Skip to main content

Effectiveness of Computerized Cognitive Training Programs (CCTP) with Game-like Features in Children with or without Neuropsychological Disorders: a Meta-Analytic Investigation

Abstract

Computerized cognitive training programs (CCTP) are based on the assumption that cognitive abilities may be boosted by repetitively performing challenging tasks. The integration of game-like features in these programs, associated with the goal of amusing or rewarding participants, may contribute to generate cognitive benefits. Indeed, reinforcement contingencies have been reported to produce positive effects on performance and motivation, especially in children. This meta-analysis was aimed at providing a quantitative summary of the effectiveness of CCTP with game-like features in school-aged children with typical and atypical development. A total of 24 studies, with the cognitive and behavioral outcome data of 1547 participants, were selected for inclusion in the meta-analysis. Subgroup analyses were performed to identify the sources of the observed methodological heterogeneity. A robust variance estimation model, after removal of study outliers, yielded a small-to-moderate significant effect size. Final results pointed out smaller but more precise estimate effect sizes according to methodological aspects related to cognitive domain of outcomes, standardization of measures and type of control applied. Alongside supporting the use of CCTP for rehabilitating cognitive functions, the present results shed light on how different methodological choices are able to shape research findings in the field of children’s cognitive rehabilitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Akerlund, E., Esbjornsoon, E., Sunnerhagen, K. S., & Bjorkdahl, A. (2013). Can computerized working memory training improve impaired working memory, cognition and psychological health? Brain Injury, 27(13–14), 1649–1657. https://doi.org/10.3109/02699052.2013.830195

    Article  PubMed  Google Scholar 

  • Aksayli, N. D., Sala, G., & Gobet, F. (2019). The cognitive and academic benefits of Cogmed : A meta-analysis. Educational Research Review, 27, 229–243. https://doi.org/10.1016/j.edurev.2019.04.003

    Article  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.

    Book  Google Scholar 

  • Barnes, J. J., Nobre, A. C., Woolrich, M. W., Baker, K., & Astle, D. E. (2016). Training working memory in childhood enhances coupling between Frontoparietal control network and task-related regions. The Journal of Neuroscience, 36(34), 9001–9011. https://doi.org/10.1523/JNEUROSCI.0101-16.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bavelier, D., Achtman, R., Mani, M., & Focker, J. (2013). Neural bases of selective attention in action video game players. Vision Research, 61, 132–143. https://doi.org/10.1016/j.visres.2011.08.007

    Article  Google Scholar 

  • Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2017). Meta-Analysis of Action Video Game Impact on Perceptual , Attentional and Cognitive Skills. Psychological Bulletin, 144, 77–110. https://doi.org/10.1037/bul0000130

    Article  PubMed  Google Scholar 

  • Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., & Lu, Z. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences, 111(47), 16961–16966. https://doi.org/10.1073/pnas.1417056111

    CAS  Article  Google Scholar 

  • Bikic, A., Christensen, T. Ø., Leckman, J. F., & Dalsgaard, S. (2017). A double-blind randomized pilot trial comparing computerized cognitive exercises to Tetris in adolescents with attention-deficit / hyperactivity disorder. Nordic Journal of Psychiatry, 71(6), 455–464. https://doi.org/10.1080/08039488.2017.1328070

    Article  PubMed  Google Scholar 

  • Bikic, A., Leckman, J. F., Christensen, T. Ø., Bilenberg, N., & Dalsgaard, S. (2018). Attention and executive functions computer training for attention - deficit / hyperactivity disorder (ADHD): results from a randomized , controlled trial. European Child & Adolescent Psychiatry, 27(12), 1563–1574. https://doi.org/10.1007/s00787-018-1151-y

    Article  Google Scholar 

  • Bishop, D. V. M., Adams, C. V., & Rosen, S. (2006). Resistance of grammatical impairment to computerized comprehension training in children with specific and non-specific language impairments. International Journal of Language and Communication Disorders, 41(1), 19–40. https://doi.org/10.1080/13682820500144000

    CAS  Article  PubMed  Google Scholar 

  • Borenstein, M., Higgins, J. P. T., Hedges, V., & Rothstein, H. R. (2017). Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8, 5–18. https://doi.org/10.1002/jrsm.1230

    Article  PubMed  Google Scholar 

  • Borenstein, M., Hedges, L. V, Higgins, J. P. T., & Rothstein, H. R. (2009). Subgroup analyses.

  • Carter, E. C., Schönbrodt, F. D., Gervais, W. M., & Hilgard, J. (2019). Correcting for Bias in psychology : A comparison of Meta-analytic methods. Advances in Methods and Practices in Psychological Science, 2(2), 115–144. https://doi.org/10.1177/2515245919847196

    Article  Google Scholar 

  • Cheung, M. W.-L. (2019). A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychology Review, 29(4), 387–396. https://doi.org/10.1007/s11065-019-09415-6 

  • Clare, L., & Woods, B. (2008). Cognitive rehabilitation and cognitive training for early-stage Alzheimer ’ s disease and vascular dementia. Cochrane Database of Systematic Reviews, (4), art. No.: CD003260.

  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2th ed.). Hillsdale: Erlbaum.

    Google Scholar 

  • Conklin, H. M., Ogg, R. J., Ashford, J. M., Scoggins, M. A., Zou, P., Clark, K. N., … Zhang, H. (2015). Computerized cognitive training for amelioration of cognitive late effects among childhood Cancer survivors : A randomized controlled trial. Journal of Clinical Oncology, 33(33), 3894–3902. https://doi.org/10.1200/JCO.2015.61.6672

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittman, R., … Stringaris, A. (2015). Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child & Adolescent Psychiatry, 54(3), 164–174. https://doi.org/10.1016/j.jaac.2014.12.010

    Article  Google Scholar 

  • de Vries, M., Prins, P. J. M., Schmand, B. A., & Geurts, H. M. (2015). Working memory and cognitive flexibility-training for children with an autism spectrum disorder : A randomized controlled trial. Journal of Child Psychology and Psychiatry, 56(5), 566–576. https://doi.org/10.1111/jcpp.12324

    Article  PubMed  Google Scholar 

  • Dörrenbächer, S., & Kray, J. (2018). The impact of game-based task-shifting training on motivation and executive control in children with ADHD. Journal of Cognitive Enhancement, 3, 64–84. https://doi.org/10.1007/s41465-018-0083-2

    Article  Google Scholar 

  • Dörrenbächer, S., Müller, P. M., Tröger, J., & Kray, J. (2014). Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood. Frontiers in Psychology, 5, e.1275. https://doi.org/10.3389/fpsyg.2014.01275

    Article  Google Scholar 

  • Dovis, S., van der Oord, S., Wiers, R. W., & Prins, P. J. M. (2015). Improving Executive Functioning in Children with ADHD : Training Multiple Executive Functions within the Context of a Computer Game . A Randomized Double-Blind Placebo Controlled Trial. PLOS One, 10(4), e0121651. https://doi.org/10.1371/journal.pone.0121651

  • Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication Bias in Meta-analysis. Biometrics, 56(2), 455–463.

    CAS  Article  Google Scholar 

  • Dye, M. W. G., Green, C. S., & Bavelier, D. (2010). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321–326. https://doi.org/10.1111/j.1467-8721.2009.01660.x.Increasing

    Article  Google Scholar 

  • Ferreira-Brito, F., Fialho, M., Virgolino, A., Neves, I., & Cristina, A. (2019). Game-based interventions for neuropsychological assessment , training and rehabilitation : Which game-elements to use ? A systematic review. Journal of Biomedical Informatics, 98, 103287. https://doi.org/10.1016/j.jbi.2019.103287

    Article  PubMed  Google Scholar 

  • Fisher, Z., & Tipton, E. (2009). Robumeta : An R -package for robust variance estimation in meta-analysis.

  • Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences, 113(27), 7470–7474. https://doi.org/10.1073/pnas.1601243113

    CAS  Article  Google Scholar 

  • Fox, J. (1991). Regression Diagnostic: An Introduction. (D. Foster, Ed.). Newbury Park, CA: Sage: Sage University PaperSeries on quantitative applications in the social sciences.

  • Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Report action video games make dyslexic children read better. Current Biology, 23(6), 462–466. https://doi.org/10.1016/j.cub.2013.01.044

  • Franceschini, S., Trevisan, P., Ronconi, L., Bertoni, S., Colmar, S., Double, K., … Gori, S. (2017). Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Scientific Reports, 7, article 5863. https://doi.org/10.1038/s41598-017-05826-8

  • Goldin, A. P., Hermida, M. J., Shalom, D. E., Elias Costa, M., Lopez-Rosenfeld, M., Segretin, M. S., … Sigman, M. (2014). Far transfer to language and math of a short software-based gaming intervention. Proceedings of the National Academy of Sciences, 111(17), 6443–6448. https://doi.org/10.1073/pnas.1320217111

    CAS  Article  Google Scholar 

  • Grunewaldt, K. H., Skranes, J. O. N., Brubakk, A., & Lhaugen, G. R. O. C. C. (2016). Computerized working memory training has positive long-term effect in very low birthweight preschool children. Developmental Medicine & Child Neurology, 58(2), 195–201. https://doi.org/10.1111/dmcn.12841

    Article  Google Scholar 

  • Henry, L. A., Messer, D. J., & Nash, G. (2014). Testing for Near and Far Transfer Effects with a Short , Face-to-Face Adaptive Working Memory Training Intervention in Typical Children. Infant and Child Development, 23, 84–103. https://doi.org/10.1002/icd

    Article  Google Scholar 

  • Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.

    Article  Google Scholar 

  • Hubacher, M., Deluca, J., Weber, P., Steinlin, M., Kappos, L., & Opwis, K. (2015). Cognitive rehabilitation of working memory in juvenile multiple sclerosis – effects on cognitive functioning , functional MRI and network related connectivity. Restorative Neurology and Neuroscience, 33, 713–725. https://doi.org/10.3233/RNN-150497

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10081–10086. https://doi.org/10.1073/pnas.1103228108

    Article  PubMed  PubMed Central  Google Scholar 

  • James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J. R., Milton, A. L., & Holmes, E. A. (2015). Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. Psychological Science, 26(8), 1201–1215. https://doi.org/10.1177/0956797615583071

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnstone, S. J., Roodenrys, S., Phillips, E., Watt, A. J., & Mantz, S. (2010). A pilot study of combined working memory and inhibition training for children with AD / HD. Attention Deficit and Hyperactivity Disorders, 2(1), 31–42. https://doi.org/10.1007/s12402-009-0017-z

    Article  PubMed  Google Scholar 

  • Johnstone, S. J., Roodenrys, S., Blackman, R., Johnston, E., Loveday, K., Mantz, S., & Barratt, M. F. (2012). Neurocognitive training for children with and without AD/HD. Attention Deficit and Hyperactivity Disorders, 4(1), 11–23. https://doi.org/10.1007/s12402-011-0069-8

    Article  PubMed  Google Scholar 

  • Kable, J. W., Caulfield, M. K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., … Lerman, C. (2017). No effect of commercial cognitive training on brain activity, choice behavior, or cognitive performance. The Journal of Neuroscience, 37(31), 7390–7402. https://doi.org/10.1523/JNEUROSCI.2832-16.2017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Karch, D., Albers, L., Renner, G., & Lichtenauer, N. (2013). The efficacy of cognitive training programs in children and adolescents. Deutsches Ärzteblatt International, 110(39), 643–652. https://doi.org/10.3238/arztebl.2013.0643

    Article  PubMed  PubMed Central  Google Scholar 

  • Käser, T., Baschera, G., Kohn, J., Kucian, K., Richtmann, V., Grond, U., … von Aster, M. (2013). Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Frontiers in Psychology, 4, article 489. https://doi.org/10.3389/fpsyg.2013.00489

  • Kast, M., Meyer, M., Vogeli, C., Gross, M., & Jancke, L. (2007). Computer-based multisensory learning in children with developmental dyslexia. Restorative Neurology and Neuroscience, 25, 1–15.

    Google Scholar 

  • Kesler, S., Sheau, K., Koovakkattu, D., & Reiss, A. (2012). Changes in frontal-parietal activation and math skills performance following adaptive number sense training: Preliminary results from a pilot study. Neuropsychological Rehabilitation, 21(4), 433–454. https://doi.org/10.1080/09602011.2011.578446.Changes

    Article  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD:A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry., 44(2), 177–186.

    Article  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical Experimental Neuropsychology., 24(6), 781–791.

    Article  Google Scholar 

  • Kuhn, J., & Holling, H. (2014). Number sense or working memory? The effect of two computer-based trainings on mathematical skills in elementary school. Advances in Cognitive Psychology, 10(2), 59–67. https://doi.org/10.5709/acp-0157-2

  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science : A practical primer for t -tests and ANOVAs. Frontiers in Psychology, 4, article 863. https://doi.org/10.3389/fpsyg.2013.00863

  • Lau-Zhu, A., Holmes, E. A., Butterfield, S., & Holmes, J. (2017). Selective association between Tetris game play and Visuospatial working memory : A preliminary investigation. Applied Cognitive Psychology, 31(4), 438–445. https://doi.org/10.1002/acp.3339

  • Łuniewska, M., Chyl, K., Dębska, A., Kacprzak, A., Plewko, J., Szczerbiński, M., … Jednoróg, K. (2018). Neither action nor phonological video games make dyslexic children read better. Scientific Reports, 8, 549. https://doi.org/10.1038/s41598-017-18878-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nutley, S. B., & Söderqvist, S. (2017). How is working memory training likely to influence academic performance ? Current evidence and methodological considerations. Frontiers in Psychology, 8, article 69. https://doi.org/10.3389/fpsyg.2017.00069

  • Núñez Castellar, E., Van Looy, J., Szmalec, A., & de Marez, L. (2014). Improving arithmetic skills through gameplay: Assessment of the effectiveness of an educational game in terms of cognitive and affective learning outcomes. Information Sciences, 264, 19–31. https://doi.org/10.1016/j.ins.2013.09.030

    Article  Google Scholar 

  • Packiam Alloway, T., Bibile, V., & Lau, G. (2013). Computerized working memory training: Can it lead to gains in cognitive skills in students? Computers in Human Behavior, 29, 632–638. https://doi.org/10.1016/j.chb.2012.10.023

    Article  Google Scholar 

  • Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2017). Non-symbolic approximate arithmetic training improves math performance in preschoolers. The Journal of Experimental Child Psychology, 413, 278–293. https://doi.org/10.1016/j.jecp.2016.07.011.Non-symbolic

    Article  Google Scholar 

  • Prins, P. J. M., Dovis, S., Ponsioen, A., & van der Oord, S. (2011). Does computerized working memory training with game elements enhance motivation and training efficacy. Cyberpsychology, Behavior and Social Networking, 14(3), 115–122. https://doi.org/10.1089/cyber.2009.0206

  • Rauscher, L., Kohn, J., Kaser, T., Mayer, V., Kucian, K., Mccaskey, U., … Aster, M. Von. (2016). Evaluation of a computer-based training program for enhancing arithmetic skills and spatial number representation in primary school children. Frontiers in Psychology, 7, article 913. https://doi.org/10.3389/fpsyg.2016.00913

  • Rebok, G., & Ball, K. B. (2014). Ten-year effects of the ACTIVE cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62(1), 16–24. https://doi.org/10.1111/jgs.12607.Ten-Year

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossignoli-Palomeque, T., Perez-Hernandez, E., & González-Marqués, J. (2018). Brain training in children and adolescents : Is it scientifically valid ? Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.00565

  • Sadeghi, M., Barlow-krelina, E., Gibbons, C., Shaikh, K. T., Lun, W., Fung, A., … Till, C. (2017). Feasibility of computerized working memory training in individuals with Huntington disease. PLoS One, 12(4), e0176429.

    Article  Google Scholar 

  • Sailer, M., Ulrich, J., Katharina, S., & Mandl, H. (2017). How gamification motivates: An experimental study of the effects of speci fi c game design elements on psychological need satisfaction. Computers in Human Behavior, 69, 371–380.

    Article  Google Scholar 

  • Sala, G., & Gobet, F. (2017a). Does Far Transfer Exist ? Negative Evidence From Chess , Music , and Working Memory Training. Current Directions in Psychological Science, 1–6. https://doi.org/10.1177/0963721417712760

  • Sala, G., & Gobet, F. (2017b). Working memory training in typically developing children: A Meta-analysis. Developmental Psychology, 53(4), 671–685. https://doi.org/10.1037/dev0000265

    Article  PubMed  Google Scholar 

  • Sala, G., & Gobet, F. (2018). Video game training does not enhance cognitive ability : A comprehensive Meta-analytic investigation. Psychological Bulletin, 144(2), 111–139. https://doi.org/10.1037/bul0000139

    Article  PubMed  Google Scholar 

  • Schmidt, F. L., & Oh, I. (2013). Organizational behavior and human decision processes methods for second order meta-analysis and illustrative applications q. Organizational Behavior and Human Decision Processes, 121(2), 204–218. https://doi.org/10.1016/j.obhdp.2013.03.002

    Article  Google Scholar 

  • Schwarzer, G. (2007). Meta: An R package for meta-analysis. R News, 7(3), 40–45.

    Google Scholar 

  • Shanahan, M. A., Pennington, B. F., & Willcutt, E. W. (2008). Do motivational incentives reduce the inhibition deficit in ADHD ? Developmental Neuropsychology, 33(2), 137–159. https://doi.org/10.1080/87565640701884238

    Article  PubMed  Google Scholar 

  • Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012). Journal of applied research in memory and cognition Cogmed working memory training : Does the evidence support the claims ? Journal of Applied Research in Memory and Cognition, 1(3), 185–193. https://doi.org/10.1016/j.jarmac.2012.06.003

  • Skorka-Brown, J., Andrade, J., & May, J. (2014). Playing ‘ Tetris ’ reduces the strength , frequency and vividness of naturally occurring cravings. Appetite, 76, 161–165. https://doi.org/10.1016/j.appet.2014.01.073

    Article  PubMed  Google Scholar 

  • Spencer-Smith, M., & Klingberg, T. (2015). Benefits of a working memory training program for inattention in daily life : A systematic review and Meta-analysis. PLoS One, 10(3), e0119522. https://doi.org/10.1371/journal.pone.0119522

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • St Clair-Thompson, H., Stevens, R., Hunt, A., & Bolder, E. (2010). Improving children’s working memory and classroom performance. Educational Psychology, 30(2), 203–219. https://doi.org/10.1080/01443410903509259

    Article  Google Scholar 

  • Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5, 60–78. https://doi.org/10.1002/jrsm.1095

    CAS  Article  PubMed  Google Scholar 

  • Stojanoski, B., Lyons, K. M., Pearce, A. A. A., & Owen, A. M. (2018). Targeted training : Converging evidence against the transferable bene fi ts of online brain training on cognitive function. Neuropsychologia, 117, 541–550. https://doi.org/10.1016/j.neuropsychologia.2018.07.013

    Article  PubMed  Google Scholar 

  • Strobach, T., & Huestegge, L. (2017). Evaluating the effectiveness of commercial brain game training with working-memory tasks. Journal of Cognitive Enhancement, 1(4), 539–558. https://doi.org/10.1007/s41465-017-0053-0

    Article  Google Scholar 

  • Suskauer, S. J., Yeates, K. O., Sarmiento, K., Benzel, E. C., Breiding, M. J., Broomand, C., … Weissman, B. (2019). Strengthening the evidence base : Recommendations for future research identified through the development of CDC ’ s pediatric mild TBI guideline. Journal of Head Trauma Rehabilitation. https://doi.org/10.1097/HTR.0000000000000455

  • Taatgen, N. A. (2016). Theoretical models of training and transfer effects. In Cognitive Training. Cham: Springer.

  • Tanner-smith, E. E., & Tipton, E. (2014). Robust variance estimation with dependent effect sizes : Practical considerations including a software tutorial in Stata and SPSS. Research Synthesis Methods, 5, 13–30. https://doi.org/10.1002/jrsm.1091

    Article  PubMed  Google Scholar 

  • Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. https://doi.org/10.1002/jrsm.5

    Article  PubMed  Google Scholar 

  • Tsai, N., States, U., Buschkuehl, M., Jonides, J., & States, U. (2018). Journal of Applied Research in Memory and Cognition ( Un ) Great Expectations : The Role of Placebo Effects in Cognitive Training University of Michigan , United States. Journal of Applied Research in Memory and Cognition, 7(4), 564–573. https://doi.org/10.1016/j.jarmac.2018.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuedor, M. (2006). Universal access through accessible computer educational programs to develop the reading skills of children with autistic spectrum disorders. Universal Access in the Information Society, 5(3), 292–298. https://doi.org/10.1007/s10209-006-0047-7

    Article  Google Scholar 

  • van der Oord, S., Ponsioen, A. J. G. B., & Geurts, H. M. (2014). A pilot study of the efficacy of a computerized executive functioning remediation training with game elements for children with ADHD in an outpatient setting : Outcome on parent- and teacher- rated executive functioning and ADHD behavior. Journal of Attention Disorders, 18(8), 699–712. https://doi.org/10.1177/1087054712453167

  • van der Ven, F., Segers, E., Takashima, A., & Verhoeven, L. (2017). Effects of a tablet game intervention on simple addition and subtraction fluency in first graders. Computers in Human Behavior, 72, 200–207. https://doi.org/10.1016/j.chb.2017.02.031

    Article  Google Scholar 

  • Verhelst, H., Linden, C. V., Vingerhoets, G., & Caeyenberghs, K. (2017). How to train an injured brain ? A pilot feasibility study of home-based computerized cognitive training. Games for Health Journal: Research, Development, and Clinical Applications, 6(1), 28–38. https://doi.org/10.1089/g4h.2016.0043

    Article  Google Scholar 

  • Viechtbauer, W. (2010). Conducting Meta-analyses in R with the metafor package. Journal of Statistical Software August, 36(3). https://doi.org/10.18637/jss.v036.i03

  • Whyte, E. M., Smyth, J. M., & Scherf, K. S. (2015). Designing serious game interventions for individuals with autism. Journal of Autism and Developmental Disorders, 45(12), 3820–3831. https://doi.org/10.1007/s10803-014-2333-1

    Article  PubMed  Google Scholar 

  • Williams, C., Wright, B., Callaghan, G., & Coughlan, B. (2002). Do children with autism learn to read more readily by computer assisted instruction or traditional book methods? A pilot study. Autism, 6(1), 71–91.

    Article  Google Scholar 

  • Geusgens, C. A. V., Winkens, I., Van Heugten, C. M., & van den Heuvel, W. J. A. (2007). Occurrence and measurement of transfer in cognitive rehabilitation: A critical review. Journal of Rehabilitation Medicine, 39, 425–439. https://doi.org/10.2340/16501977-0092

  • Wuang, Y., Chiu, Y., Chen, Y. J., Chen, C., Wang, C., Huang, C., … Ho, W. (2018). Game-based auxiliary training system for improving visual perceptual dysfunction in children with developmental disabilities: A proposed design and evaluation. Computers & Education, 124, 27–36. https://doi.org/10.1016/j.compedu.2018.05.008

    Article  Google Scholar 

  • Zickefoose, S., Hux, K., Brown, J., & Wulf, K. (2013). Let the games begin : A preliminary study using attention process Training-3 and Lumosity ä brain games to remediate attention deficits following traumatic brain injury. Brain Injury, 9052, 1–10. https://doi.org/10.3109/02699052.2013.775484

    Article  Google Scholar 

  • Zinke, K., Einert, M., Pfennig, L., Kliegel, M., & Gajewski, P. D. (2012). Plasticity of executive control through task switching training in adolescents. Frontiers in Neuroscience, 6, article 41. https://doi.org/10.3389/fnhum.2012.00041

  • Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32.

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank all authors who provided additional data required for the meta-analysis and kindly replied to our requests of elucidation on their works.

This study was supported by the Italian Ministry of Health (Ricerca Finalizzata NET-2013-02356160-4 to Renato Borgatti; Ricerca Corrente 2019/2020) and by the “5 per mille” funds 2018/2019 for biomedical research to Alessandra Bardoni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Oldrati.

Ethics declarations

Conflict of Interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Viola Oldrati and Claudia Corti equally contributed to the manuscript

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oldrati, V., Corti, C., Poggi, G. et al. Effectiveness of Computerized Cognitive Training Programs (CCTP) with Game-like Features in Children with or without Neuropsychological Disorders: a Meta-Analytic Investigation. Neuropsychol Rev 30, 126–141 (2020). https://doi.org/10.1007/s11065-020-09429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-020-09429-5

Keywords

  • Cognitive training
  • Computer-based
  • Children
  • Neurodevelopmental disorder
  • Videogame
  • Rehabilitation