Advertisement

Neuropsychology Review

, Volume 29, Issue 1, pp 14–26 | Cite as

A Systematic Meta-Review of Impulsivity and Compulsivity in Addictive Behaviors

  • Rico S. C. LeeEmail author
  • Sylco Hoppenbrouwers
  • Ingmar Franken
Review

Abstract

It is well established that poor inhibitory control confers both a vulnerability to, and maintenance of, addictive behaviors across the substance and behavioral spectrums. By comparison, the role of compulsivity in addictive behaviors has received less research focus. The neurocognitive literature to date is vast, and it is unclear whether there are any convincing lines of systematic evidence delineating whether and how aspects of impulsivity and compulsivity are shared and unique across different substance and behavioral addictive disorders. Such information has significant implications for our understanding of underlying mechanisms and clinical implications for assessing and treating neurocognitive deficits across addictions. Here, we conducted a systematic meta-review of the quantitative meta-analyses to date, specifically examining the neurocognitive functions central to impulsive-compulsive behaviors transdiagnostically across addictive behaviors. Out of 1186 empirical studies initially identified, six meta-analyses met inclusion criteria examining alcohol, cannabis, cocaine, MDMA, methamphetamine, opioid and tobacco use, as well as gambling and internet addiction. The pooled findings across the systematic meta-analyses suggest that impulsivity is a core process underpinning both substance and behavioral addictive disorders, although it is not equally implicated across all substances. Compulsivity-related neurocognition, by comparison, is important across alcohol and gambling disorders, but has yet to be examined systematically. The gestalt of findings to date suggests that both impulsivity and compulsivity are core constructs linked to addictive behaviors and may not be solely the secondary sequelae associated with the effects of prolonged substance exposure.

Keywords

Meta-review Neurocognition Impulsivity Compulsivity Addiction 

Notes

References

  1. Anderson, S. W., Damasio, H., Jones, R. D., & Tranel, D. (1991). Wisconsin card sorting test performance as a measure of frontal lobe damage. Journal of Clinical and Experimental Neuropsychology, 13(6), 909–922.Google Scholar
  2. Assadi, S. M., Yucel, M., & Pantelis, C. (2009). Dopamine modulates neural networks involved in effort-based decision-making. Neuroscience and Biobehavioral Reviews, 33(3), 383–393.Google Scholar
  3. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 1458–1463.Google Scholar
  4. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1-3), 7–15.Google Scholar
  5. Broos, N., Schmaal, L., Wiskerke, J., Kostelijk, L., Lam, T., Stoop, N., … Goudriaan, A. E. (2012). The relationship between impulsive choice and impulsive action: A cross-species translational study. PLoS One, 7(5), e36781.Google Scholar
  6. Burgess, P. W., & Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34(4), 263–272.Google Scholar
  7. Carter, A., Hendrikse, J., Lee, N., Yücel, M., Verdejo-Garcia, A., Andrews, Z., & Hall, W. (2016). The neurobiology of “food addiction” and its implications for obesity treatment and policy. Annual Review of Nutrition, 36(1), 105–128.Google Scholar
  8. Chamberlain, S. R., Fineberg, N. A., Blackwell, A. D., Robbins, T. W., & Sahakian, B. J. (2006). Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. The American Journal of Psychiatry, 163(7), 1282–1284.Google Scholar
  9. Chamberlain, S. R., Stochl, J., Redden, S. A., & Grant, J. E. (2018). Latent traits of impulsivity and compulsivity: Toward dimensional psychiatry. Psychological Medicine, 48(5), 810–821.Google Scholar
  10. Chesney, E., Goodwin, G. M., & Fazel, S. (2014). Risks of all-cause and suicide mortality in mental disorders: A meta-review. World Psychiatry, 13(2), 153–160.Google Scholar
  11. Chowdhury, N. S., Livesey, E. J., Blaszczynski, A., & Harris, J. A. (2017). Pathological gambling and motor impulsivity: A systematic review with meta-analysis. Journal of Gambling Studies, 33(4), 1213–1239.Google Scholar
  12. Comalli, P. E., Wapner, S., & Werner, H. (1962). Interference effects of Stroop color-word test in childhood, adulthood, and aging. The Journal of Genetic Psychology, 100(1), 47–53.Google Scholar
  13. Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13(1), 28–35.Google Scholar
  14. Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11(1), 126.Google Scholar
  15. Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680–694.Google Scholar
  16. Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews. Neuroscience, 18(3), 158–171.Google Scholar
  17. Daruna, J. H., & Barnes, P. A. (1993). A neurodevelopmental view of impulsivity. In The impulsive client: Theory, research, and treatment (pp. 23–37). Washington, DC, US: American Psychological Association.Google Scholar
  18. de Wit, H. (2009). Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addiction Biology, 14(1), 22–31.Google Scholar
  19. Denys, D. (2011). Obsessionality & compulsivity: A phenomenology of obsessive-compulsive disorder. Philosophy, Ethics, and Humanities in Medicine : PEHM, 6(1), 3–3.Google Scholar
  20. Eagle, D. M., & Robbins, T. W. (2003). Inhibitory control in rats performing a stop-signal reaction-time task: Effects of lesions of the medial striatum and d-amphetamine. Behavioral Neuroscience, 117(6), 1302–1317.Google Scholar
  21. Fineberg, N. A., Chamberlain, S. R., Goudriaan, A. E., Stein, D. J., Vanderschuren, L. J., Gillan, C. M., … Potenza, M. N. (2014). New developments in human neurocognition: Clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums, 19(01), 69–89.Google Scholar
  22. Francke, A. L., Smit, M. C., de Veer, A. J., & Mistiaen, P. (2008). Factors influencing the implementation of clinical guidelines for health care professionals: A systematic meta-review. BMC Medical Informatics and Decision Making, 8(1), 38.Google Scholar
  23. Franken, I. H. A., & van de Wetering, B. J. (2015). Bridging the gap between the neurocognitive lab and the addiction clinic. Addictive Behaviors, 44, 108–114.Google Scholar
  24. Franzen, M. D., Paul, D. S. & Price, G. (1990). Alternate form reliability of Trails A, B, C, and D. In Ninth Annual Convention of the National Academy of Neuropsychology: Reno, NY.Google Scholar
  25. Gomez, P., Ratcliff, R., & Perea, M. (2007). A model of the go/no-go task. Journal of Experimental Psychology. General, 136(3), 389–413.Google Scholar
  26. Goudriaan, A. E., Oosterlaan, J., De Beurs, E., & Van Den Brink, W. (2006). Neurocognitive functions in pathological gambling: A comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction, 101(4), 534–547.Google Scholar
  27. Hester, R., Lubman, D. I., & Yücel, M. (2010). The role of executive control in human drug addiction. In D. W. Self & J. K. Staley Gottschalk (Eds.), Behavioral neuroscience of drug addiction (pp. 301–318). Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  28. Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24(2), 97–129.Google Scholar
  29. Kovacs, I., Richman, M. J., Janka, Z., Maraz, A., & Ando, B. (2017). Decision making measured by the Iowa gambling task in alcohol use disorder and gambling disorder: A systematic review and meta-analysis. Drug and Alcohol Dependence, 181, 152–161.Google Scholar
  30. Lee, R. S. C., Dore, G., Juckes, L., De Regt, T., Naismith, S. L., Lagopoulos, J., … Hermens, D. F. (2015). Cognitive dysfunction and functional disability in alcohol dependent adults with or without a comorbid affective disorder. Cognitive Neuropsychiatry, 20(3), 222–231.Google Scholar
  31. Lee, R. S. C., Hermens, D. F., Scott, J., Redoblado-Hodge, M. A., Naismith, S. L., Lagopoulos, J., … Hickie, I. B. (2014). A meta-analysis of neuropsychological functioning in first-episode bipolar disorders. Journal of Psychiatric Research, 57, 1–11.Google Scholar
  32. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  33. Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16(06), 1064–1076.Google Scholar
  34. Lubman, D. I., Cheetham, A., & Yücel, M. (2015). Cannabis and adolescent brain development. Pharmacology & Therapeutics, 148, 1–16.Google Scholar
  35. Lubman, D. I., Yücel, M., & Pantelis, C. (2004). Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction, 99(12), 1491–1502.Google Scholar
  36. Marhe, R., & Franken, I. (2014). Error-related brain activity as a biomarker for cocaine relapse. Neuropsychopharmacology Reviews, 39(1), 241.Google Scholar
  37. Marhe, R., Luijten, M., van de Wetering, B. J., Smits, M., & Franken, I. H. A. (2013). Individual differences in anterior cingulate activation associated with attentional bias predict cocaine use after treatment. Neuropsychopharmacology, 38(6), 1085–1093.Google Scholar
  38. Newman, J. P., Patterson, C. M., & Kosson, D. S. (1987). Response perseveration in psychopaths. Journal of Abnormal Psychology, 96(2), 145–148.Google Scholar
  39. O'Brien, C. (2011). Addiction and dependence in DSM-V. Addiction, 106(5), 866–867.Google Scholar
  40. Perlis, R. H. (2011). Translating biomarkers to clinical practice. Molecular Psychiatry, 16(11), 1076–1087.Google Scholar
  41. Prochazkova, L., Parkes, L., Dawson, A., Youssef, G., Ferreira, G. M., Lorenzetti, V., … Yücel, M. (2018). Unpacking the role of self-reported compulsivity and impulsivity in obsessive-compulsive disorder. CNS Spectrums, 23(1), 51–58.Google Scholar
  42. Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 81–91.Google Scholar
  43. Sahakian, B. J., & Owen, A. M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85, 399–402.Google Scholar
  44. Smith, J. L., Mattick, R. P., Jamadar, S. D., & Iredale, J. M. (2014). Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug and Alcohol Dependence, 145, 1–33.Google Scholar
  45. Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203–213.Google Scholar
  46. Stephan, R. A., Alhassoon, O. M., Allen, K. E., Wollman, S. C., Hall, M., Thomas, W. J., … Grant, I. (2017). Meta-analyses of clinical neuropsychological tests of executive dysfunction and impulsivity in alcohol use disorder. The American Journal of Drug and Alcohol Abuse, 43(1), 24–43.Google Scholar
  47. Sussman, S., & Sussman, A. N. (2011). Considering the definition of addiction. International Journal of Environmental Research and Public Health, 8(10), 4025–4038.Google Scholar
  48. Torregrossa, M. M., Xie, M., & Taylor, J. R. (2012). Chronic corticosterone exposure during adolescence reduces impulsive action but increases impulsive choice and sensitivity to yohimbine in male Sprague-Dawley rats. Neuropsychopharmacology, 37(7), 1656–1670.Google Scholar
  49. van Timmeren, T., Daams, J. G., van Holst, R. J., & Goudriaan, A. E. (2018). Compulsivity-related neurocognitive performance deficits in gambling disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 204–217.Google Scholar
  50. Verdejo-Garcia, A. (2016). Cognitive training for substance use disorders: Neuroscientific mechanisms. Neuroscience and Biobehavioral Reviews, 68, 270–281.Google Scholar
  51. Verdejo-Garcia, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience and Biobehavioral Reviews, 32(4), 777–810.Google Scholar
  52. Verdejo-Garcia, A., Lubman, D. I., Schwerk, A., Roffel, K., Vilar-Lopez, R., Mackenzie, T., & Yucel, M. (2012). Effect of craving induction on inhibitory control in opiate dependence. Psychopharmacology, 219(2), 519–526.Google Scholar
  53. Whelan, R., Watts, R., Orr, C. A., Althoff, R. R., Artiges, E., Banaschewski, T., … Garavan, H. (2014). Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature, 512(7513), 185–189.Google Scholar
  54. Wiers, R. W. (2018). Cognitive training in addiction: Does it have clinical potential? Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 101–102.Google Scholar
  55. Yücel, M., & Fontenelle, L. F. (2012). Compulsivity as an endophenotype: The search for a hazy moving target. Addiction, 107(10), 1735–1736.Google Scholar
  56. Yucel, M., Fornito, A., Youssef, G., Dwyer, D., Whittle, S., Wood, S. J., … Allen, N. B. (2012). Inhibitory control in young adolescents: The role of sex, intelligence, and temperament. Neuropsychology, 26, 347–356.Google Scholar
  57. Yucel, M., Oldenhof, E., Ahmed, S. H., Belin, D., Billieux, J., Bowden-Jones, H., Carter, A., Chamberlain, S. R., Clark, L., Connor, J., Daglish, M., Dom, G., Dannon, P., Duka, T., Fernandez-Serrano, M. J., Field, M., Franken, I., Goldstein, R. Z., Gonzalez, R., Goudriaan, A. E., Grant, J. E., Gullo, M. J., Hester, R., Hodgins, D. C., Le Foll, B., Lee, R. S. C., Lingford-Hughes, A., Lorenzetti, V., Moeller, S. J., Munafo, M. R., Odlaug, B., Potenza, M. N., Segrave, R., Sjoerds, Z., Solowij, N., van den Brink, W., van Holst, R. J., Voon, V., Wiers, R., Fontenelle, L. F. & Verdejo-Garcia, A. (2018). A transdiagnostic dimensional approach towards a neuropsychological assessment for addiction: an international Delphi consensus study. Addiction.  https://doi.org/10.1111/add.14424.
  58. Zalesky, A., Solowij, N., Yucel, M., Lubman, D. I., Takagi, M., Harding, I. H., … Seal, M. (2012). Effect of long-term cannabis use on axonal fibre connectivity. Brain, 135(7), 2245–2255.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rico S. C. Lee
    • 1
    • 2
    Email author
  • Sylco Hoppenbrouwers
    • 3
    • 4
  • Ingmar Franken
    • 3
  1. 1.Brain and Mental Health LaboratoryMonash UniversityClaytonAustralia
  2. 2.Monash Biomedical ImagingClaytonAustralia
  3. 3.Erasmus UniversityRotterdamThe Netherlands
  4. 4.Thalamus, Centre for Neuropsychiatry and Behavioural NeurologyWolfhezeThe Netherlands

Personalised recommendations