Abstract
Turner syndrome (TS) is a genetic disorder, affecting 1/2500 to 1/3000 live female births, induced by partial or total deletion of one X chromosome. The neurocognitive profile of girls with TS is characterized by a normal Verbal IQ and weaknesses in visual-spatial, mathematics, and social cognitive domains. Executive functions (EFs) impairments have also been reported in these young patients. However, methodological differences across studies do not allow determination of which EFs are impaired and what is the magnitude of these impairments. The aim of this review was to clarify the EF profile of children and adolescents with TS. Sixteen samples, from thirteen studies, were included in the current meta-analysis. EFs measures used in these studies were classified into working memory, inhibitory control, cognitive flexibility, or higher-order EFs tasks in accordance with Diamond’s model, Annual Review of Psychology, 64, 135–168 (2013). Results confirmed that girls with TS had significant executive impairments with effect sizes varying from small (inhibitory control) to medium (cognitive flexibility) and large (working memory, higher-order EFs). Analyses by task revealed that cognitive inhibition may be more impaired than the other inhibitory control abilities. Heterogeneity across cognitive flexibility measures was also highlighted. Between-sample heterogeneity was observed for three tasks and the impact of participants’ characteristics on EFs was discussed. This meta-analysis confirms the necessity to assess, in patients living with TS, each EF by combining both visual and verbal tasks. Results also underline that, when studying girls with TS’ executive profile, it is important to explore the impact of moderator variables, such as IQ, parental socio-economic status, TS karyotype, psychiatric comorbidities, and hormonal treatment status.
Similar content being viewed by others
References
Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20(1), 385–406. https://doi.org/10.1207/s15326942dn2001_5.
Ardila, A., Pineda, D., & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15(1), 31–36. https://doi.org/10.1016/S0887-6177(98)00159-0.
Ardila, A., Rosselli, M., Matute, E., & Guajardo, S. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropsychology, 28(1), 539–560. https://doi.org/10.1207/s15326942dn2801_5.
Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154–174. https://doi.org/10.20982/tqmp.12.3.p154.
Austin, G., Groppe, K., & Elsner, B. (2014). The reciprocal relationship between executive function and theory of mind in middle childhood: A 1-year longitudinal perspective. Frontiers in Psychology, 5, 655. https://doi.org/10.3389/fpsyg.2014.00655.
Baker, J. M., & Reiss, A. L. (2016). A meta-analysis of math performance in turner syndrome. Developmental Medicine and Child Neurology, 58(2), 123–130. https://doi.org/10.1111/dmcn.12961.
Bender, B. G., Linden, M. G., & Robinson, A. (1989). Verbal and spatial processing efficiency in 32 children with sex chromosome abnormalities. Pediatric Research, 25(6), 577–579. https://doi.org/10.1203/00006450-198906000-00004.
Bender, B. G., Linden, M. G., & Robinson, A. (1993). Neuropsychological impairment in 42 adolescents with sex chromosome abnormalities. American Journal of Medical Genetics (Neuropsychiatric Genetics), 48(3), 169–173. https://doi.org/10.1002/ajmg.1320480312.
Berg, E. A. (1948). A simple objective test for measuring flexibility in thinking. Journal of General Psychology, 39(1), 15–22. https://doi.org/10.1080/00221309.1948.9918159.
Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 1641–1660. https://doi.org/10.1111/j.1467-8624.2010.01499.x.
Bishop, D. V. M., Canning, E., Elgar, K., Morris, E., Jacobs, P. A., & Skuse, D. H. (2000). Distinctive patterns of memory function in subgroups of females with turner syndrome: Evidence for imprinted loci on the X-chromosome affecting neurodevelopment. Neuropsychologia, 38(5), 712–721. https://doi.org/10.1016/S0028-3932(99)00118-9.
Bondy, C. A. (2007). Care of girls and women with turner syndrome: A guideline of the turner syndrome study group. Journal of Clinical Endocrinology & Metabolism, 92(1), 10–25. https://doi.org/10.1210/jc.2006-1374.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: Wiley.
Borenstein, M., Higgins, J. P. T., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5–18. https://doi.org/10.1002/jrsm.1230.
Brankaer, C., Ghesquière, P., De Wel, A., Swillen, A., & De Smedt, B. (2016). Numerical magnitude processing impairments in genetic syndromes: A cross-syndrome comparison of turner and 22q11.2 deletion syndromes. Developmental Science. https://doi.org/10.1111/desc.12458.
Bray, S., Dunkin, B., Hong, D. S., & Reiss, A. L. (2011). Reduced functional connectivity during working memory in turner syndrome. Cerebral Cortex, 21(11), 2471–2481. https://doi.org/10.1093/cercor/bhr017.
Bray, S., Hoeft, F., Hong, D. S., & Reiss, A. L. (2013). Aberrant functional network recruitment of posterior parietal cortex in turner syndrome. Human Brain Mapping, 34(12), 3117–3128. https://doi.org/10.1002/hbm.22131.
Buchanan, L., Pavlovic, J., & Rovet, J. (1998). A reexamination of the visuospatial deficit in turner syndrome: Contributions of working memory. Developmental Neuropsychology, 14(2–3), 341–367. https://doi.org/10.1080/87565649809540715.
Burgess, P. W. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Theory and methodology of frontal and executive function (pp. 81–116). Hove: Psychology Press.
Carlson, S. M., Moses, L. J., & Breton, C. (2002). How specific is the relation between executive function and theory of mind? Contributions of inhibitory control and working memory. Infant and Child Development, 11(2), 73–92. https://doi.org/10.1002/icd.298.
Cheung, M. W. L. (2015a). metaSEM: An R package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5, 1521. https://doi.org/10.3389/fpsyg.2014.01521.
Cheung, M. W. L. (2015b). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: Wiley.
Cicerone, K. D., Dahlberg, C., Kalmar, K., Langenbahn, D. M., Malec, J. F., Bergquist, T. F., Felicetti, T., Giacino, J. T., Harley, J. P., Harrington, D. E., Herzog, J., Kneipp, S., Laatsch, L., & Morse, P. A. (2000). Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Archives of Physical Medicine and Rehabilitation, 81(12), 1596–1615. https://doi.org/10.1053/apmr.2000.19240.
Cochran, W. G. (1954). Some methods for strengthening the common χ2 tests. Biometrics, 10(4), 417–451. https://doi.org/10.2307/3001616.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155.
Collette, F., Hogge, M., Salmon, E., & Van der Linden, M. (2006). Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience, 139(1), 209–221. https://doi.org/10.1016/j.neuroscience.2005.05.035.
R Core Team. (2016). R: A language and environment for statistical computing. Retrieved from https://www.R-project.org/
Crider, A., & Pillai, A. (2016). Estrogen signaling as a therapeutic target in neurodevelopmental disorders. Journal of Pharmacology and Experimental Therapeutics. Advance online publication, 360(1), 48–58. https://doi.org/10.1124/jpet.116.237412.
De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 103(2), 186–201. https://doi.org/10.1016/j.jecp.2009.01.004.
Del Re, A. C. (2013). Compute.es: Compute effect sizes. Retrieved from http://cran.r-project.org/web/packages/compute.es
Del Re, A. C., & Hoyt, W. T. (2014). MAd: Meta-analysis with mean differences. Retrieved from http://cran.r-project.org/web/packages/MAd
Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331–343. https://doi.org/10.1017/S1355617709090481.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750.
Ergür, A. T., Öcal, G., Berberoglu, M., Tekin, M., Kiliç, B. G., Aycan, Z., Kutlu, A., Adiyaman, P., Sıklar, Z., Akar, N., Sahin, A., & Akçayöz, D. (2008). Paternal X could relate to arithmetic function; study of cognitive function and parental origin of X chromosome in turner syndrome. Pediatrics International, 50(2), 172–174. https://doi.org/10.1111/j.1442-200X.2008.02540.x.
Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31(1), 17–28. https://doi.org/10.1016/0028-3932(93)90077-D.
Floyd, R. G., Bergeron, R., Hamilton, G., & Parra, G. R. (2010). How do executive functions fit with the Cattell-horn-Carroll model? Some evidence from a joint factor analysis of the delis-Kaplan executive function system and the woodcock-Johnson III tests of cognitive abilities. Psychology in the Schools, 47(7), 721–738. https://doi.org/10.1002/pits.
Gates, N. J., & March, E. G. (2016). A neuropsychologist’s guide to undertaking a systematic review for publication: Making the most of PRISMA guidelines. Neuropsychology Review, 26(2), 109–120. https://doi.org/10.1007/s11065-016-9318-0.
Gathercole, S. E., Pickering, S. J., Knight, C., & Stegmann, Z. (2004). Working memory skills and educational attainment: Evidence from national curriculum assessments at 7 and 14 years of age. Applied Cognitive Psychology, 18(1), 1–16. https://doi.org/10.1002/acp.934.
Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2002). Profiles of everyday executive function in acquired and developmental disorders. Child Neuropsychology, 8(2), 121–137. https://doi.org/10.1076/chin.8.2.121.8727.
Goldstein, F. C., & Green, R. C. (1995). Assessment of problem solving and executive functions. In R. L. Mapou & J. Spector (Eds.), Clinical neuropsychological assessment (pp. 49–81). New-York: Springer US. https://doi.org/10.1007/978-1-4757-9709-1_3.
Grant, D. A., & Berg, E. A. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a weigl-type card-sorting problem. Journal of Experimental Psychology, 38(4), 404–411. https://doi.org/10.1037/h0059831.
Green, T., Chromik, L. C., Mazaika, P. K., Fierro, K., Raman, M. M., Lazzeroni, L. C., Hong, D. S., & Reiss, A. L. (2014). Aberrant parietal cortex developmental trajectories in girls with turner syndrome and related visual-spatial cognitive development: A preliminary study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(6), 531–540. https://doi.org/10.1002/ajmg.b.32256.
Green, T., Shrestha, S. B., Chromik, L. C., Rutledge, K., Pennington, B. F., Hong, D. S., & Reiss, A. L. (2015). Elucidating X chromosome influences on attention deficit hyperactivity disorder and executive function. Journal of Psychiatric Research, 68, 217–225. https://doi.org/10.1016/j.jpsychires.2015.06.021.
Greenberg, L. M., & Waldman, I. D. (1993). Developmental normative data on the test of variables of attention (T.O.V.A.). Journal of Child Psychology and Psychiatry, 34(6), 1019-1030.
Haberecht, M. F., Menon, V., Warsofsky, I. S., White, C. D., Dyer-Friedman, J., Glover, G. H., Neely, E. K., & Reiss, A. L. (2001). Functional neuroanatomy of visuo-spatial working memory in turner syndrome. Human Brain Mapping, 14(2), 96–107.
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Science, 13(2), 65–73. https://doi.org/10.1016/j.tics.2008.11.003.
Han, G., Helm, J., Iucha, C., Zahn-Waxler, C., Hastings, P. D., & Klimes-Dougan, B. (2016). Are executive functioning deficits concurrently and predictively associated with depressive and anxiety symptoms in adolescents? Journal of Clinical Child & Adolescent Psychology, 45(1), 44–58. https://doi.org/10.1080/15374416.2015.1041592.
Hedges, L. V. (1981). Theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.2307/1164588.
Higgins, J. P. T., & Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Retrieved from: http://handbook.cochrane.org
Hong, D., Kent, J. S., & Kesler, S. (2009). Cognitive profile of turner syndrome. Developmental Disabilities Research Reviews, 15(4), 270–278. https://doi.org/10.1002/ddrr.79.
Hong, D. S., Dunkin, B., & Reiss, A. L. (2011). Psychosocial functioning and social cognitive processing in girls with turner syndrome. Journal of Developmental & Behavioral Pediatrics, 32(7), 512–520. https://doi.org/10.1097/DBP.0b013e3182255301.
Hong, D. S., Bray, S., Haas, B. W., Hoeft, F., & Reiss, A. L. (2014). Aberrant neurocognitive processing of fear in young girls with turner syndrome. Social Cognitive and Affective Neuroscience, 9(3), 255–264. https://doi.org/10.1093/scan/nss133.
Kesler, S. R., Haberecht, M. F., Menon, V., Warsofsky, I. S., Dyer-Friedman, J., Neely, E. K., & Reiss, A. L. (2004). Functional neuroanatomy of spatial orientation processing in turner syndrome. Cerebral Cortex, 14(2), 174–180. https://doi.org/10.1093/cercor/bhg116.
Kesler, S. R., Menon, V., & Reiss, A. L. (2006). Neurofunctional differences associated with arithmetic processing in turner syndrome. Cerebral Cortex, 16(6), 849–856. https://doi.org/10.1093/cercor/bhj028.
Kiliç, B. G., Ergür, A. T., & Öcal, G. (2005). Depression, levels of anxiety and self-concept in girls with Turner's syndrome. Journal of Pediatric Endocrinology & Metabolism, 18(11), 1111–1117. https://doi.org/10.1515/JPEM.2005.18.11.1111.
Kirk, J. W., Mazzocco, M. M. M., & Kover, S. T. (2005). Assessing executive dysfunction in girls with fragile X or turner syndrome using the contingency naming test (CNT). Developmental Neuropsychology, 28(3), 755–777. https://doi.org/10.1207/s15326942dn2803_2.
Kuntsi, J., Skuse, D., Elgar, K., Morris, E., & Turner, C. (2000). Ring-X chromosomes: Their cognitive and behavioural phenotype. Annals of Human Genetics, 64(4), 295–305. https://doi.org/10.1017/S0003480000008174.
Lahood, B. J., & Bacon, G. E. (1985). Cognitive abilities of adolescent Turner’s syndrome patients. Journal of Adolescent Health Care, 6(5), 358–364. https://doi.org/10.1016/S0197-0070(85)80003-6.
Larizza, D., Maraschio; P., Bardoni, B., Calcaterra, V., Manfredi, P., & Gemma, A. (2002). Two sisters with 45,X karyotype: Influence of genomic imprinting on phenotype and cognitive profile. European Journal of Pediatrics, 161, 224–225. https://doi.org/10.1007/s00431-001-0913-5, Two sisters with 45,X karyotype: influence of genomic imprinting on phenotype and cognitive profile, 4.
Lee, K., Bull, R., & Ho, R. M. H. (2013). Developmental changes in executive functioning. Child Development, 84(6), 1933–1953. https://doi.org/10.1111/cdev.12096.
Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 59–80. https://doi.org/10.1348/026151003321164627.
Lepage, J.-F., Dunkin, B., Hong, D. S., & Reiss, A. L. (2011). Contribution of executive functions to visuospatial difficulties in prepubertal girls with turner syndrome. Developmental Neuropsychology, 36(8), 988–1002. https://doi.org/10.1080/87565641.2011.584356.
Lepage, J.-F., Hong, D. S., Hallmayer, J., & Reiss, A. L. (2012). Genomic imprinting effects on cognitive and social abilities in prepubertal girls with turner syndrome. Journal of Clinical Endocrinology & Metabolism, 97(3), E460–E464. https://doi.org/10.1210/jc.2011-2916.
Lepage, J.-F., Mazaika, P. K., Hong, D. S., Raman, M., & Reiss, A. L. (2013a). Cortical brain morphology in young, estrogen-naïve, and adolescent, estrogen-treated girls with turner syndrome. Cerebral Cortex, 23(9), 2159–2168. https://doi.org/10.1093/cercor/bhs195.
Lepage, J.-F., Dunkin, B., Hong, D. S., & Reiss, A. L. (2013b). Impact of cognitive profile on social functioning in prepubescent females with turner syndrome. Child Neuropsychology, 19(2), 161–172. https://doi.org/10.1080/09297049.2011.647900.
Lepage, J.-F., Hong, D. S., Mazaika, P. K., Raman, M., Sheau, K., Marzelli, M. J., et al. (2013c). Genomic imprinting effects of the X-chromosome on brain morphology. Journal of Neuroscience, 33(19), 8567–8574. https://doi.org/10.1523/JNEUROSCI.5810-12.2013.
Lesniak-Karpiak, K., Mazzocco, M. M. M., & Ross, J. L. (2003). Behavioral assessment of social anxiety in females with turner or fragile X syndrome. Journal of Autism and Developmental Disorders, 33(1), 55–67. https://doi.org/10.1023/A:1022230504787.
Loesch, D. Z., Minh Bui, Q., Kelso, W., Huggins, R. M., Slater, H., Warne, G., et al. (2005). Effects of Turner’s syndrome and X-linked imprinting on cognitive status: Analysis based on pedigree data. Brain and Development, 27(7), 494–503. https://doi.org/10.1016/j.braindev.2004.12.009.
Mazzocco, M. M. M. (1998). A process approach to describing mathematics difficulties in girls with turner syndrome. Pediatrics, 102(3), 492–496.
Mazzocco, M. M. M. (2006). The cognitive phenotype of turner syndrome: Specific learning disabilities. International Congress Series, 1298, 83–92. https://doi.org/10.1016/j.ics.2006.06.016.
Mazzocco, M. M. M., & Hanich, L. B. (2010). Math achievement; numerical processing, and executive functions in girls with turner syndrome: Do girls with turner syndrome have math learning disability? Learning and Individual Differences, 20(2), 70–81. https://doi.org/10.1016/j.lindif.2009.10.011.
McCauley, E., Kay, T., Ito, J., & Treder, R. (1987). The turner syndrome: Cognitive deficits, affective discrimination, and behavior problems. Child Development, 58(2), 464–473. https://doi.org/10.2307/1130523.
McCauley, E., Ross, J. L., Kushner, H., & Cutler Jr., G. (1995). Self-esteem and behavior in girls with turner syndrome. Developmental and Behavioral Pediatrics, 16(2), 82–88.
McCauley, E., Feuillan, P., Kushner, H., & Ross, J. L. (2001). Psychosocial development in adolescents with turner syndrome. Developmental and Behavioral Pediatrics, 22(6), 360–365.
McGlone, J. (1985). Can spatial deficits in Turner’s syndrome be explained by focal CNS dysfunction or atypical speech lateralization? Journal of Clinical and Experimental Neuropsychology, 7(4), 375–394. https://doi.org/10.1080/01688638508401271.
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10. https://doi.org/10.1016/j.intell.2008.08.004.
Messer, S. B. (1976). Reflection-impulsivity: A review. Psychological Bulletin, 83(6), 1026–1052. https://doi.org/10.1037/0033-2909.83.6.1026.
Messina, M. F., Zirilli, G., Civa, R., Rulli, I., Salzano, G., Aversa, T., & Valensize, M. (2007). Neurocognitive profile in Turner’s syndrome is not affected by growth impairment. Journal of Pediatric Endocrinology & Metabolism, 20(6), 677–684. https://doi.org/10.1515/JPEM.2007.20.6.677.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & the PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005.
Murphy, M. M., & Mazzocco, M. M. M. (2008). Mathematics learning disabilities in girls with fragile X or turner syndrome during late elementary school. Journal of Learning Disabilities, 41(1), 29–46. https://doi.org/10.1177/0022219407311038.
Murphy, M. M., Mazzocco, M. M. M., Gerner, G., & Henry, A. E. (2006). Mathematics learning disability in girls with turner syndrome or fragile X syndrome. Brain and Cognition, 61(2), 195–210. https://doi.org/10.1016/j.bandc.2005.12.014.
Paivio, A. (1971). Imagery and verbal processes. New-York: Holt, Rinehart & Winston.
Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal and temporal-lobe lesions in man. Neuropsychologia, 20(3), 249–262. https://doi.org/10.1016/0028-3932(82)90100-2.
Quintero, A. I., Beaton, E. A., Harvey, D. J., Ross, J. L., & Simon, T. J. (2014). Common and specific impairments in attention functioning in girls with chromosome 22q11.2 deletion, fragile X or turner syndromes. Journal of Neurodevelopmental Disorders, 6(5), 1–15. https://doi.org/10.1186/1866-1955-6-5.
Rae, C., Joy, P., Harasty, J., Kemp, A., Kuan, S., Christodoulou, J., Cowell, C. T., & Coltheart, M. (2004). Enlarged temporal lobes in turner syndrome: An X-chromosome effect? Cerebral Cortex, 14(2), 156–164. https://doi.org/10.1093/cercor/bhg114.
Reiss, A. L., Mazzocco, M. M. M., Greenlaw, R., Freund, L. S., & Ross, J. L. (1995). Neurodevelopmental effects of X monosomy: A volumetric imaging study. Annals of Neurology, 38(5), 731–738. https://doi.org/10.1002/ana.410380507.
Rhodes, M. G. (2004). Age-related differences in performance on the Wisconsin card sorting test: A meta-analytic review. Psychology and Aging, 19(3), 482–494. https://doi.org/10.1037/0882-7974.19.3.482.
Romans, S. M., Roeltgen, D. P., Kushner, H., & Ross, J. L. (1997). Executive function in girls with Turner’s syndrome. Developmental Neuropsychology, 13(1), 23–40. https://doi.org/10.1080/87565649709540666.
Romans, S. M., Stefanatos, G., Roeltgen, D. P., Kushner, H., & Ross, J. L. (1998). Transition to young adulthood in Ullrich-turner syndrome: Neurodevelopmental changes. American Journal of Medical Genetics, 79(2), 140–147. https://doi.org/10.1002/(SICI)1096-8628(19980901)79:2<140::AID-AJMG10>3.0.CO;2-J.
Ross, J. L., Stefanatos, G., Roeltgen, D., Kushner, H., & Cutler Jr., G. B. (1995). Ullrich-turner syndrome: Neurodevelopmental changes from childhood through adolescence. American Journal of Medical Genetics, 58(1), 74–82. https://doi.org/10.1002/ajmg.1320580115.
Ross, J. L., McCauley, E., Roeltgen, D., Long, L., Kushner, H., Feuillan, P., & Cutler Jr., G. B. (1996). Self-concept and behavior in adolescent girls with turner syndrome: Potential estrogen effects. Journal of Clinical Endocrinology and Metabolism, 81(3), 926–931. https://doi.org/10.1210/jcem.81.3.8772552.
Ross, J. L., Kushner, H., & Zinn, A. R. (1997a). Discriminant analysis of the Ullrich-turner syndrome neurocognitive profile. American Journal of Medical Genetics, 72(3), 275–280. https://doi.org/10.1002/(SICI)1096-8628(19971031)72:3<275::AID-AJMG4>3.0.CO;2-Q.
Ross, J. L., Feuillan, P., Kushner, H., Roeltgen, D., & Cutler Jr., G. B. (1997b). Absence of growth hormone effects on cognitive function in girls with turner syndrome. Journal of Clinical Endocrinology and Metabolism, 82(6), 1814–1817. https://doi.org/10.1210/jcem.82.6.4003.
Ross, J. L., Roeltgen, D., Feuillan, P., Kushner, H., & Cutler Jr., G. B. (1998). Effects of estrogen on nonverbal processing speed and motor function in girls with Turner’s syndrome. Journal of Clinical Endocrinology and Metabolism, 83(9), 3198–3204. https://doi.org/10.1210/jcem.83.9.5087.
Ross, J. L., Roeltgen, D., Feuillan, P., Kushner, H., & Cutler Jr., G. B. (2000). Use of estrogen in young girls with turner syndrome: Effect on memory. Neurology, 54(1), 164–170. https://doi.org/10.1212/WNL.54.1.164.
Ross, J. L., Roeltgen, D., Stefanatos, G. A., Feuillan, P., Kushner, H., Bondy, C., & Cutler Jr., G. B. (2003). Androgen-responsive aspects of cognition in girls with turner syndrome. Journal of Clinical Endocrinology and Metabolism, 88(1), 292–296. https://doi.org/10.1210/jc.2002-021000.
Ross, J. L., Mazzocco, M. M. M., Kushner, H., Kowal, K., Cutler Jr., G. B., & Roeltgen, D. (2009). Effects of treatment with oxandrolone for 4 years on the frequency of severe arithmetic learning disability in girls with turner syndrome. Journal of Pediatrics, 155(5), 714–720. https://doi.org/10.1016/j.jpeds.2009.05.031.
Rovet, J. F. (1993). The psychoeducational characteristics of children with turner syndrome. Journal of Learning Disabilities, 26(5), 333–341. https://doi.org/10.1177/002221949302600506.
Rovet, J., & Holland, J. (1993). Psychological aspects of the Canadian randomized controlled trial of human growth hormone and low-dose ethinyl oestradiol in children with turner syndrome. Hormone Research, 39(2), 60–64.
Rovet, J., Szekely, C., & Hockenberry, M.-N. (1994). Specific arithmetic calculation deficits in children with turner syndrome. Journal of Clinical and Experimental Neuropsychology, 16(6), 820–839. https://doi.org/10.1080/01688639408402696.
Roy, A., Roulin, J.-L., Charbonnier, V., Allain, P., Fasotti, L., Barbarot, S., et al. (2010). Executive dysfunction in children with neurofibromatosis type 1: A study of action planning. Journal of the International Neuropsychological Society, 16(06), 1056–1063. https://doi.org/10.1017/S135561771000086X.
Russell, H. F., Wallis, D., Mazzocco, M. M. M., Moshang, T., Zackai, E., Zinn, A. R.,. .. Muenke, M. (2006). Increased prevalence of ADHD in turner syndrome with no evidence of imprinting effects. Journal of Pediatric Psychology, 31(9), 945–955. https://doi.org/10.1093/jpepsy/jsj106.
Saad, K., Al-Atram, A. A., Abdel Baseer, K. A., Ali, A. M., & El-Houfey, A. A. (2015). Assessment of quality of life, anxiety and depression in children with turner syndrome: A case-control study. American Journal of Neuroscience, 6(1), 8–12. https://doi.org/10.3844/amjnsp.2015.8.12.
Sarsour, K., Sheridan, M., Jutte, D., Nuru-Jeter, A., Hinshaw, S., & Boyce, W. T. (2011). Family socioeconomic status and child executive functions: The roles of language, home environment, and single parenthood. Journal of the International Neuropsychological Society, 17(01), 120–132. https://doi.org/10.1017/S1355617710001335.
Scammacca, N., Roberts, G., & Stuebing, K. K. (2014). Meta-analysis with complex research designs: Dealing with dependence from multiple measures and multiple group comparisons. Review of Educational Research, 84(3), 328–364. https://doi.org/10.3102/0034654313500826.
Skuse, D. H., James, R. S., Bishop, D. V. M., Coppin, B., Dalton, P., Aamodt-Leeper, G.,. .. Jacobs, P. A. (1997). Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature, 387, 705–708. https://doi.org/10.1038/42706, 6634.
Sybert, V. P., & McCauley, E. (2004). Turner’s syndrome. The New England Journal of Medicine, 351(12), 1227–1238. https://doi.org/10.1056/NEJMra030360.
Tamm, L., Menon, V., & Reiss, A. L. (2003). Abnormal prefrontal cortex function during response inhibition in turner syndrome: Functional magnetic resonance imaging evidence. Biological Psychiatry, 53(2), 107–111. https://doi.org/10.1016/S0006-3223(02)01488-9.
Temple, C. M. (2002). Oral fluency and narrative production in children with Turner’s syndrome. Neuropsychologia, 40(8), 1419–1427. https://doi.org/10.1016/S0028-3932(01)00201-9.
Temple, C. M., & Carney, R. A. (1995). Patterns of spatial functioning in Turner’s syndrome. Cortex, 31(1), 109–118. https://doi.org/10.1016/S0010-9452(13)80109-8.
Temple, C. M., Carney, R. A., & Mullarkey, S. (1996). Frontal lobe function and executive skills in children with Turner’s syndrome. Developmental Neuropsychology, 12(3), 343–363. https://doi.org/10.1080/87565649609540657.
Ursache, A., & Raver, C. C. (2014). Trait and state anxiety: Relations to executive functioning in an at-risk sample. Cognition & Emotion, 28(5), 845–855. https://doi.org/10.1080/02699931.2013.855173.
Viechtbauer, W. (2010). Conductiong meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.
Waber, D. P. (1979). Neuropsychological aspects of Turner’s syndrome. Developmental Medicine & Child Neurology, 21, 58–70. https://doi.org/10.1111/j.1469-8749.1979.tb01581.x.
Wagner, S., Müller, C., Helmreich, I., Huss, M., & Tadić, A. (2015). A meta-analysis of cognitive functions in children and adolescents with major depressive disorder. European Child & Adolescent Psychiatry, 24(1), 5–19. https://doi.org/10.1007/s00787-014-0559-2.
Wechsler, D. (2014). Wechsler intelligence scale for children-fifth edition. San Antonio, TX: NCS Pearson.
Welsh, M. C., Satterlee-Cartmell, T., & Stine, M. (1999). Towers of Hanoi and London: Contribution of working memory and inhibition to performance. Brain and Cognition, 41(2), 231–242. https://doi.org/10.1006/brcg.1999.1123.
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention/deficit hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–1346. https://doi.org/10.1016/j.biopsych.2005.02.006.
Yamagata, B., Barnea-Goraly, N., Marzelli, M. J., Park, Y., Hong, D. S., Mimura, M., & Reiss, A. L. (2012). White matter aberrations in prepubertal estrogen-naive girls with monosomic turner syndrome. Cerebral Cortex, 22(12), 2761–2768. https://doi.org/10.1093/cercor/bhr355.
Zhao, Q., Zhang, Z., Xie, S., Pan, H., Zhang, J., Gong, G., & Cui, Z. (2013). Cognitive impairment and gray/white matter volume abnormalities in pediatric patients with Turner syndrome presenting with various karyotypes. Journal of Pediatric Endocrinology & Metabolism, 26(11–12), 1111–1121. https://doi.org/10.1515/jpem-2013-0145.
Zook, N. A., Davalos, D. B., DeLosh, E. L., & Davis, H. P. (2004). Working memory, inhibition, and fluid intelligence as predictors of performance on tower of Hanoi and London tasks. Brain and Cognition, 56(3), 286–292. https://doi.org/10.1016/j.bandc.2004.07.003.
Acknowledgments
This work was supported by grants from the research program EnJeu[x] Enfance & Jeunesse financed by the region Pays de la Loire, France. Authors would like to thank Alexandre Laurent for his assistance in statistical analyses.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Appendix
Appendix
Working Memory Task
Digit Span Subtest
Funnel Plot of the Digit Span Subtest
Leave-one-out method’s results:
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | −0.92 | [−1.10; −0.75] | −10.38 | 0.000 | 2.01 | 0.85 | 0.00 | 0.00 |
Romans et al. 1997 (10 to 12.5) | −0.94 | [−1.11; −0.76] | −10.51 | 0.000 | 1.41 | 0.92 | 0.00 | 0.00 |
Romans et al. 1997 (12.5 to 16.9) | −0.90 | [−1.08; −0.73] | −10.09 | 0.000 | 2.04 | 0.84 | 0.00 | 0.00 |
Romans et al. 1998 | −0.91 | [−1.09; −0.73] | −9.81 | 0.000 | 2.15 | 0.83 | 0.00 | 0.00 |
Ross et al. 1995 (younger) | −0.87 | [−1.05; −0.70] | −9.86 | 0.000 | 0.76 | 0.98 | 0.00 | 0.00 |
Ross et al. 1995 (older) | −0.92 | [−1.09; −0.75] | −10.52 | 0.000 | 2.06 | 0.84 | 0.00 | 0.00 |
Rovet et al. 1994 | −0.91 | [−1.09; −0.73] | −9.84 | 0.000 | 2.15 | 0.83 | 0.00 | 0.00 |
Inhibitory Control Tasks
Matching Familiar Figures Test
Funnel Plot of the Matching Familiar Figures Test (Correct Answers)
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | −0.39 | [−0.67; −0.11] | −2.74 | 0.006 | 7.96 | 0.093 | 0.05 | 49.76 |
Romans et al. 1997 (10 to 12.5) | −0.43 | [−0.66; −0.20] | −3.62 | 0.000 | 5.32 | 0.255 | 0.02 | 24.87 |
Romans et al. 1997 (12.5 to 16.9) | −0.33 | [−0.64; −0.01] | −2.05 | 0.040 | 9.86 | 0.043 | 0.08 | 59.43 |
Romans et al. 1998 | −0.25 | [−0.48; −0.01] | −2.03 | 0.042 | 5.45 | 0.244 | 0.02 | 26.62 |
Ross et al. 1995 (younger) | −0.29 | [−0.58; −0.01] | −1.92 | 0.055 | 8.70 | 0.069 | 0.06 | 54.03 |
Ross et al. 1995(older) | −0.33 | [−0.63; −0.02] | −2.11 | 0.035 | 9.85 | 0.043 | 0.07 | 59.41 |
Funnel Plot of the Matching Familiar Figures Test (Response Time Variable)
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | 0.15 | [−0.05; 0.34] | 1.44 | 0.150 | 5.85 | 0.321 | 0.01 | 14.58 |
Romans et al. 1997 (10 to 12.5) | 0.20 | [0.01; 0.38] | 2.08 | 0.038 | 3.29 | 0.656 | 0.00 | 0.00 |
Romans et al. 1997 (12.5 to 16.9) | 0.12 | [−0.08; 0.32] | 1.16 | 0.246 | 5.92 | 0.314 | 0.01 | 15.47 |
Romans et al. 1998 | 0.07 | [−0.12; 0.26] | 0.72 | 0.469 | 3.47 | 0.627 | 0.00 | 0.00 |
Ross et al. 1995 (younger) | 0.10 | [−0.09; 0.29] | 1.04 | 0.298 | 5.15 | 0.398 | 0.00 | 2.91 |
Ross et al. 1995 (older) | 0.14 | [−0.06; 0.34] | 1.37 | 0.169 | 5.97 | 0.309 | 0.01 | 16.27 |
Ross et al. 1998 | 0.16 | [−0.03; 0.35] | 1.67 | 0.095 | 5.35 | 0.375 | 0.00 | 6.51 |
Test of Variables of Attention
Funnel Plot of the Test of Variables of Attention (Commission Errors)
Leave-one-out method’s results:
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | −0.49 | [−0.69; −0.29] | −4.85 | 0.000 | 3.94 | 0.414 | 0.00 | 0.00 |
Romans et al. 1997 (10 to 12.5) | −0.42 | [−0.63; −0.22] | −4.15 | 0.000 | 3.87 | 0.424 | 0.00 | 0.00 |
Romans et al. 1997 (12.5 to 16.9) | −0.49 | [−0.70; −0.29] | −4.76 | 0.000 | 4.01 | 0.405 | 0.00 | 0.28 |
Romans et al. 1998 | −0.44 | [−0.66; −0.23] | −4.01 | 0.000 | 4.41 | 0.354 | 0.01 | 9.24 |
Ross et al. 1995 (younger) | −0.50 | [−0.71; −0.30] | −4.90 | 0.000 | 3.48 | 0.480 | 0.00 | 0.00 |
Ross et al. 1995 (older) | −0.41 | [−0.60; −0.21] | −4.09 | 0.000 | 2.28 | 0.684 | 0.00 | 0.00 |
Funnel Plot of the Test of Variables of Attention (Response Time Variable)
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | 0.31 | [0.02; 0.06] | 2.38 | 0.017 | 6.74 | 0.151 | 0.03 | 40.63 |
Romans et al. 1997 (10 to 12.5) | 0.32 | [0.06; 0.59] | 2.39 | 0.017 | 6.87 | 0.143 | 0.04 | 41.79 |
Romans et al. 1997 (12.5 to 16.9) | 0.31 | [0.05; 0.57] | 2.30 | 0.021 | 6.60 | 0.158 | 0.03 | 39.42 |
Romans et al. 1998 | 0.33 | [0.06; 0.60] | 2.41 | 0.016 | 6.89 | 0.142 | 0.04 | 41.97 |
Ross et al. 1995 (younger) | 0.42 | [0.22; 0.62] | 4.08 | 0.000 | 1.53 | 0.821 | 0.00 | 0.00 |
Ross et al. 1995 (older) | 0.27 | [0.06; 0.47] | 2.52 | 0.011 | 4.53 | 0.340 | 0.01 | 11.62 |
Cognitive Flexibility Tasks
Wisconsin Card Sorting Test
Funnel Plot of the Wisconsin Card Sorting Test
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | −0.21 | [−0.62; 0.20] | −1.00 | 0.314 | 7.94 | 0.047 | 0.11 | 62.22 |
Romans et al. 1997 (10 to 12.5) | −0.06 | [−0.37; 0.26] | −0.35 | 0.725 | 4.37 | 0.225 | 0.03 | 31.29 |
Romans et al. 1997 (12.5 to 16.9) | −0.30 | [−0.63; 0.03] | −1.76 | 0.079 | 4.48 | 0.214 | 0.04 | 33.00 |
Romans et al. 1998 | −0.09 | [−0.53; 0.34] | −0.43 | 0.670 | 6.88 | 0.076 | 0.11 | 56.38 |
Temple et al. 1996 | −0.22 | [−0.62; 0.18] | −1.07 | 0.283 | 7.69 | 0.053 | 0.10 | 60.98 |
Phonemic Verbal Fluency Task
Funnel Plot of the Phonemic Verbal Fluency Task
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Rae et al. 2004 | −0.81 | [−1.19; −0.42] | −4.10 | 0.000 | 14.4 | 0.025 | 0.15 | 58.49 |
Romans et al. 1997 (7 to 9.9) | −0.79 | [−1.19; −0.39] | −3.85 | 0.000 | 15.7 | 0.016 | 0.17 | 61.68 |
Romans et al. 1997 (10 to 12.5) | −0.78 | [−1.19; −0.37] | −3.73 | 0.000 | 16.3 | 0.012 | 0.18 | 63.10 |
Romans et al. 1997 (12.5 to 16.9) | −0.61 | [−1.06; −0.16] | −2.65 | 0.010 | 18.9 | 0.004 | 0.24 | 68.26 |
Romans et al. 1998 | −0.60 | [−1.08; −0.11] | −2.41 | 0.016 | 17.0 | 0.009 | 0.27 | 64.72 |
Ross et al. 2000 | −0.67 | [−1.16; −0.18] | −2.67 | 0.008 | 19.8 | 0.003 | 0.29 | 69.69 |
Temple et al. 1996 | −0.67 | [−1.14; −0.20] | −2.79 | 0.005 | 20.0 | 0.002 | 0.26 | 70.00 |
Temple 2002 | −0.58 | [−0.99; −0.16] | −2.70 | 0.007 | 15.8 | 0.015 | 0.18 | 61.99 |
Semantic Verbal Fluency Task
Funnel Plot of the Semantic Verbal Fluency Task
Leave-One-Out Method’s Results
Higher-Order Executive Function Tasks
Tower of Hanoi
Funnel Plot of the Tower of Hanoi (Score Variable)
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | −0.69 | [−0.97; −0.42] | −4.93 | 0.000 | 1.77 | 0.413 | 0.00 | 0.00 |
Romans et al. 1997 (10 to 12.5) | −0.72 | [−1.02; −0.43] | −4.88 | 0.000 | 1.32 | 0.517 | 0.00 | 0.00 |
Romans et al. 1997 (12.5 to 16.9) | −0.56 | [−0.87; −0.25] | −3.59 | 0.000 | 0.58 | 0.747 | 0.00 | 0.00 |
Romans et al. 1998 | −0.66 | [−1.02; −0.30] | −3.60 | 0.000 | 2.15 | 0.341 | 0.01 | 7.05 |
Funnel Plot of the Tower of Hanoi (Average Time Variable)
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Romans et al. 1997 (7 to 9.9) | −1.00 | [−1.29; −0.72] | −6.94 | 0.000 | 1.46 | 0.482 | 0.00 | 0.00 |
Romans et al. 1997 (10 to 12.5) | −0.99 | [−1.32; −0.65] | −5.80 | 0.000 | 2.36 | 0.307 | 0.01 | 15.29 |
Romans et al. 1997 (12.5 to 16.9) | −0.84 | [−1.16; −0.53] | −5.25 | 0.000 | 1.23 | 0.542 | 0.00 | 0.00 |
Romans et al. 1998 | −0.90 | [−1.33; −0.47] | −4.10 | 0.000 | 2.84 | 0.242 | 0.04 | 29.47 |
Rey-Osterrieth Complex Figure
Funnel Plot of the Rey-Osterrieth Complex Figure
Leave-One-Out Method’s Results
Estimate | 95% [C.I.] | Z | p-value | Q | p-value | Tau2 | I2 | |
---|---|---|---|---|---|---|---|---|
Reiss et al. 1995 | −0.98 | [−1.13; −0.83] | −12.57 | 0.000 | 4.56 | 0.601 | 0.00 | 0.00 |
Romans et al. 1997 (7 to 9.9) | −0.99 | [−1.14; −0.83] | −12.51 | 0.000 | 4.37 | 0.627 | 0.00 | 0.00 |
Romans et al. 1997 (10 to 12.5) | −0.99 | [−1.14; −0.83] | −12.46 | 0.000 | 4.41 | 0.621 | 0.00 | 0.00 |
Romans et al. 1997 (12.5 to 16.9) | −0.96 | [−1.12; −0.81] | −12.16 | 0.000 | 4.33 | 0.632 | 0.00 | 0.00 |
Romans et al. 1998 | −0.97 | [−1.13; −0.81] | −11.89 | 0.000 | 4.57 | 0.601 | 0.00 | 0.00 |
Ross et al. 1995 (younger) | −0.98 | [−1.14; −0.83] | −12.43 | 0.000 | 4.48 | 0.612 | 0.00 | 0.00 |
Ross et al. 1995 (older) | −0.94 | [−1.09; −0.78] | −12.08 | 0.000 | 0.74 | 0.993 | 0.00 | 0.00 |
Ross et al. 1997a | −1.01 | [−1.18; −0.83] | −11.36 | 0.000 | 4.17 | 0.653 | 0.00 | 0.00 |
Rights and permissions
About this article
Cite this article
Mauger, C., Lancelot, C., Roy, A. et al. Executive Functions in Children and Adolescents with Turner Syndrome: A Systematic Review and Meta-Analysis. Neuropsychol Rev 28, 188–215 (2018). https://doi.org/10.1007/s11065-018-9372-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11065-018-9372-x