Neuropsychological Interventions for Decision-Making in Addiction: a Systematic Review

Abstract

Decision-making deficits are strong predictors of poor clinical outcomes in addiction treatment. However, research on interventions that address decision-making deficits among people with addiction is scarce and has not been analyzed. We aimed to systematically review evidence on neuropsychological interventions for decision-making deficits in addiction to identify promising therapies. Eligibility criteria were (1) participants with a diagnosis of substance use or behavioral addictive disorders, (2) interventions consisting of (neuro) psychological treatments that address decision-making, (3) comparators comprising control (sham) interventions, treatment as usual or no-treatment, (4) outcomes including a decision-making task, and (5) studies including RCTs and non-randomized trials. Search terms included addiction (or alcohol/drug/substance use/gambling) AND treatment (or specific interventions) AND decision-making (or specific tasks). The search yielded 728 hits, and two independent assessors agreed on the final selection of 12 articles. Interventions included Contingency Management (3 studies), Working Memory Training (2 studies) Goal Management Training (2 studies), Cognitive Behavioral Therapy (2 studies), Reality Therapy, Motivational Interview and Monetary Management. The main outcome measures were tasks of delay discounting, risk-taking and reward-based decision-making. Results showed that Goal Management Training improves reward-based decision-making, while Contingency Management combined with Cognitive Behavioral Therapy has beneficial effects on delay discounting. The evidence on Working Memory Training and Cognitive Behavioral Therapy as stand-alone treatments was mixed. Motivational Interview and Monetary Management had no significant effects on decision-making. Bias control across studies was moderate. We conclude that Goal Management Training and Contingency Management combined with Cognitive Behavioral Therapy have potential to modify decision-making in people with addiction. RCTs are needed to establish the efficacy of these interventions.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alfonso, J. P., Caracuel, A., Delgado-Pastor, L. C., & Verdejo-García, A. (2011). Combined goal management training and mindfulness meditation improve executive functions and decision-making performance in abstinent polysubstance abusers. Drug and Alcohol Dependence, 117(1), 78–81.

    PubMed  Google Scholar 

  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.

    Google Scholar 

  3. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 1458–1463.

    CAS  PubMed  Google Scholar 

  4. Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 1675–1689.

    PubMed  Google Scholar 

  5. Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 2189–2202.

    PubMed  Google Scholar 

  6. Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39(4), 376–389.

    CAS  PubMed  Google Scholar 

  7. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40(10), 1690–1705.

    PubMed  Google Scholar 

  8. Bickel, W. K., & Marsch, L. A. (2001). Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction, 96(1), 73–86.

    CAS  Google Scholar 

  9. Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F., & Baxter, C. (2011). Remember the future: Working memory training decreases delay discounting among stimulant addicts. Biological Psychiatry, 69(3), 260–265.

    Google Scholar 

  10. Bickel, W. K., Moody, L., & Quisenberry, A. (2014). Computerized working-memory training as a candidate adjunctive treatment for addiction. Alcohol Research: Current Reviews, 36(1), 123–126.

    Google Scholar 

  11. Black, A. C., & Rosen, M. I. (2011). A money management-based substance use treatment increases valuation of future rewards. Addictive Behaviors, 36(1), 125–128.

    PubMed  Google Scholar 

  12. Bolla, K. I., Eldreth, D. A., Matochik, J. A., & Cadet, J. L. (2004). Sex-related differences in a gambling task and its neurological correlates. Cerebral Cortex, 14(11), 1226–1232.

    CAS  PubMed  Google Scholar 

  13. Brand, M., Labudda, K., & Markowitsch, H. J. (2006). Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Networks, 19(8), 1266–1276.

    Google Scholar 

  14. Carroll, K. M., Kiluk, B. D., Nich, C., Babuscio, T. A., Brewer, J. A., Potenza, M. N., Ball, S. A., Martino, S., Rounsaville, B. J., & Lejuez, C. W. (2011). Cognitive function and treatment response in a randomized clinical trial of computer-based training in cognitive-behavioral therapy. Substance Use & Misuse, 46(1), 23–34.

    Google Scholar 

  15. Casaletto, K. B., Moore, D. J., Woods, S. P., Umlauf, A., Scott, J., & Heaton, R. K. (2016). Abbreviated goal management training shows preliminary evidence as a neurorehabilitation tool for HIV-associated neurocognitive disorders among substance users. The Clinical Neuropsychologist, 30(1), 107–130.

    PubMed  PubMed Central  Google Scholar 

  16. Clark, L., Robbins, T. W., Ersche, K. D., & Sahakian, B. J. (2006). Reflection impulsivity in current and former substance users. Biological Psychiatry, 60(5), 515–522.

    CAS  PubMed  Google Scholar 

  17. Crockett, M. J., Braams, B. R., Clark, L., Tobler, P. N., Robbins, T. W., & Kalenscher, T. (2013). Restricting temptations: Neural mechanisms of precommitment. Neuron, 79(2), 391–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69(6), 1204–1215.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Donovan, D. M., Bigelow, G. E., Brigham, G. S., Carroll, K. M., Cohen, A. J., Gardin, J. G., Hamilton, J. A., Huestis, M. A., Hughes, J. R., Lindblad, R., Marlatt, G. A., Preston, K. L., Selzer, J. A., Somoza, E. C., Wakim, P. G., & Wells, E. A. (2012). Primary outcome indices in illicit drug dependence treatment research: Systematic approach to selection and measurement of drug use end-points in clinical trials. Addiction, 107(4), 694–708.

    PubMed  Google Scholar 

  20. Feldstein Ewing, S. W., Filbey, F. M., Hendershot, C. S., McEachern, A. D., & Hutchison, K. E. (2011). Proposed model of the neurobiological mechanisms underlying psychosocial alcohol interventions: The example of motivational interviewing. Journal of Studies on Alcohol and Drugs, 72(6), 903–916.

    PubMed  PubMed Central  Google Scholar 

  21. Fernández-Serrano, M. J., Pérez-García, M., & Verdejo-García, A. (2011). What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neuroscience & Biobehavioral Reviews, 35(3), 377–406.

    Google Scholar 

  22. Fu, R., Vandermeer, B. W., Shamliyan, T. A., O’Neil, M. E., Yazdi, F., Fox, S. H., Morton, S. C. (2013). Handling continuous outcomes in quantitative synthesis. Methods guide for comparative effectiveness reviews. AHRQ Publication No. 13-EHC103-EF. Rockville, MD: Agency for Healthcare Research and Quality.

  23. Gladwin, T. E., Wiers, C. E., & Wiers, R. W. (2017). Interventions aimed at automatic processes in addiction: Considering necessary conditions for efficacy. Current Opinion in Behavioral Sciences, 13, 19–24.

    Google Scholar 

  24. Gonçalves, P. D., Ometto, M., Bechara, A., Malbergier, A., Amaral, R., Nicastri, S., Martins, P. A., Beraldo, L., dos Santos, B., Fuentes, D., Andrade, A. G., Busatto, G. F., & Cunha, P. J. (2014). Motivational interviewing combined with chess accelerates improvement in executive functions in cocaine dependent patients: A one-month prospective study. Drug and Alcohol Dependence, 141, 79–84.

    PubMed  Google Scholar 

  25. Goudriaan, A. E., Oosterlaan, J., de Beurs, E., & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23(1), 137–151.

    Google Scholar 

  26. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38(8), 1180–1187.

    CAS  PubMed  Google Scholar 

  27. Heyman, G. M. (2009). Addiction: A disorder of choice: Harvard University Press.

  28. Higgins, J. P., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., Savovic, J., et al. (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ, 343(oct18 2), d5928.

    PubMed  PubMed Central  Google Scholar 

  29. Holt, D. D., Green, L., & Myerson, J. (2012). Estimating the subjective value of future rewards: Comparison of adjusting-amount and adjusting-delay procedures. Behavioural Processes, 90(3), 302–310.

    PubMed  PubMed Central  Google Scholar 

  30. Huntley, J. D., Gould, R. L., Liu, K., Smith, M., & Howard, R. J. (2015). Do cognitive interventions improve general cognition in dementia? A meta-analysis and meta-regression. BMJ Open, 5(4), e005247. https://doi.org/10.1136/bmjopen-2014-005247.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson, M. W., Bickel, W. K., & Baker, F. (2007). Moderate drug use and delay discounting: A comparison of heavy, light, and never smokers. Experimental and Clinical Psychopharmacology, 15(2), 187–194.

    PubMed  Google Scholar 

  32. Kiluk, B. D., Buck, M. B., Devore, K. A., Babuscio, T. A., Nich, C., & Carroll, K. M. (2017). Performance-based contingency management in cognitive remediation training: A pilot study. Journal of Substance Abuse Treatment, 72, 80–88.

    PubMed  Google Scholar 

  33. Kirby, K. N., Petry, N. M., & Bickel, W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology: General, 128(1), 78–87.

    CAS  Google Scholar 

  34. Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., Strong, D. R., & Brown, R. A. (2002). Evaluation of a behavioral measure of risk taking: The balloon analogue risk task (BART). Journal of Experimental Psychology: Applied, 8(2), 75–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Levine, B., Stuss, D. T., Winocur, G., Binns, M. A., Fahy, L., Mandic, M., Bridges, K., & Robertson, I. H. (2007). Cognitive rehabilitation in the elderly: Effects on strategic behavior in relation to goal management. Journal of the International Neuropsychological Society, 13(1), 143–152.

    PubMed  Google Scholar 

  36. Levine, B., Schweizer, T. A., O'Connor, C., Turner, G., Gillingham, S., Stuss, D. T., Manly, T., & Robertson, I. H. (2011). Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Frontiers in Human Neuroscience, 5.

  37. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 339(jul21 1), b2700.

    PubMed  PubMed Central  Google Scholar 

  38. Manning, V., Verdejo-Garcia, A., & Lubman, D. I. (2017). Neurocognitive impairment in addiction and opportunities for intervention. Current Opinion in Behavioral Sciences, 13, 40–45.

    Google Scholar 

  39. Mata, R., Josef, A. K., Samanez-Larkin, G. R., & Hertwig, R. (2011). Age differences in risky choice: A meta-analysis. Annals of the New York Academy of Sciences, 1235(1), 18–29.

    PubMed  PubMed Central  Google Scholar 

  40. Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11(2), 364–386.

    Google Scholar 

  41. Noël, X., Brevers, D., & Bechara, A. (2013). A neurocognitive approach to understanding the neurobiology of addiction. Current Opinion in Neurobiology, 23(4), 632–638.

    PubMed  PubMed Central  Google Scholar 

  42. Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Systematic reviews, 5(1), 210.

    PubMed  PubMed Central  Google Scholar 

  43. Peters, E. N., Petry, N. M., LaPaglia, D. M., Reynolds, B., & Carroll, K. M. (2013). Delay discounting in adults receiving treatment for marijuana dependence. Experimental and Clinical Psychopharmacology, 21(1), 46–54.

    PubMed  Google Scholar 

  44. Rass, O., Schacht, R. L., Buckheit, K., Johnson, M. W., Strain, E. C., & Mintzer, M. Z. (2015). A randomized controlled trial of the effects of working memory training in methadone maintenance patients. Drug and Alcohol Dependence, 156, 38–46.

    PubMed  PubMed Central  Google Scholar 

  45. Redish, A. D., Jensen, S., & Johnson, A. (2008). Addiction as vulnerabilities in the decision process. Behavioral and Brain Sciences, 31(4), 461–487.

    Google Scholar 

  46. Reynolds, B., & Schiffbauer, R. (2004). Measuring state changes in human delay discounting: An experiential discounting task. Behavioural Processes, 67(3), 343–356.

    Google Scholar 

  47. Rezapour, T., DeVito, E. E., Sofuoglu, M., & Ekhtiari, H. (2016). Perspectives on neurocognitive rehabilitation as an adjunct treatment for addictive disorders: From cognitive improvement to relapse prevention. Progress in Brain Research, 224, 345–369.

    PubMed  Google Scholar 

  48. Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1507), 3137–3146.

    PubMed  Google Scholar 

  49. Schiebener, J., & Brand, M. (2015). Decision making under objective risk conditions–a review of cognitive and emotional correlates, strategies, feedback processing, and external influences. Neuropsychology Review, 25(2), 171–198.

    Google Scholar 

  50. Shoptaw, S. (2014). Commentary on Gowin et al.(2014): Brain is behavior—Methamphetamine dependence and recovery. Addiction, 109(2), 248–249.

    PubMed  Google Scholar 

  51. Stanger, C., Budney, A. J., & Bickel, W. K. (2013). A developmental perspective on neuroeconomic mechanisms of contingency management. Psychology of Addictive Behaviors, 27(2), 403–415.

    PubMed  Google Scholar 

  52. Stevens, L., Goudriaan, A., Verdejo-Garcia, A., Dom, G., Roeyers, H., & Vanderplasschen, W. (2015). Impulsive choice predicts short-term relapse in substance-dependent individuals attending an in-patient detoxification programme. Psychological Medicine, 45(10), 2083–2093.

    CAS  PubMed  Google Scholar 

  53. Stewart, J. L., Flagan, T. M., May, A. C., Reske, M., Simmons, A. N., & Paulus, M. P. (2013). Young adults at risk for stimulant dependence show reward dysfunction during reinforcement-based decision making. Biological Psychiatry, 73(3), 235–241.

    PubMed  Google Scholar 

  54. Stewart, J. L., Butt, M., May, A. C., Tapert, S. F., & Paulus, M. P. (2017). Insular and cingulate attenuation during decision making is associated with future transition to stimulant use disorder. Addiction, 112(9), 1567–1577.

    PubMed  PubMed Central  Google Scholar 

  55. Tavakolian, E., & Abolghasemi, A. (2016). Effects of cognitive restructuring training on neurocognitive functions in opioid addicts. Archives of Psychiatry and Psychotherapy, 18(1), 14–21.

    Google Scholar 

  56. Thompson, T., Oram, C., Correll, C. U., Tsermentseli, S., & Stubbs, B. (2017). Analgesic effects of alcohol: A systematic review and meta-analysis of controlled experimental studies in healthy participants. The Journal of Pain, 18(5), 499–510.

    CAS  PubMed  Google Scholar 

  57. Tiffany, S. T., Friedman, L., Greenfield, S. F., Hasin, D. S., & Jackson, R. (2012). Beyond drug use: A systematic consideration of other outcomes in evaluations of treatments for substance use disorders. Addiction, 107(4), 709–718.

    PubMed  Google Scholar 

  58. Valls-Serrano, C., Caracuel, A., & Verdejo-Garcia, A. (2016). Goal management training and mindfulness meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment. Drug and Alcohol Dependence, 165, 9–14.

    PubMed  Google Scholar 

  59. van de Ven, R. M., Murre, J. M., Veltman, D. J., & Schmand, B. A. (2016). Computer-based cognitive training for executive functions after stroke: A systematic review. Frontiers in Human Neuroscience, 10.

  60. van den Bos, R., Homberg, J., & de Visser, L. (2013). A critical review of sex differences in decision-making tasks: Focus on the Iowa gambling task. Behavioural Brain Research, 238, 95–108.

    PubMed  Google Scholar 

  61. Verdejo-Garcia, A. (2016). Cognitive training for substance use disorders: Neuroscientific mechanisms. Neuroscience and Biobehavioral Reviews, 68, 270–281.

    PubMed  Google Scholar 

  62. Verdejo-García, A., & Bechara, A. (2009). A somatic marker theory of addiction. Neuropharmacology, 56, 48–62.

    PubMed  Google Scholar 

  63. Verdejo-Garcia, A., Albein-Urios, N., Martinez-Gonzalez, J. M., Civit, E., De la Torre, R., & Lozano, O. (2014). Decision-making impairment predicts 3-month hair-indexed cocaine relapse. Psychopharmacology, 231(21), 4179–4187.

    CAS  PubMed  Google Scholar 

  64. Verdejo-García, A., Chong, T. T.-J., Stout, J. C., Yücel, M., & London, E. D. (2018). Stages of dysfunctional decision-making in addiction. Pharmacology Biochemistry and Behavior, 164, 99–105.

    Google Scholar 

  65. von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: A review. Psychological Research, 78(6), 803–820.

    Google Scholar 

  66. Weidberg, S., Landes, R. D., García-Rodríguez, O., Yoon, J. H., & Secades-Villa, R. (2015). Interaction effect of contingency management and sex on delay-discounting changes among treatment-seeking smokers. Experimental and Clinical Psychopharmacology, 23(5), 361–368.

    PubMed  Google Scholar 

  67. Wesley, M. J., & Bickel, W. K. (2014). Remember the future II: Meta-analyses and functional overlap of working memory and delay discounting. Biological Psychiatry, 75(6), 435–448.

    PubMed  Google Scholar 

  68. World Health Organisation (2016). ICD-11 Beta Draft: International Classification of Diseases. https://icd.who.int/dev11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f1448597234.

  69. Yao, Y.-W., Chen, P.-R., Chiang-shan, R. L., Hare, T. A., Li, S., Zhang, J.-T., et al. (2017). Combined reality therapy and mindfulness meditation decrease intertemporal decisional impulsivity in young adults with internet gaming disorder. Computers in Human Behavior, 68, 210–216.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Verdejo-García.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verdejo-García, A., Alcázar-Córcoles, M.A. & Albein-Urios, N. Neuropsychological Interventions for Decision-Making in Addiction: a Systematic Review. Neuropsychol Rev 29, 79–92 (2019). https://doi.org/10.1007/s11065-018-9384-6

Download citation

Keywords

  • Addiction
  • Decision-making
  • Interventions
  • Neuropsychological