A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples

  • Catherine E. Prado
  • Stephanie Watt
  • Simon F. Crowe
Review
  • 24 Downloads

Abstract

A thorough understanding of the cognitive effects of antidepressant medications is essential given their frequency of use. This meta-analysis was conducted to investigate whether antidepressants differentially affect the various domains of cognitive functioning for depressed and non-depressed participants. An electronic search of PsycInfo, Medline and Google Scholar was conducted for all journal articles published between January 1998 and January 2017. Thirty-three studies were included enabling calculation of Hedges’ g using a random effects model for the cognitive domains of divided attention, executive function, expressive language, immediate memory, perceptual motor skills, processing speed, recent memory, sustained attention, visuospatial-constructional skills and working memory. Results revealed that overall, antidepressants have a modest, positive effect on divided attention, executive function, immediate memory, processing speed, recent memory and sustained attention for depressed participants. Selective serotonin reuptake inhibitors (SSRI’s) were found to have the greatest positive effect on cognition for depressed participants, as compared to the other classes of antidepressants analysed. Antidepressants did not significantly affect cognitive function in non-depressed participants.

Keywords

Antidepressants cognition depression meta-analysis 

References

  1. Airaksinen, E., Larsson, M., Lundberg, I., & Forsell, Y. (2004). Cognitive functions in depressive disorders: evidence from a population-based study. Psychological Medicine, 34, 83–91.  https://doi.org/10.1017/S0033291703008559.PubMedCrossRefGoogle Scholar
  2. Amado-Boccara, I., Gougoulis, N., Littre, M. P., Galinowski, A., & Loo, H. (1995). Effects of antidepressants on cognitive functions: A review. Neuroscience & Biobehavioral Reviews, 19, 479–493.  https://doi.org/10.1016/0149-7634(94)00068-C.CrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington: American Psychiatric Publishing.CrossRefGoogle Scholar
  4. Anderson, I. M. (2000). Selective serotonin reuptake inhibitors versus tricyclic antidepressants: A meta-analysis of efficacy and tolerability. Journal of Affective Disorders, 58, 19–36.  https://doi.org/10.1016/S0165-0327(99)00092-0.PubMedCrossRefGoogle Scholar
  5. Anderson, I., Nutt, D., & Deakin, J. (2000). Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 1993 British Association for Psychopharmacology guidelines. Journal of Psychopharmacology, 14, 3–20.  https://doi.org/10.1177/026988110001400101.PubMedCrossRefGoogle Scholar
  6. Andrade, C., & Rao, N. S. K. (2010). How antidepressant drugs act: a primer on neuroplasticity as the eventual mediator of antidepressant efficacy. Indian Journal of Psychiatry, 52, 378–396.  https://doi.org/10.4103/0019-5545.74318.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Artigas, F. (2013). Serotonin receptors involved in antidepressant effects. Pharmacology & Therapeutics, 137, 119–131.  https://doi.org/10.1016/j.pharmthera.2012.09.006.CrossRefGoogle Scholar
  8. Ashare, R. L., & McKee, S. A. (2012). Effects of varenicline and bupropion on cognitive processes among nicotine-deprived smokers. Experimental and Clinical Psychopharmacology, 20, 63–70.  https://doi.org/10.1037/a0025594.PubMedCrossRefGoogle Scholar
  9. Austin, M.-P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression. The British Journal of Psychiatry, 178, 200–206.PubMedCrossRefGoogle Scholar
  10. Australian Bureau of Statistics (ABS) (2016). Patterns of Use of Mental Health Services and Prescription Medications, 2011. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/4329.0.00.003~2011~Main%20Features~Antidepressants~10008 (accessed 4 February 2017).
  11. Australian Institute of Health and Welfare (AIHW) (2016). Australia’s Health 2016. http://www.aihw.gov.au/australias-health/2016/ (accessed 4 February 2017).
  12. Banos, J. H., Novack, T. A., Brunner, R., Renfroe, S., Lin, H. Y., & Meythaler, J. (2010). Impact of early administration of sertraline on cognitive and behavioral recovery in the first year after moderate to severe traumatic brain injury. Journal of Head Trauma Rehabilitation, 25, 357–361.PubMedCrossRefGoogle Scholar
  13. Barch, D. M., Sheline, Y. I., Csernansky, J. G., & Snyder, A. Z. (2003). Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biological Psychiatry, 53, 376–384.  https://doi.org/10.1097/HTR.0b013e3181d6c715.PubMedCrossRefGoogle Scholar
  14. Baune, B. T., & Renger, L. (2014). Pharmacological and non-pharmacological interventions to improve cognitive dysfunction and functional ability in clinical depression-A systematic review. Psychiatry Research, 219, 25–50.  https://doi.org/10.1016/j.psychres.2014.05.013.PubMedCrossRefGoogle Scholar
  15. Bech, P., Cialdella, P., Haugh, M., Hours, A., Boissel, J., Birkett, M., & Tollefson, G. (2000). Meta-analysis of randomised controlled trials of fluoxetine v. placebo and tricyclic antidepressants in the short-term treatment of major depression. The British Journal of Psychiatry, 176, 421–428.PubMedCrossRefGoogle Scholar
  16. Bench, C., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907–922.  https://doi.org/10.1016/0028-3932(93)90147-R.PubMedCrossRefGoogle Scholar
  17. Benedict, R. H., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins Verbal Learning Test–Revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12, 43–55.CrossRefGoogle Scholar
  18. Benton, A. L., de Hamsher, K. S., & Sivan, A. B. (1994). Multilingual aphasia examination (3rd ed.). Lutz: Psychological Assessment Resources (PAR).Google Scholar
  19. Biringer, E., Rongve, A., & Lund, A. (2009). A review of modern antidepressants' effects on neurocognitive function. Current Psychiatry Reviews, 5, 164–174.CrossRefGoogle Scholar
  20. Boggio, P. S., Fregni, F., Bermpohl, F., Mansur, C. G., Rosa, M., Rumi, D. O., et al. (2005). Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's disease and concurrent depression. Movement Disorders, 20, 1178–1184.  https://doi.org/10.1002/mds.20508.PubMedCrossRefGoogle Scholar
  21. Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2009). Introduction to Meta-Analysis. West Sussex: Wiley.CrossRefGoogle Scholar
  22. Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-nalysis. Research Synthesis Methods, 1, 97–111.  https://doi.org/10.1002/jrsm.12.PubMedCrossRefGoogle Scholar
  23. Brooks, J. O., & Hoblyn, J. C. (2007). Neurocognitive costs and benefits of psychotropic medications in older adults. Journal of Geriatric Psychiatry and Neurology, 20, 199–214.  https://doi.org/10.1177/0891988707308803.PubMedCrossRefGoogle Scholar
  24. Buist-Bouwman, M., Ormel, J., De Graaf, R., De Jonge, P., Van Sonderen, E., Alonso, J., et al. (2008). Mediators of the association between depression and role functioning. Acta Psychiatrica Scandinavica, 118, 451–458.  https://doi.org/10.1111/j.1600-0447.2008.01285.x.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Buschke, H., & Fuld, P. A. (1974). Evaluation of storage, retention and retrieval in disordered memory and learning. Neurology, 11, 1019–1025.  https://doi.org/10.1212/WNL.24.11.1019.CrossRefGoogle Scholar
  26. Butters, M. A., Becker, J. T., Nebes, R. D., Zmuda, M. D., Mulsant, B. H., Pollock, B. G., & Reynolds III, C. F. (2000). Changes in cognitive functioning following treatment of late-life depression. American Journal of Psychiatry, 157, 1949–1954.  https://doi.org/10.1176/appi.ajp.157.12.1949.PubMedCrossRefGoogle Scholar
  27. Butters, M. A., Young, J. B., Lopez, O., Aizenstein, H. J., Mulsant, B. H., Reynolds III, C. F., et al. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues in Clinical Neuroscience, 10, 345–357.PubMedPubMedCentralGoogle Scholar
  28. Cameron, C., Fireman, B., Hutton, B., Clifford, T., Coyle, D., Wells, G., et al. (2015). Network meta-analysis incorporating randomized controlled trials and non-randomized comparative cohort studies for assessing the safety and effectiveness of medical treatments: challenges and opportunities. Systematic Reviews, 4, 147–155.  https://doi.org/10.1186/s13643-015-0133-0.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Channon, S. (1996). Executive dysfunction in depression: the Wisconsin card sorting test. Journal of Affective Disorders, 39, 107–114.  https://doi.org/10.1016/0165-0327(96)00027-4.PubMedCrossRefGoogle Scholar
  30. Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13, 181–197.PubMedCrossRefGoogle Scholar
  31. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  32. Conners, C. K. (2000). Conner’s Continuous Performance Test (CPT II) computer programs for Windows: Technical manual and software guide (Ver. 5). North Tonawanda: Multi-Health Systems, Inc..Google Scholar
  33. Connolly, K. R., & Thase, M. E. (2012). Emerging drugs for major depressive disorder. Expert Opinion on Emerging Drugs, 17, 105–126.PubMedCrossRefGoogle Scholar
  34. Crowe, S. (2010). Evidence of absence: A guide to cognitive assessment in Australia. Bowen Hills: Australian Academic Press.Google Scholar
  35. Culang, M. E., Sneed, J. R., Keilp, J. G., Rutherford, B. R., Pelton, G. H., Devanand, D., & Roose, S. P. (2009). Change in cognitive functioning following acute antidepressant treatment in late-life depression. The American Journal of Geriatric Psychiatry, 17, 881–888.  https://doi.org/10.1097/JGP.0b013e3181b4bf4a.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Culang-Reinlieb, M. E., Sneed, J. R., Keilp, J. G., & Roose, S. P. (2012). Change in cognitive functioning in depressed older adults following treatment with sertraline or nortriptyline. International Journal of Geriatric Psychiatry, 27, 777–784.  https://doi.org/10.1002/gps.2783.PubMedCrossRefGoogle Scholar
  37. Daffner, K. R., Gale, S. A., Barrett, A., Boeve, B. F., Chatterjee, A., Coslett, H. B., et al. (2015). Improving clinical cognitive testing Report of the AAN Behavioral Neurology Section Workgroup. Neurology, 85, 910–918.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Danion, J. (1993). Antidepressive agents and memory. L'Encephale, 19, 417–422.PubMedGoogle Scholar
  39. Deakin, J., Rahman, S., Nestor, P., Hodges, J., & Sahakian, B. (2004). Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology, 172, 400–408.  https://doi.org/10.1007/s00213-003-1686-5.PubMedCrossRefGoogle Scholar
  40. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California Verbal Learning Test-Second Edition (CVLT-II). San Antonio: Psychological Corporation.Google Scholar
  41. Desrosiers, J., Hebert, R., Bravo, G., & Dutil, E. (1995). The Purdue Pegboard Test: normative data for people aged 60 and over. Disability and Rehabilitation, 17, 217–224.  https://doi.org/10.3109/09638289509166638.PubMedCrossRefGoogle Scholar
  42. Devanand, D., Pelton, G. H., Marston, K., Camacho, Y., Roose, S. P., Stern, Y., & Sackeim, H. A. (2003). Sertraline treatment of elderly patients with depression and cognitive impairment. International Journal of Geriatric Psychiatry, 18, 123–130.  https://doi.org/10.1002/gps.802.PubMedCrossRefGoogle Scholar
  43. Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542.  https://doi.org/10.1001/archpsyc.64.5.532.PubMedCrossRefGoogle Scholar
  44. Doraiswamy, P., Krishnan, K., Oxman, T., Jenkyn, L. R., Coffey, D. J., Burt, T., & Clary, C. M. (2003). Does Antidepressant Therapy Improve Cognition in Elderly Depressed Patients? The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences, 58A, 1137–1144.  https://doi.org/10.1093/gerona/58.12.M1137.CrossRefGoogle Scholar
  45. Downes, J. J., Roberts, A. C., Sahakian, B. J., Evenden, J. L., Robbins, R. G., & Robbins, T. W. (1989). Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologia, 27, 1329–1343.  https://doi.org/10.1016/0028-3932(89)90128-0.PubMedCrossRefGoogle Scholar
  46. Effective Practice and Organisation of Care (EPOC). Suggested risk of bias criteria for EPOC reviews. EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health Services; 2015. Available at: http://epoc.cochrane.org/epoc-specific-resources-review-authors
  47. Elias, A., Laurencic, G., & Malone, D. (2006). Side effects of antidepressants: an overview. Cleveland Clinic Journal of Medicine, 73, 351–361.CrossRefGoogle Scholar
  48. Faber, T., Ravaud, P., Riveros, C., Perrodeau, E., & Dechartres, A. (2016). Meta-analyses including non-randomized studies of therapeutic interventions: a methodological review. BMC Medical Research Methodology, 16, 35–60.  https://doi.org/10.1186/s12874-016-0136-0.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fani, N., Kitayama, N., Ashraf, A., Reed, L., Afzal, N., Jawed, F., & Bremner, J. D. (2009). Neuropsychological functioning in patients with posttraumatic stress disorder following short-term paroxetine treatment. Psychopharmacology Bulletin, 42, 53–68.PubMedPubMedCentralGoogle Scholar
  50. Fann, J. R., Uomoto, J. M., & Katon, W. J. (2001). Cognitive improvement with treatment of depression following mild traumatic brain injury. Psychosomatics, 42, 48–54.  https://doi.org/10.1176/appi.psy.42.1.48.PubMedCrossRefGoogle Scholar
  51. Fava, M. (2003). Diagnosis and definition of treatment-resistant depression. Biological Psychiatry, 53, 649–659.  https://doi.org/10.1016/S0006-3223(03)00231-2.PubMedCrossRefGoogle Scholar
  52. Finkel, S. I., Richter, E. M., Clary, C. M., & Batzar, E. (1999). Comparative efficacy of sertraline vs. fluoxetine in patients age 70 or over with major depression. The American Journal of Geriatric Psychiatry, 7, 221–227.  https://doi.org/10.1097/00019442-199908000-00006.PubMedCrossRefGoogle Scholar
  53. Follmann, D., Elliott, P., Suh, I., & Cutler, J. (1992). Variance imputation for overviews of clinical trials with continuous response. Journal of Clinical Epidemiology, 45, 769–773.  https://doi.org/10.1016/0895-4356(92)90054-Q.PubMedCrossRefGoogle Scholar
  54. Gallassi, R., Di Sarro, R., Morreale, A., & Amore, M. (2006). Memory impairment in patients with late-onset major depression: The effect of antidepressant therapy. Journal of Affective Disorders, 91, 243–250.  https://doi.org/10.1016/j.jad.2006.01.018.PubMedCrossRefGoogle Scholar
  55. Gau, S. F., & Huang, W. L. (2014). Rapid visual information processing as a cognitive endophenotype of attention deficit hyperactivity disorder. Psychological Medicine, 44, 435–446.  https://doi.org/10.1017/S0033291713000640.PubMedCrossRefGoogle Scholar
  56. Geake, J. G., & Hansen, P. C. (2010). Functional neural correlates of fluid and crystallized analogizing. NeuroImage, 49, 3489–3497.  https://doi.org/10.1016/j.neuroimage.2009.09.008.PubMedCrossRefGoogle Scholar
  57. Goodwin, G. M. (1997). Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression. Journal of Psychopharmacology, 11, 115–122.  https://doi.org/10.1177/026988119701100204.PubMedCrossRefGoogle Scholar
  58. Grant, J. E., Chamberlain, S. R., Schreiber, L., & Odlaug, B. L. (2012). Neuropsychological deficits associated with cannabis use in young adults. Drug and Alcohol Dependence, 121, 159–162.  https://doi.org/10.1016/j.drugalcdep.2011.08.015.PubMedCrossRefGoogle Scholar
  59. Greer, T. L., Sunderajan, P., Grannemann, B. D., Kurian, B. T., & Trivedi, M. H. (2014). Does duloxetine improve cognitive function independently of its antidepressant effect in patients with major depressive disorder and subjective reports of cognitive dysfunction? Depression Research and Rreatment, 1–14: doi: https://doi.org/10.1155/2014/627863
  60. Harmer, C. J., Goodwin, G. M., & Cowen, P. J. (2009). Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. The British Journal of Psychiatry, 195, 102–108.  https://doi.org/10.1192/bjp.bp.108.051193.PubMedCrossRefGoogle Scholar
  61. Harrison, J. E., Lam, R. W., Baune, B. T., & McIntyre, R. S. (2016). Selection of cognitive tests for trials of therapeutic agents. The Lancet Psychiatry, 3, 499.  https://doi.org/10.1016/S2215-0366(16)30067-0.PubMedCrossRefGoogle Scholar
  62. Harvey, S. T., & Taylor, J. E. (2010). A meta-analysis of the effects of psychotherapy with sexually abused children and adolescents. Clinical Psychology Review, 30, 517–535.  https://doi.org/10.1016/j.cpr.2010.03.006.PubMedCrossRefGoogle Scholar
  63. Harvey, P., Le Bastard, G., Pochon, J., Levy, R., Allilaire, J., Dubois, B. e., et al. (2004). Executive functions and updating of the contents of working memory in unipolar depression. Journal of Psychiatric Research, 38, 567–576.  https://doi.org/10.1016/j.jpsychires.2004.03.003.PubMedCrossRefGoogle Scholar
  64. Herrera-Guzman, I., Herrera-Abarca, J. E., Gudayol-Ferre, E., Herrera-Guzman, D., Gomez-Carbajal, L., Pena-Olvira, M., et al. (2010). Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on attention and executive functions in patients with major depressive disorder. Psychiatry Research, 177, 323–329.  https://doi.org/10.1016/j.psychres.2010.03.006.PubMedCrossRefGoogle Scholar
  65. Higgin, J., Thompson, S., Deeks, J., & Altman, D. (2003). Measuring inconsistency in meta-analysis. British Medical Journal, 327, 557–560.  https://doi.org/10.1136/bmj.327.7414.557.CrossRefGoogle Scholar
  66. Higgins, J., & Green, S. (Editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.
  67. Hooper, H. E. (1983). Hooper Visual Organization Test Manual. Los Angeles: Western Psychological Services.Google Scholar
  68. Horsfield, S. A., Rosse, R. B., Tomasino, V., Schwartz, B. L., Mastropaolo, J., & Deutsch, S. I. (2002). Fluoxetine's effects on cognitive performance in patients with traumatic brain injury. The International Journal of Psychiatry in Medicine, 32, 337–344.  https://doi.org/10.2190/KQ48-XT0L-2H14-5UMV.PubMedCrossRefGoogle Scholar
  69. Horst, W. D., & Preskorn, S. H. (1998). Mechanisms of action and clinical characteristics of three atypical antidepressants: venlafaxine, nefazodone, bupropion. Journal of Affective Disorders, 51, 237–254.PubMedCrossRefGoogle Scholar
  70. Hoyer, W. J., Stawski, R. S., Wasylyshyn, C., & Verhaeghen, P. (2004). Adult age and digit symbol substitution performance: a meta-analysis. Psychology and Aging, 19, 211–214.  https://doi.org/10.1037/0882-7974.19.1.211.PubMedCrossRefGoogle Scholar
  71. Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145, 39–48.  https://doi.org/10.1016/S0165-0327(98)00222-5.PubMedCrossRefGoogle Scholar
  72. Jorge, R. E., Acion, L., Moser, D., Adams Jr., H. P., & Robinson, R. G. (2010). Escitalopram and enhancement of cognitive recovery following stroke. Archives of General Psychiatry, 67, 187–196.  https://doi.org/10.1001/archgenpsychiatry.2009.185.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Joy, S., Kaplan, E., & Fein, D. (2004). Speed and memory in the WAIS-III Digit Symbol— Coding subtest across the adult lifespan. Archives of Clinical Neuropsychology, 19, 759–767.  https://doi.org/10.1016/j.acn.2003.09.009.PubMedCrossRefGoogle Scholar
  74. Kalechstein, A., Mahoney, J., Yoon, J., Bennett, R., & De la Garza, R. (2013). Modafinil, but not escitalopram, improves working memory and sustained attention in long-term, high-dose cocaine users. Neuropharmacology, 64, 472–478.  https://doi.org/10.1016/j.neuropharm.2012.06.064.PubMedCrossRefGoogle Scholar
  75. Karsten, J., Hagenauw, L. A., Kamphuis, J., & Lancel, M. (2017). Low doses of mirtazapine or quetiapine for transient insomnia: A randomised, double-blind, cross-over, placebo-controlled trial. Journal of Psychopharmacology, 31, 327–337.  https://doi.org/10.1177/0269881116681399.PubMedCrossRefGoogle Scholar
  76. Katona, C., Hansen, T., & Olsen, C. K. (2012). A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. International Clinical Psychopharmacology, 27, 215–223.  https://doi.org/10.1097/YIC.0b013e3283542457.PubMedCrossRefGoogle Scholar
  77. Keefe, R., McClintock, S. M., Roth, R. M., Doraiswamy, P. M., Tiger, S., & Madhoo, M. (2014). Cognitive effects of pharmacotherapy for major depressive disorder: a systematic review. Journal of Clinical Psychiatry, 75, 864–876.  https://doi.org/10.4088/JCP.13r08609.PubMedCrossRefGoogle Scholar
  78. Kertesz, A. (2007). Western Aphasia Battery Revised. Examiner’s Manual. San Antonio: Pearson.Google Scholar
  79. Kirsch, I., Deacon, B. J., Huedo-Medina, T. B., Scoboria, A., Moore, T. J., & Johnson, B. T. (2008). Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Medicine, 5, e45.  https://doi.org/10.1371/journal.pmed.0050045.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Knegtering, H., Eijck, M., & Huijsman, A. (1994). Effects of antidepressants on cognitive functioning of elderly patients. Drugs & Aging, 5, 192–199.  https://doi.org/10.2165/00002512-199405030-00005.CrossRefGoogle Scholar
  81. Krikorian, R., Bartok, J., & Gay, N. (1994). Tower of London procedure: a standard method and developmental data. Journal of Clinical and Experimental Neuropsychology, 16, 840–850.  https://doi.org/10.1080/01688639408402697.PubMedCrossRefGoogle Scholar
  82. Lambert, O., & Bourin, M. (2002). SNRIs: mechanism of action and clinical features. Expert Review of Neurotherapeutics, 2, 849–858.  https://doi.org/10.1586/14737175.2.6.849.PubMedCrossRefGoogle Scholar
  83. Lau, J., Ioannidis, J. P., & Schmid, C. H. (1998). Summing up evidence: one answer is not always enough. The Lancet, 351, 123–127.  https://doi.org/10.1016/S0140-6736(97)08468-7.CrossRefGoogle Scholar
  84. Lee, H., Kim, S. W., Kim, J. M., Shin, I. S., Yang, S. J., & Yoon, J. S. (2005). Comparing effects of methylphenidate, sertraline and placebo on neuropsychiatric sequelae in patients with traumatic brain injury. Human Psychopharmacology, 20, 97–104.  https://doi.org/10.1002/hup.668.PubMedCrossRefGoogle Scholar
  85. Levaux, M. N., Potvin, S., Sepehry, A. A., Sablier, J., Mendrek, A., & Stip, E. (2007). Computerized assessment of cognition in schizophrenia: promises and pitfalls of CANTAB. European Psychiatry, 22, 104–115.  https://doi.org/10.1016/j.eurpsy.2006.11.004.PubMedCrossRefGoogle Scholar
  86. Levkovitz, Y., Caftori, R., Avital, A., & Richter-Levin, G. (2002). The SSRI's drug Fluoxetine, but not the noradrenergic tricyclic drug Desipramine, improves memory performance during acute major depression. Brain Research Bulletin, 58, 345–350.  https://doi.org/10.1016/S0361-9230(01)00780-8.PubMedCrossRefGoogle Scholar
  87. Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological Assessment (5th ed.). New York: Oxford University Press.Google Scholar
  88. Liotti, M., & Mayberg, H. S. (2001). The role of functional neuroimaging in the neuropsychology of depression. Journal of Clinical and Experimental Neuropsychology, 23, 121–136.PubMedCrossRefGoogle Scholar
  89. Livingston, M. G., & Livingston, H. M. (1996). Monoamine oxidase inhibitors. Drug Safety, 14, 219–227.  https://doi.org/10.2165/00002018-199614040-00002.PubMedCrossRefGoogle Scholar
  90. Lochner, C., Chamberlain, S. R., Kidd, M., Fineberg, N. A., & Stein, D. J. (2016). Altered cognitive response to serotonin challenge as a candidate endophenotype for obsessive-compulsive disorder. Psychopharmacology, 233, 883–891.  https://doi.org/10.1007/s00213-015-4172-y.PubMedCrossRefGoogle Scholar
  91. Loubinoux, I., Tombari, D., Pariente, J., Gerdelat-Mas, A., Franceries, X., Cassol, E., et al. (2005). Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer. NeuroImage, 27, 299–313.  https://doi.org/10.1016/j.neuroimage.2004.12.023.PubMedCrossRefGoogle Scholar
  92. MacGillivray, S., Arroll, B., Hatcher, S., Ogston, S., Reid, I., Sullivan, F., et al. (2003). Efficacy and tolerability of selective serotonin reuptake inhibitors compared with tricyclic antidepressants in depression treated in primary care: systematic review and meta-analysis. British Medical Journal, 326, 1–6.  https://doi.org/10.1136/bmj.326.7397.1014.CrossRefGoogle Scholar
  93. Mahableshwarkar, A. R., Zajecka, J., Jacobson, W., Chen, Y., & Keefe, R. S. (2015). A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology, 40, 2025–2037.  https://doi.org/10.1038/npp.2015.52.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., & Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain, 125, 624–639.  https://doi.org/10.1093/brain.PubMedCrossRefGoogle Scholar
  95. Marson, D. C., Dymek, M. P., Duke, L. W., & Harrell, L. E. (1997). Subscale validity of the Mattis Dementia Rating Scale. Archives of Clinical Neuropsychology, 12, 269–275.  https://doi.org/10.1093/arclin/12.3.269.PubMedCrossRefGoogle Scholar
  96. McCall, W. V., & Dunn, A. G. (2003). Cognitive deficits are associated with functional impairment in severely depressed patients. Psychiatry Research, 121, 179–184.  https://doi.org/10.1016/j.psychres.2003.09.003.PubMedCrossRefGoogle Scholar
  97. McClintock, S. M., Husain, M. M., Greer, T. L., & Cullum, C. M. (2010). Association between depression severity and neurocognitive function in major depressive disorder: a review and synthesis. Neuropsychology, 24, 9–34.  https://doi.org/10.1037/a0017336.PubMedCrossRefGoogle Scholar
  98. McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119, 1–8.  https://doi.org/10.1016/j.jad.2009.04.022.PubMedCrossRefGoogle Scholar
  99. McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., et al. (2013). Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depression and Anxiety, 30, 515–527.  https://doi.org/10.1002/da.22063.PubMedCrossRefGoogle Scholar
  100. McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17, 1557–1567.  https://doi.org/10.1017/S1461145714000546.PubMedPubMedCentralCrossRefGoogle Scholar
  101. McKenna, P. (1998). The Category Specific Names Test. Levittown: Psychology Press.Google Scholar
  102. Minshew, N. J., Goldstein, G., & Siegel, D. J. (1995). Speech and language in high-functioning autistic individuals. Neuropsychology, 9, 255–261.  https://doi.org/10.1037/0894-4105.9.2.255.CrossRefGoogle Scholar
  103. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.  https://doi.org/10.1006/cogp.1999.0734.PubMedCrossRefGoogle Scholar
  104. Mohs, R., Mease, P., Arnold, L. M., Wang, F., Ahl, J., Gaynor, P. J., & Wohlreich, M. M. (2012). The effect of duloxetine treatment on cognition in patients with fibromyalgia. Psychosomatic Medicine, 74, 628–634.  https://doi.org/10.1097/PSY.0b013e31825b9855.PubMedCrossRefGoogle Scholar
  105. Moncrieff, J., Wessely, S., & Hardy, R. (2004). Active placebos versus antidepressants for depression. The Cochrane Library, 1.  https://doi.org/10.1002/14651858.CD003012.pub2.
  106. Morere, D. A., Witkin, G., & Murphy, L. (2012). Measures of expressive language. In Assessing Literacy in Deaf Individuals (pp. 141–157). Springer New York.Google Scholar
  107. Mowla, A., Mosavinasab, M., Haghshenas, H., & Haghighi, A. B. (2007a). Does serotonin augmentation have any effect on cognition and activities of daily living in Alzheimer's dementia? A double-blind, placebo-controlled clinical trial. Journal of Clinical Psychopharmacology, 27, 484–487.  https://doi.org/10.1097/jcp.0b013e31814b98c1.PubMedCrossRefGoogle Scholar
  108. Mowla, A., Mosavinasab, M., & Pani, A. (2007b). Does fluoxetine have any effect on the cognition of patients with mild cognitive impairment?: a double-blind, placebo-controlled, clinical trial. Journal of Clinical Psychopharmacology, 27, 67–70.  https://doi.org/10.1097/JCP.0b013e31802e0002.PubMedCrossRefGoogle Scholar
  109. Munro, C. A., Brandt, J., Sheppard, J.-M. E., Steele, C. D., Samus, Q. M., Steinberg, M., et al. (2004). Cognitive response to pharmacological treatment for depression in Alzheimer disease: secondary outcomes from the depression in Alzheimer's disease study (DIADS). The American Journal of Geriatric Psychiatry, 12, 491–498.  https://doi.org/10.1097/00019442-200409000-00007.PubMedCrossRefGoogle Scholar
  110. Murphy, C. F., & Alexopoulos, G. S. (2004). Longitudinal association of initiation/perseveration and severity of geriatric depression. The American Journal of Geriatric Psychiatry, 12, 50–56.  https://doi.org/10.1097/00019442-200401000-00007.PubMedCrossRefGoogle Scholar
  111. Naismith, S. L., Longley, W. A., Scott, E. M., & Hickie, I. B. (2007). Disability in major depression related to self-rated and objectively-measured cognitive deficits: a preliminary study. BMC Psychiatry, 7, 32–39.  https://doi.org/10.1186/1471-244X-7-32.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nassir Ghaemi, S. (2008). Why antidepressants are not antidepressants: STEP-BD, STAR* D, and the return of neurotic depression. Bipolar Disorders, 10, 957–968.  https://doi.org/10.1111/j.1399-5618.2008.00639.x.PubMedCrossRefGoogle Scholar
  113. Nebes, R. D., Butters, M., Mulsant, B., Pollock, B., Zmuda, M., Houck, P., & Reynolds, C. (2000). Decreased working memory and processing speed mediate cognitive impairment in geriatric depression. Psychological Medicine, 30, 679–691.PubMedCrossRefGoogle Scholar
  114. Nickel, T., Sonntag, A., Schill, J., Zobel, A. W., Ackl, N., Brunnauer, A., et al. (2003). Clinical and neurobiological effects of tianeptine and paroxetine in major depression. Journal of Clinical Psychopharmacology, 23, 155–168.PubMedCrossRefGoogle Scholar
  115. Nielen, M., & Den Boer, J. (2003). Neuropsychological performance of OCD patients before and after treatment with fluoxetine: evidence for persistent cognitive deficits. Psychological Medicine, 33, 917–925.  https://doi.org/10.1017/S0033291703007682.PubMedCrossRefGoogle Scholar
  116. O’Leary, O. F., Dinan, T. G., & Cryan, J. F. (2015). Faster, better, stronger: towards new antidepressant therapeutic strategies. European Journal of Pharmacology, 753, 32–50.  https://doi.org/10.1016/j.ejphar.2014.07.046.PubMedCrossRefGoogle Scholar
  117. Olfson, M., & Marcus, S. C. (2009). National patterns in antidepressant medication treatment. Archives of General Psychiatry, 66, 848–856.  https://doi.org/10.1001/archgenpsychiatry.2009.81.PubMedCrossRefGoogle Scholar
  118. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E., & Robbins, T. W. (1995). Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 33, 1–24.  https://doi.org/10.1016/0028-3932(94)00098-A.PubMedCrossRefGoogle Scholar
  119. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.  https://doi.org/10.1002/hbm.20131.PubMedCrossRefGoogle Scholar
  120. Oxman, T. E. (1996). Antidepressants and cognitive impairment in the elderly. The Journal of Clinical Psychiatry, 57, 38–44.PubMedGoogle Scholar
  121. Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89, 125–135.  https://doi.org/10.1016/j.jad.2005.09.006.PubMedCrossRefGoogle Scholar
  122. Paradiso, S., Lamberty, G. J., Garvey, M. J., & Robinson, R. G. (1997). Cognitive impairment in the euthymic phase of chronic unipolar depression. The Journal of Nervous and Mental disease, 185, 748–754.PubMedCrossRefGoogle Scholar
  123. Paterniti, S., Dufouil, C., Bisserbe, J. C., & Alperovitch, A. (1999). Anxiety, depression, psychotropic drug use and cognitive impairment. Psychological Medicine, 29, 421–428.PubMedCrossRefGoogle Scholar
  124. Patten, S. B., Esposito, E., & Carter, B. (2007). Reasons for antidepressant prescriptions in Canada. Pharmacoepidemiology and Drug Safety, 16, 746–752.  https://doi.org/10.1002/pds.1385.PubMedCrossRefGoogle Scholar
  125. PBS Expenditure and Prescriptions Report 2015 - 16 (2016). PBS Management Section Pharmaceutical Policy Branch. https://www.pbs.gov.au/info/browse/statistics (accessed 3 February 2017).
  126. Pehrson, A. L., Leiser, S. C., Gulinello, M., Dale, E., Li, Y., Waller, J. A., & Sanchez, C. (2015). Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. European Journal of Pharmacology, 753, 19–31.PubMedCrossRefGoogle Scholar
  127. Peinemann, F., Tushabe, D. A., & Kleijnen, J. (2013). Using multiple types of studies in systematic reviews of health care interventions–a systematic review. PLoS One, 8, e85035.  https://doi.org/10.1371/journal.pone.0085035.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Penn, E., & Tracy, D. K. (2012). The drugs don’t work? Antidepressants and the current and future pharmacological management of depression. Therapeutic Advances in Psychopharmacology, 2, 179–188.  https://doi.org/10.1177/2045125312445469.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Peretti, S., Judge, R., & Hindmarch, I. (2000). Safety and tolerability considerations: tricyclic antidepressants vs. selective serotonin reuptake inhibitors. Acta Psychiatrica Scandinavica, 101, 17–25.  https://doi.org/10.1111/j.1600-0447.2000.tb10944.x.CrossRefGoogle Scholar
  130. Petkova, E., Tarpey, T., Huang, L., & Deng, L. (2013). Interpreting meta-regression: application to recent controversies in antidepressants’ efficacy. Statistics in Medicine, 32, 2875–2892.  https://doi.org/10.1002/sim.5766.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Porter, R. J., Gallagher, P., Thompson, J. M., & Young, A. H. (2003). Neurocognitive impairment in drug-free patients with major depressive disorder. The British Journal of Psychiatry, 182, 214–220.  https://doi.org/10.1192/bjp.182.3.214.PubMedCrossRefGoogle Scholar
  132. PsychCorp. (2008). WAIS IV. Technical and interpretive manual. San Antonio: Pearson.Google Scholar
  133. PsychCorp. (2009). Wechsler Memory Scale – Fourth Edition (WMS-IV) technical and interpretive manual. San Antonio: Pearson.Google Scholar
  134. Randolph, C. (1998). RBANS Manual: Repeatable battery for the assessment of neurological status. San Antonio: Psychological Corporation.Google Scholar
  135. Raskin, J., Wiltse, C. G., Siegal, A., Sheikh, J., Xu, J., Dinkel, J. J., et al. (2007). Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder: An 8-week, double-blind, placebo-controlled trial. The American Journal of Psychiatry, 164, 900–909.PubMedCrossRefGoogle Scholar
  136. Reitan, R. M., & Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Test Batter: Theory and clinical applications (2nd ed.). Tucson: Neuropsychology Press.Google Scholar
  137. Repantis, D., Schlattmann, P., Laisney, O., & Heuser, I. (2009). Antidepressants for neuroenhancement in healthy individuals: a systematic review. Poiesis & Praxis, 6, 139–174.  https://doi.org/10.1007/s10202-008-0060-4.CrossRefGoogle Scholar
  138. Rock, P., Roiser, J., Riedel, W., & Blackwell, A. (2014). Cognitive impairment in depression: a systematic review and meta-analysis. Psychological Medicine, 44, 2029.  https://doi.org/10.1017/S0033291713002535.PubMedCrossRefGoogle Scholar
  139. Rose, E., & Ebmeier, K. (2006). Pattern of impaired working memory during major depression. Journal of Affective Disorders, 90, 149–161.  https://doi.org/10.1016/j.jad.2005.11.003.PubMedCrossRefGoogle Scholar
  140. Rosenblat, J. D., Kakar, R., & McIntyre, R. S. (2015). The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. International Journal of Neuropsychopharmacology, 1–13. DOI: https://doi.org/10.1093/ijnp/pyv082
  141. Salthouse, T. A. (2000). Aging and measures of processing speed. Biological Psychology, 54, 35–54.  https://doi.org/10.1016/S0301-0511(00)00052-1.PubMedCrossRefGoogle Scholar
  142. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809.  https://doi.org/10.1126/science.1083328.PubMedCrossRefGoogle Scholar
  143. Sarapas, C., Shankman, S. A., Harrow, M., & Goldberg, J. F. (2012). Parsing trait and state effects of depression severity on neurocognition: Evidence from a 26-year longitudinal study. Journal of Abnormal Psychology, 121, 830.  https://doi.org/10.1037/a0028141.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Los Angeles: Western Psychological Services.Google Scholar
  145. Schmitt, J. A., Ramaekers, J. G., Kruizinga, M. J., van Boxtel, M. P., Vuurman, E. F., & Riedel, W. J. (2002). Additional dopamine reuptake inhibition attenuates vigilance impairment by serotonin reutake inhibition in man. Journal of Psychopharmacology, 16, 207–214.  https://doi.org/10.1177/026988110201600303.PubMedCrossRefGoogle Scholar
  146. Sheline, Y. I., Barch, D. M., Garcia, K., Gersing, K., Pieper, C., Welsh-Bohmer, K., et al. (2006). Cognitive function in late life depression: relationships to depression severity, cerebrovascular risk factors and processing speed. Biological Psychiatry, 60, 58–65.  https://doi.org/10.1016/j.biopsych.2005.09.019.PubMedCrossRefGoogle Scholar
  147. Shelton, R. C. (2000). Cellular mechanisms in the vulnerability to depression and response to antidepressants. Psychiatric Clinics of North America, 23, 713–729.  https://doi.org/10.1016/S0193-953X(05)70193-3.PubMedCrossRefGoogle Scholar
  148. Shih, J., Chen, K., & Ridd, M. (1999). Monoamine oxidase: from genes to behavior. Annual Review of Neuroscience, 22, 197–217.  https://doi.org/10.1146/annurev.neuro.22.1.197.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shrier, I., Boivin, J.-F., Steele, R. J., Platt, R. W., Furlan, A., Kakuma, R., et al. (2007). Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. American Journal of Epidemiology, 166, 1203–1209.  https://doi.org/10.1093/aje/kwm189.PubMedCrossRefGoogle Scholar
  150. Sommer, B. R., Fenn, H., Pompei, P., DeBattista, C., Lembke, A., Wang, P., & Flores, B. (2003). Safety of antidepressants in the elderly. Expert Opinion on Drug Safety, 2, 367–383.  https://doi.org/10.1517/14740338.2.4.367.PubMedCrossRefGoogle Scholar
  151. Sriganesh, K., Shanthanna, H., & Busse, J. W. (2016). A brief overview of systematic reviews and meta-analyses. Indian Journal of Anaesthesia, 60, 689.  https://doi.org/10.4103/0019-5049.190628.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Stein, R. A., & Strickland, T. L. (1998). A review of the neuropsychological effects of commonly used prescription medications. Archives of Clinical Neuropsychology, 13, 259–284.  https://doi.org/10.1016/S0887-6177(97)00027-9.PubMedCrossRefGoogle Scholar
  153. Strauss, E., Sherman, E. M., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. American Chemical Society.Google Scholar
  154. Sweeney, J. A., Kmiec, J. A., & Kupfer, D. J. (2000). Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biological Psychiatry, 48, 674–684.  https://doi.org/10.1016/S0006-3223(00)00910-0.PubMedCrossRefGoogle Scholar
  155. Talarowska, M., Florkowski, A., Zboralski, K., Berent, D., Wierzbiński, P., & Gałecki, P. (2010). Auditory-verbal declarative and operating memory among patients suffering from depressive disorders–preliminary study. Advances in Medical Sciences, 55, 317–327.  https://doi.org/10.2478/v10039-010-0053-0.PubMedCrossRefGoogle Scholar
  156. Tendal, B., Higgins, J. P., Jüni, P., Hróbjartsson, A., Trelle, S., Nüesch, E., et al. (2009). Disagreements in meta-analyses using outcomes measured on continuous or rating scales: observer agreement study. BMJ, 339, b3128.  https://doi.org/10.1136/bmj.b3128.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tipton, K. F., Boyce, S., O'Sullivan, J., Davey, G. P., & Healy, J. (2004). Monoamine oxidases: certainties and uncertainties. Current Medicinal Chemistry, 11, 1965–1982.  https://doi.org/10.2174/0929867043364810.PubMedCrossRefGoogle Scholar
  158. Vythilingam, M., Vermetten, E., Anderson, G. M., Luckenbaugh, D., Anderson, E. R., Snow, J., et al. (2004). Hippocampal Volume, Memory, and Cortisol Status in Major Depressive Disorder: Effects of Treatment. Biological Psychiatry, 56, 101–112.  https://doi.org/10.1016/j.biopsych.2004.04.002.PubMedCrossRefGoogle Scholar
  159. Wadsworth, E. J., Moss, S. C., Simpson, S. A., & Smith, A. P. (2005). SSRIs and cognitive performance in a working sample. Human Psychopharmacology: Clinical and Experimental, 20, 561–572.  https://doi.org/10.1002/hup.725.CrossRefGoogle Scholar
  160. Walsh, N. D., Williams, S. C., Brammer, M. J., Bullmore, E. T., Kim, J., Suckling, J., et al. (2007). A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy. Biological Psychiatry, 62, 1236–1243.  https://doi.org/10.1016/j.biopsych.2006.12.022.PubMedCrossRefGoogle Scholar
  161. Wang, S., & Blazer, D. G. (2015). Depression and cognition in the elderly. Annual Review of Clinical Psychology, 11, 331–360.  https://doi.org/10.1146/annurev-clinpsy-032814-112828.PubMedCrossRefGoogle Scholar
  162. Williams, J. W., Mulrow, C. D., Chiquette, E., Noël, P. H., Aguilar, C., & Cornell, J. (2000). A systematic review of newer pharmacotherapies for depression in adults: evidence report summary: clinical guideline, part 2. Annals of Internal Medicine, 132, 743–756.  https://doi.org/10.7326/0003-4819-132-9-200005020-00011.PubMedCrossRefGoogle Scholar
  163. Wills, P., Clare, L., Wills, P., Shiel, A., & Wilson, B. A. (2000). Assessing subtle memory impairments in the everyday memory performance of brain injured people: exploring the potential of the Extended Rivermead Behavioural Memory Test. Brain Injury, 14, 693–704.  https://doi.org/10.1080/026990500413713.PubMedCrossRefGoogle Scholar
  164. Wilson, B. A., Cockburn, J., & Baddeley, A. D. (1985). The Rivermead Behavioural Memory Test. Bury St. Edmunds: Thames Valley Test.Google Scholar
  165. Wroolie, T. E., Williams, K. E., Keller, J., Zappert, L. N., Shelton, S. D., Kenna, H. A., et al. (2006). Mood and neuropsychological changes in women with midlife depression treated with escitalopram. Journal of Clinical Psychopharmacology, 26, 361–366.  https://doi.org/10.1097/01.jcp.0000227699.26375.f8.PubMedCrossRefGoogle Scholar
  166. Yıldız, A., Gönül, A. S., & Tamam, L. (2002). Mechanism of actions of antidepressants: beyond the receptors. Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Psychopharmacology, 12, 194–200.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Psychology and Public HealthLa Trobe UniversityBundooraAustralia

Personalised recommendations