Abstract
The cerebellum facilitates and modulates cognitive functions using forward and inverse internal models to predict and control behavior, respectively. Despite neuroimaging evidence that regions of the cerebellum are active during executive function (EF) tasks in general, little is known about the cerebellum’s role in specific EFs and their underlying neural networks. Inhibitory control specifically may be facilitated by cerebellar internal models predicting responses during proactive control (withholding), and controlling responses during reactive control (inhibiting). The stop signal task (SST) is an inhibitory control task often used in neuroimaging studies to measure neural responses to both proactive and reactive control. Thus, in this review, we examine evidence for the cerebellum’s role in inhibitory control by reviewing studies of healthy adults that utilized the SST in event-related functional magnetic resonance imaging (fMRI) experiments. Twenty-one studies that demonstrated cerebellar results were eligible for review, including 749 participants, 28 contrasts, and 38 cerebellar clusters. We also performed activation likelihood estimation (ALE) meta-analysis of contrasts derived from reviewed studies. This review illustrates evidence for the cerebellum participating in inhibitory control independent of motor control. Most significant cerebellar clusters were located in the left posterior cerebellum, suggesting that it communicates with the established cortical right-lateralized inhibitory control network. Cerebellar activity was most consistently observed for contrasts that measured proactive control, and ALE analysis confirmed that left Crus I is most likely to be activated in studies of proactive control measuring monitoring and anticipation. Results suggest that the left posterior cerebellum may communicate with right frontal and parietal cortices, using forward models to predict appropriate responses. Reactive control contrasts indicated a possible role for cerebellar regions in enhancing inhibition efficiency through inverse models, but ALE meta-analysis did not confirm this hypothesis. Limitations in the current literature, clinical implications, and directions for future research are discussed.
Similar content being viewed by others
Notes
These results were not published in the article, but the analyses were performed as part of the published study and received through personal communication.
References
Arnsten, A. F. T., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 51(4), 356–367. https://doi.org/10.1016/j.jaac.2012.01.008
Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–e68. https://doi.org/10.1016/j.biopsych.2010.07.024
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. The Journal of Neuroscience, 27(14), 3743–3752. https://doi.org/10.1523/JNEUROSCI.0519-07.2007
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79. https://doi.org/10.1016/j.pneurobio.2013.06.005
Berkman, E. T., Kahn, L. E., & Merchant, J. S. (2014). Training-induced changes in inhibitory control network activity. The Journal of Neuroscience, 34(1), 149–157. https://doi.org/10.1523/JNEUROSCI.3564-13.2014
Bernard, J., & Mittal, V. (2015). Dysfunctional activation of the cerebellum in schizophrenia: A functional neuroimaging meta-analysis. Clinical Psychological Science, 3(4), 545–566. https://doi.org/10.1177/2167702614542463
Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241–254. https://doi.org/10.1016/j.tics.2013.03.003
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010
Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807–815. https://doi.org/10.1016/j.neuron.2013.10.044
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011
Cai, W., & Leung, H.-C. (2011). Rule-guided executive control of response inhibition: Functional topography of the inferior frontal cortex. PLoS One, 6(6), e20840–e20840. https://doi.org/10.1371/journal.pone.0020840
Caligiore, D., Pezzulo, G., Baldassarre, G., Bostan, A. C., Strick, P. L., Doya, K., … Herreros, I. (2016). Consensus paper: Towards a systems-level view of cerebellar function: The interplay between cerebellum, basal ganglia, and cortex. The Cerebellum, 1–27. https://doi.org/10.1007/s12311-016-0763-3
Chao, H. H., Luo, X., Chang, J. L., & Li, C. R. (2009). Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time – An intra-subject analysis. BMC Neuroscience, 10, 75. https://doi.org/10.1186/1471-2202-10-75
Chevrier, A. D., Cheyne, D., Graham, S., & Schachar, R. (2015). Dissociating two stages of preparation in the stop signal task using fMRI. PLoS One, 10(6), e0130992. https://doi.org/10.1371/journal.pone.0130992
Chevrier, A. D., Noseworthy, M. D., & Schachar, R. (2007). Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI. Human Brain Mapping, 28(12), 1347–1358. https://doi.org/10.1002/hbm.20355
Chevrier, A. D., & Schachar, R. J. (2010). Error detection in the stop signal task. NeuroImage, 53(2), 664–673. https://doi.org/10.1016/j.neuroimage.2010.06.056
den Ouden, H. E. M., Kok, P., & de Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00548
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. NeuroImage, 33(1), 127–138. https://doi.org/10.1016/j.neuroimage.2006.05.056
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. NeuroImage, 46(1), 39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045
Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105. https://doi.org/10.1016/j.tics.2008.01.001
Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., & Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812. https://doi.org/10.1016/j.neuron.2006.04.031
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361. https://doi.org/10.1016/j.neuroimage.2011.09.017
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926
Fettes, P., Schulze, L., & Downar, J. (2017). Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: Promising therapeutic targets in psychiatric illness. Frontiers in Systems Neuroscience, 11. https://doi.org/10.3389/fnsys.2017.00025
Fox, P. T., Laird, A. R., Fox, S. P., Fox, P. M., Uecker, A. M., & Crank, M. (2005). Brainmap taxonomy of experimental design: Description and evaluation. Human Brain Mapping, 25(1), 185–198. https://doi.org/10.1002/hbm.20141
Fox, P. T., & Lancaster, J. L. (2002). Mapping context and content: The BrainMap model. Nature Reviews Neuroscience, 3(4), 319. https://doi.org/10.1038/nrn789
Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity; New Rochelle, 1(1), 13–36 https://doi.org.ezproxy.gsu.edu/10.1089/brain.2011.0008
Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences, 96(14), 8301–8306. https://doi.org/10.1073/pnas.96.14.8301
Ghahremani, D. G., Lee, B., Robertson, C. L., Tabibnia, G., Morgan, A. T., & de Shetler, N. (2012). Striatal dopamine D2/D3 receptors mediate response inhibition and related activity in frontostriatal neural cicuitry in humans. The Journal of Neuroscience, 32(21), 7316–7324. https://doi.org/10.1523/JNEUROSCI.4284-11.2012
Grimaldi, G., Argyropoulos, G. P., Bastian, A., Cortes, M., Davis, N. J., & Edwards, D. J. (2016). Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease. The Neuroscientist, 22(1), 83–97. https://doi.org/10.1177/1073858414559409
Grimaldi, G., Argyropoulos, G. P., Boehringer, A., Celnik, P., Edwards, M. J., Ferrucci, R., … Ziemann, U. (2014). Non-invasive cerebellar stimulation: A consensus paper. The Cerebellum; New York, 13(1), 121–138 https://doi.org/10.1007/s12311-013-0514-7
Hendrick, O. M., Ide, J. S., Luo, X., & Li, C. R. (2010). Dissociable processes of cognitive control during error and non-error conflicts: A study of the stop signal task. PLoS One, 5(10), e13155. https://doi.org/10.1371/journal.pone.0013155
Hoshi, E., Tremblay, L., Féger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience; New York, 8(11), 1491–1493 https://doi.org/10.1038/nn1544
Hu, J., Hu, S., Maisano, J. R., Chao, H. H., Zhang, S., & Li, C.-S. R. (2016). Novelty seeking, harm avoidance, and cerebral responses to conflict anticipation: An exploratory study. Frontiers in Human Neuroscience, 10 Retrieved from http://ezproxy.gsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2016-54671-001&site=ehost-live&scope=site
Hu, S., Ide, J. S., Zhang, S., & Li, C. R. (2015). Anticipating conflict: Neural correlates of a bayesian belief and its motor consequence. NeuroImage, 119, 286–295. https://doi.org/10.1016/j.neuroimage.2015.06.032
Hu, S., Ide, J. S., Zhang, S., Sinha, R., & Li, C. R. (2015). Conflict anticipation in alcohol dependence — A model-based fMRI study of stop signal task. NeuroImage: Clinical, 8, 39–50. https://doi.org/10.1016/j.nicl.2015.03.008
Hu, S., & Li, C.-S. R. (2012). Neural processes of preparatory control for stop signal inhibition. Human Brain Mapping, 33(12), 2785–2796. https://doi.org/10.1002/hbm.21399
Huettel, S. A. (2012). Event-related fMRI in cognition. Neuroimage, 62(2), 1152–1156. https://doi.org/10.1016/j.neuroimage.2011.08.113
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., & Quinn, K. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9(4), 304–313. https://doi.org/10.1038/nrn2332
Jahfari, S., Waldorp, L., Richard Ridderinkhof, K., & Steven Scholte, H. (2015). Visual information shapes the dynamics of corticobasal ganglia pathways during response selection and inhibition. Journal of Cognitive Neuroscience, 27(7), 1344–1359. Retrieved from psyh. (2015-25200-007)
Jimura, K., Hirose, S., Kunimatsu, A., Ohtomo, K., Koike, Y., & Konishi, S. (2014). Late enhancement of brain-behavior correlations during response inhibition. Neuroscience, 274, 383–392. https://doi.org/10.1016/j.neuroscience.2014.05.058
Keren-Happuch, E., Chen, S.-H. A., Ho, M.-H. R., & Desmond, J. E. (2014). A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Human Brain Mapping, 35(2), 593–615. https://doi.org/10.1002/hbm.22194
Koziol, L. F., Budding, D. E., & Chidekel, D. (2011). From movement to thought: Executive function, embodied cognition, and the cerebellum. The Cerebellum, 11(2), 505–525. https://doi.org/10.1007/s12311-011-0321-y
Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341–372. https://doi.org/10.1016/j.pneurobio.2004.03.006
Lacadie, C. M., Fulbright, R. K., Constable, R. T., & Papademetris, X. (2008). More accurate Talairach coordinates for neuroImaging using nonlinear registration. NeuroImage, 42(2), 717–725. https://doi.org/10.1016/j.neuroimage.2008.04.240
Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: The social evolution of a human brain mapping database. Neuroinformatics, 3(1), 65–78.
Laird, A. R., Robinson, J. L., McMillan, K. M., Tordesillas-Gutiérrez, D., Moran, S. T., Gonzales, S. M., … Lancaster, J. L. (2010). Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: Validation of the Lancaster transform. NeuroImage, 51(2), 677–683. https://doi.org/10.1016/j.neuroimage.2010.02.048
Lancaster, J. L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., … Fox, P. T. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 1194–1205. https://doi.org/10.1002/hbm.20345
Laufs, H. (2008). Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Human Brain Mapping, 29(7), 762–769. https://doi.org/10.1002/hbm.20600
Leotti, L. A., & Wager, T. D. (2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology. Human Perception and Performance, 36(2), 430–447. https://doi.org/10.1037/a0016802
Li, C. R., Chao, H. H.-A., & Lee, T.-W. (2009). Neural correlates of speeded as compared with delayed responses in a stop signal task: An indirect analog of risk taking and association with an anxiety trait. Cerebral Cortex, 19(4), 839–848. https://doi.org/10.1093/cercor/bhn132
Li, C.-S. R., Yan, P., Sinha, R., & Lee, T.-W. (2008). Subcortical processes of motor response inhibition during a stop signal task. Neuroimage, 41(4), 1352–1363. https://doi.org/10.1016/j.neuroimage.2008.04.023
Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16(6), 1064–1076. https://doi.org/10.1017/S1355617710000895
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. https://doi.org/10.1038/nature06976
Manza, P., Hu, S., Chao, H. H., Zhang, S., Leung, H.-C., & Li, C. R. (2016). A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action. NeuroImage, 134, 466–474. https://doi.org/10.1016/j.neuroimage.2016.04.055
Matzke, D., Verbruggen, F., & Logan, G. D. (2018). The stop-signal paradigm. In In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Methodology. Hoboken, NJ, US: John Wiley & Sons.
Mennes, M., Jenkinson, M., Valabregue, R., Buitelaar, J. K., Beckmann, C., & Smith, S. (2014). Optimizing full-brain coverage in human brain MRI through population distributions of brain size. NeuroImage, 98, 513–520. https://doi.org/10.1016/j.neuroimage.2014.04.030
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8–14. https://doi.org/10.1177/0963721411429458
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734
Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15(10), 453–459. https://doi.org/10.1016/j.tics.2011.07.011
Niendam, T., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268. https://doi.org/10.3758/s13415-011-0083-5
Nowrangi, M. A., Lyketsos, C., Rao, V., & Munro, C. A. (2014). Systematic review of neuroimaging correlates of executive functioning: Converging evidence from different clinical populations. The Journal of Neuropsychiatry and Clinical Neurosciences, 26(2), 114–125. https://doi.org/10.1176/appi.neuropsych.12070176
Patrick, C. J., & Hajcak, G. (2016). RDoC: Translating promise into progress. Psychophysiology, 53(3), 415–424. https://doi.org/10.1111/psyp.12612
Poldrack, R. A., Fletcher, P. C., Henson, R. N., Worsley, K. J., Brett, M., & Nichols, T. E. (2008). Guidelines for reporting an fMRI study. Neuroimage, 40(2), 409–414. https://doi.org/10.1016/j.neuroimage.2007.11.048
Pope, P. A., & Miall, R. C. (2012). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulation, 5(2), 84–94. https://doi.org/10.1016/j.brs.2012.03.006
Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews Neuroscience, 7(7), 511–522. https://doi.org/10.1038/nrn1953
Ramnani, N. (2014). Chapter 10 - automatic and controlled processing in the corticocerebellar system. In N. Ramnani (Ed.), Progress in Brain Research (pp. 255–285). https://doi.org/10.1016/B978-0-444-63356-9.00010-8
Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28(11), 1163–1177
Schlerf, J., Wiestler, T., Verstynen, T., & Diedrichsen, J. (2014). Big challenges from the little brain — Imaging the cerebellum. In T. D. Papageorgiou, G. I. Christopoulos, & S. M. Smirnakis (Eds.), Advanced brain neuroimaging topics in health and disease-methods and applications (pp. 199–223). Rijeka: IntechOpen. https://doi.org/10.5772/58266
Schmahmann, J. (2004). Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Journal of Neuropsychiatry and Clinical Neuroscience, 16(3), 367–378. https://doi.org/10.1212/WNL.32.7.790
Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(4), 561–579. https://doi.org/10.1093/brain/121.4.561
Sebastian, A., Jung, P., Neuhoff, J., Wibral, M., Fox, P. T., & Lieb, K. (2016). Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study. Brain Structure and Function, 221(3), 1635–1651. https://doi.org/10.1007/s00429-015-0994-y
Spunt, R. P., Lieberman, M. D., Cohen, J. R., & Eisenberger, N. I. (2012). The phenomenology of error processing: The dorsal ACC response to stop-signal errors tracks reports of negative affect. Journal of Cognitive Neuroscience, 24(8), 1753–1765. https://doi.org/10.1162/jocn_a_00242
Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nature Neuroscience, 18(5), 620–627. https://doi.org/10.1038/nn.3982
Stoodley, C. J. (2015). The cerebellum and neurodevelopmental disorders. The Cerebellum, 15(1), 34–37. https://doi.org/10.1007/s12311-015-0715-3
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039
Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844. https://doi.org/10.1016/j.cortex.2009.11.008
Swick, D., Ashley, V., & Turken, A. U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9, 102. https://doi.org/10.1186/1471-2202-9-102
Swick, D., Ashley, V., & Turken, U. (2011). Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage, 56(3), 1655–1665. https://doi.org/10.1016/j.neuroimage.2011.02.070
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., & Delcroix, N. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978
van Gaal, S., Ridderinkhof, K. R., van den Wildenberg, W. P. M., & Lamme, V. A. F. (2009). Dissociating consciousness from inhibitory control: Evidence for unconsciously triggered response inhibition in the stop-signal task. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1129–1139. https://doi.org/10.1037/a0013551
Verbruggen, F., & Logan, G. D. (2008a). Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology. General, 137(4), 649–672. https://doi.org/10.1037/a0013170
Verbruggen, F., & Logan, G. D. (2008b). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418–424. https://doi.org/10.1016/j.tics.2008.07.005
Verbruggen, F., & Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience & Biobehavioral Reviews, 33(5), 647–661. https://doi.org/10.1016/j.neubiorev.2008.08.014
Wilbertz, T., Deserno, L., Horstmann, A., Neumann, J., Villringer, A., & Heinze, H.-J. (2014). Response inhibition and its relation to multidimensional impulsivity. NeuroImage, 103, 241–248. https://doi.org/10.1016/j.neuroimage.2014.09.021
Wilcox, C. E., Dekonenko, C. J., Mayer, A. R., Bogenschutz, M. P., & Turner, J. A. (2014). Cognitive control in alcohol use disorder: Deficits and clinical relevance. Reviews in the Neurosciences, 25(1), 1–24. https://doi.org/10.1515/revneuro-2013-0054
Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217.
Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7), 1317–1329. https://doi.org/10.1016/S0893-6080(98)00066-5
Zhang, S., & Li, C. R. (2012). Functional networks for cognitive control in a stop signal task: Independent component analysis. Human Brain Mapping, 33(1), 89–104. https://doi.org/10.1002/hbm.21197
Zhang, S., Tsai, S.-J., Hu, S., Xu, J., Chao, H. H., Calhoun, V. D., & Li, C.-S. R. (2015). Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time. Human Brain Mapping, 36(9), 3289–3302. https://doi.org/10.1002/hbm.22819
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research was funded by a Georgia State University Second Century Initiative (2CI) Neurogenomics fellowship to S.V. Clark.
Electronic supplementary material
ESM 1
(DOCX 14 kb)
Rights and permissions
About this article
Cite this article
Clark, S.V., King, T.Z. & Turner, J.A. Cerebellar Contributions to Proactive and Reactive Control in the Stop Signal Task: A Systematic Review and Meta-Analysis of Functional Magnetic Resonance Imaging Studies. Neuropsychol Rev 30, 362–385 (2020). https://doi.org/10.1007/s11065-020-09432-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11065-020-09432-w