shioiri, A., Kurumaji, A., Takeuchi, T., Matsuda, H., Arai, H., & Nishikawa, T. (2010). White matter abnormalities as a risk factor for postoperative delirium revealed by diffusion tensor imaging. The American Journal of Geriatric Psychiatry, 18(8), 743–753. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20220599
Staff, R. T. (2012). Reserve, brain changes, and decline. Neuroimaging Clinics of North America, 22(1), 99–105.
Stamatakis, E. A, Adapa, R. M., Absalom, A. R., & Menon, D. K. (2010). Changes in resting neural connectivity during propofol sedation. PLoS ONE, 5(12).
Steinmetz, J., Christensen, K. B., Lund, T., Lohse, N., & Rasmussen, L. S. (2009). Long-term consequences of postoperative cognitive dysfunction. Anesthesiology, 110(3), 548–555.
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.
Tate, D. F., Neeley, E. S., Norton, M. C., Tschanz, J. T., Miller, M. J., Wolfson, L., et al. (2011). Intracranial volume and dementia: Some evidence in support of the cerebral reserve hypothesis. Brain Research, 1385(1), 151–162. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
Taylor, J., Parker, M., Casey, C. P., Tanabe, S., Kunkel, D., Rivera, C., et al. (2022). Postoperative delirium and changes in the blood-brain barrier, neuroinflammation, and cerebrospinal fluid lactate: A prospective cohort study. British Journal of Anaesthesia, 129(2), 219–230. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35144802
Teipel, S., Drzezga, A., Grothe, M. J., et al. (2015). Multimodal imaging in Alzheimer’s disease: Validity and usefulness for early detection. Lancet Neurology, 14(10), 1037–1053.
van der Velpen, I. F., Vlasov, V., Evans, T. E., Ikram, M. K., Gutman, B. A., Roshchupkin, G. V., et al. (2022). Subcortical brain structures and the risk of dementia in the Rotterdam Study. Alzheimer’s & Dementia, 1–12.
Vonk, J. M. J., Ghaznawi, R., Zwartbol, M. H. T., Stern, Y., Geerlings, M. I., UCC-SMART-Study Group. (2022). The role of cognitive and brain reserve in memory decline and atrophy rate in mid and late-life: The SMART-MR study. Cortex, 148, 204–214.
White, N. S., & Alkire, M. T. (2003). Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. NeuroImage, 19(2), 402–411.
Winterer, G., Androsova, G., Bender, O., Boraschi, D., Borchers, F., Dschietzig, T. B., et al. (2018). Personalized risk prediction of postoperative cognitive impairment - Rationale for the EU-funded BioCog project. European Psychiatry, 50, 34–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29398565
Witlox, J., Eurelings, L. S. M., De Jonghe, J. F. M., Kalisvaart, K. J., Eikelenboom, P., & Van Gool, W. A. (2010). Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: A meta-analysis. JAMA, 304(4), 443–451.
Xie, G., Deschamps, A., Backman, S. B., Fiset, P., Chartrand, D., Dagher, A., et al. (2011). Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: A positron emission tomography study. British Journal of Anaesthesia, 106(4), 548–557. https://doi.org/10.1093/bja/aeq415
Yokota, H., Ogawa, S., Kurokawa, A., & Yamamoto, Y. (2003). Regional cerebral blood flow in delirium patients. Psychiatry and Clinical Neurosciences, 57(3), 337–339.
Zidan, M., Boban, J., Bjelan, M., Todorović, A., Stankov Vujanić, T., Semnic, M., et al. (2019). Thalamic volume loss as an early sign of amnestic mild cognitive impairment. Journal of Clinical Neuroscience, 68, 168–173. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31324472
Author information
Authors and Affiliations
Contributions
MF and IF drafted the manuscript and approved the final version. NZ: edited the manuscript and approved the final version.
Corresponding author
Ethics declarations
Ethical Approval
Not applicable.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fislage, M., Zacharias, N. & Feinkohl, I. The Thalamus in Perioperative Neurocognitive Disorders. Neuropsychol Rev (2023). https://doi.org/10.1007/s11065-023-09615-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11065-023-09615-1