Skip to main content

Advertisement

Log in

Diagnostic Accuracy of Memory Measures in Alzheimer’s Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer’s dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer’s disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The selective reminding paradigm has been well described (see Carlesimo et al. 2011) and is best exemplified by the Free and Cued Selective Reminding Test (Grober and Buschke 1987). This paradigm attempts to control for encoding of material by providing the name of each semantic category (4 total) and asking subjects to point to each of 4 items within the semantic category. This is followed by immediate category cued recall (repeated until 4/4 items recalled). Next, individuals are asked to freely recall the items on the list. A category cued recall procedure is then used for any items not freely recalled. This procedure is typically repeated three times and provides a measure of free recall and total recall (free recall + cued recall).

  2. A picture with two interacting pieces is presented (e.g., ape holding an umbrella) and individuals are asked to name both aspects of the picture. Immediately following presentation of six pictures, six cards are presented containing only one aspect of the picture (e.g., the ape alone). With presentation of the card missing an object, the individual is asked to say the item that is missing. Responses are accepted in any format: written, drawn, oral, or mimed.

  3. Eight semantically or associatively unrelated word pairs (four concrete, e.g., horse-forest, and four abstract, e.g., open-fresh). Associate-Recognition task was always completed during the first and the Cued-Recall during the second session. After presentation of the eight pairs, in the Associate-Recognition phase, a cue was presented at the top of the page and individuals identified which from a list of 4 items had been presented with the cue. For the Cued-Recall phase, the cue was presented and the individual was asked to recall the word that had been paired with the cue.

  4. A computerized task that displays boxes on the screen that are randomly opened. Some boxes contain a pattern. Patterns are then displayed in the middle of the screen and the individual must match the pattern in the middle of the screen to the appropriate location (i.e., box). When a mistake is made, the boxes are re-opened to remind the individual. The test becomes more difficult throughout and takes about 10 min to administer.

  5. In the paper and pencil task, 10 faces and 10 objects were presented. The original version of the test showed faces in black and white whereas the novel version presented faces and objects in color. After encoding, individuals are immediately presented with the face or object (one at a time) and report in which quadrant of the page the item was originally presented. The total score is the number placed correctly out of 20. The computerized version was similar with an additional 10 shapes or 10 animals (30 items presented total) and participants were asked to click on the quadrant where the item had initially been presented. For both versions of the test, the 10 items belonging to a category were presented and tested separately, for example, encoding and testing phase of 10 faces followed by encoding and testing of 10 objects.

  6. WMS Verbal Paired Associates (Wechsler 1945, VPA) (Spanish translation), individuals learned 10 pairs of words (6 related, 4 unrelated) across three trials, providing one score of total memory acquisition.

  7. Individuals saw 2 or 3 items on the screen (difficulty varied depending on diagnosis; HC saw 3 items, AD patients saw 2 items) for 2000 ms during the study display. Following the study phase, individuals’ visual short-term memory was assessed for single feature and binding by using “color only” and “shape only” conditions in addition to “shape-color binding” conditions. In single feature conditions, new shapes or new colors were replaced in the test phase, respectively, so that memory for individual features was required to detect the change. In the shape-color binding condition, two shapes changed colors in the test phase compared to the study phase so that memory of both the bound shape and color elements was required to detect change.

  8. This test examines associative memory of spatial location, event-place association, and place-object association memory.

  9. During this test, participants are asked to re-create a 2 by 3 array of six simple geometric figures after three 10 s learning trials. Points are awarded for accuracy and correct object placement.

  10. During this task participants are asked to recall the associated symbol of nine numbers that they initially learn through a coding task (WAIS-III Digit Symbol; (Wechsler 1997)).

  11. Involves three time-based and three event-based prospective memory items embedded within puzzles of attention (Delprado et al. 2012). Two scores can be derived for this measure, an event-based score and a time-based score.

References

  • *Adam, S., Van der Linden, M., Ivanoiu, A., Juillerat, A. C., Bechet, S., & Salmon, E. (2007). Optimization of encoding specificity for the diagnosis of early AD: The RI-48 task. Journal of Clinical and Experimental Neuropsychology, 29(5), 477–487.

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 270–279.

    Article  Google Scholar 

  • Alegret, M., Rodriguez, O., Espinosa, A., Ortega, G., Sanabria, A., Valero, S., et al. (2015). Concordance between subjective and objective memory impairment in volunteer subjects. Journal of Alzheimer's Disease, 48(4), 1109–1117.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition - Text Revision (DSMIV-TR) (IV ed.). Washington D.C: American Psychiatric Publishing, Inc.

    Book  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub.

  • American Academy of Neurology. (1996). Assessment: Neuropsychological testing of adults. Considerations for neurologists. Neurology, 47, 592-599.

  • *Baek, M. J., Kim, H. J., Ryu, H. J., Lee, S. H., Han, S. H., Na, H. R., et al. (2011). The usefulness of the story recall test in patients with mild cognitive impairment and Alzheimer's disease. Aging, Neuropsychology, and Cognition, 18(2), 214–229.

    Article  Google Scholar 

  • Baek, M. J., Kim, H. J., & Kim, S. (2012). Comparison between the story recall test and the word-list learning test in Korean patients with mild cognitive impairment and early stage of Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 34(4), 396–404.

    Article  PubMed  Google Scholar 

  • Beglinger, L. J., Duff, K., Moser, D. J., Cross, S. A., & Kareken, D. A. (2009). The Indiana faces in places test: Preliminary findings on a new Visuospatial memory test in patients with mild cognitive impairment. Archives of Clinical Neuropsychology, 24(6), 607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedict, R. H. B. (1997). Brief Visuospatial memory test-revised. Lutz: Psychological Assessment Resources, Inc..

    Google Scholar 

  • *Bertolucci, P. H. F., Okamoto, I. H., Brucki, S. M. D., Siviero, M. O., Toniolo Neto, J., & Ramos, L. R. (2001). Applicability of the CERAD neuropsychological battery to Brazilian elderly. Arquivos de Neuro-Psiquiatria, 59(3A), 532–536.

    Article  CAS  PubMed  Google Scholar 

  • Binder, L. M., Iverson, G. L., & Brooks, B. L. (2009). To err is human:“abnormal” neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology, 24, 31–46.

    Article  PubMed  Google Scholar 

  • *Blanco-Campal, A., Coen, R. F., Lawlor, B. A., Walsh, J. B., & Burke, T. E. (2009). Detection of prospective memory deficits in mild cognitive impairment of suspected Alzheimer's disease etiology using a novel event-based prospective memory task. Journal of the International Neuropsychological Society, 15(1), 154–159.

    Article  PubMed  Google Scholar 

  • Bloudek, L. M., Spackman, D. E., Blankenburg, M., & Sullivan, S. D. (2011). Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease. Journal of Alzheimer's Disease, 26(4), 627–645.

    CAS  PubMed  Google Scholar 

  • Bondi, M. W., & Smith, G. E. (2014). Mild cognitive impairment: A concept and diagnostic entity in need of input from neuropsychology. Journal of the International Neuropsychological Society, 20(02), 129–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondi, M. W., Salmon, D. P., & Kaszniak, A. (1996). The neuropsychology of dementia. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorders (2nd ed., pp. 164–199). New York: Oxford.

  • Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R., et al. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer's Disease, 42(1), 275–289.

    PubMed  PubMed Central  Google Scholar 

  • Brooks, B. L., Iverson, G. L., & White, T. (2007). Substantial risk of “accidental MCI” in healthy older adults: Base rates of low memory scores in neuropsychological assessment. Journal of the International Neuropsychological Society, 13(03), 490–500.

    Article  PubMed  Google Scholar 

  • Busse, A., Hensel, A., Guhne, U., Angermeyer, M. C., & Riedel-Heller, S. G. (2006). Mild cognitive impairment: Long-term course of four clinical subtypes. Neurology, 67(12), 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  • *Cahn, D. A., Salmon, D. P., Butters, N., Wiederholt, W. C., Corey-Bloom, J., Edelstein, S. L., et al. (1995). Detection of dementia of the Alzheimer type in a population-based sample: Neuropsychological test performance. Journal of the International Neuropsychological Society, 1(3), 252–260.

    Article  CAS  PubMed  Google Scholar 

  • Calamia, M., Markon, K., & Tranel, D. (2013). The robust reliability of neuropsychological measures: Meta-analyses of test-retest correlations. The Clinical Neuropsychologist, 27(7), 1077–1105.

    Article  PubMed  Google Scholar 

  • Carlesimo, G. A., Perri, R., & Caltagirone, C. (2011). Category cued recall following controlled encoding as a neuropsychological tool in the diagnosis of Alzheimer's disease: A review of the evidence. Neuropsychology Review, 21(1), 54–65.

    Article  PubMed  Google Scholar 

  • *Chandler, M. J., Lacritz, L. H., Hynan, L. S., Barnard, H. D., Allen, G., Deschner, M., Weiner, M. F., & Cullum, C. M. (2005). A total score for the CERAD neuropsychological battery. Neurology, 65(1), 102–106.

  • Chapman, K. R., Bing-Canar, H., Alosco, M. L., Steinberg, E. G., Martin, B., Chaisson, C., et al. (2016). Mini mental state examination and logical memory scores for entry into Alzheimer's disease trials. Alzheimer's Research & Therapy, 8, 9.

  • Chelune, G. J. (2010). Evidence-based research and practice in clinical neuropsychology. The Clinical Neuropsychologist, 24(3), 454–467.

    Article  PubMed  Google Scholar 

  • *Clark, J. H., Hobson, V. L., & O'Bryant, S. E. (2010). Diagnostic accuracy of percent retention scores on RBANS verbal memory subtests for the diagnosis of Alzheimer's disease and mild cognitive impairment. Archives of Clinical Neuropsychology, 25(4), 318–326.

    Article  PubMed  Google Scholar 

  • Clark, L. R., Delano-Wood, L., Libon, D. J., McDonald, C. R., Nation, D. A., Bangen, K. J., et al. (2013). Are empirically-derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19(06), 635–645.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Crocco, E., Curiel, R. E., Acevedo, A., Czaja, S. J., & Loewenstein, D. A. (2014). An evaluation of deficits in semantic cueing and proactive and retroactive interference as early features of Alzheimer's disease. The American Journal of Geriatric Psychiatry, 22(9), 889–897.

    Article  PubMed  Google Scholar 

  • Davis, D., Schmitt, F., Wekstein, D., & Markesbery, W. (1999). Alzheimer neuropathologic alterations in aged cognitively normal subjects. Journal of Neuropathology & Experimental Neurology, 58(4), 376–388.

    Article  CAS  Google Scholar 

  • *de Jager, C. A., Hogervorst, E., Combrinck, M., & Budge, M. M. (2003). Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer's disease. Psychological Medicine, 33(6), 1039–1050.

    Article  PubMed  Google Scholar 

  • *Delgado, C., Munoz-Neira, C., Soto, A., Martinez, M., Henriquez, F., Flores, P., et al. (2016). Comparison of the psychometric properties of the "word" and "picture" versions of the free and cued selective reminding test in a Spanish-speaking cohort of patients with mild Alzheimer's disease and cognitively healthy controls. Archives of Clinical Neuropsychology, 31(2), 165–175.

    PubMed  Google Scholar 

  • Delis, D. C., Massman, P. J., Butters, N., Salmon, D. P., Cermak, L. S., & Kramer, J. H. (1991). Profiles of demented and amnesic patients on the California verbal learning test: Implications for the assessment of memory disorders. Psychological Assessment: A Journal of Consulting and Clinical Psychology, 3(1), 19.

    Article  Google Scholar 

  • Delis, D. C., Wetter, S. R., Jacobson, M. W., Peavy, G., Hamilton, J., Gongvatana, A., et al. (2005). Recall discriminability: Utility of a new CVLT-II measure in the differential diagnosis of dementia. Journal of the International Neuropsychological Society, 11(6), 708–715.

    Article  PubMed  Google Scholar 

  • *Delprado, J., Kinsella, G., Ong, B., Pike, K., Ames, D., Storey, E., et al. (2012). Clinical measures of prospective memory in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 18(2), 295–304.

    Article  PubMed  Google Scholar 

  • Dennis, M. L., Lennox, M. A., & Foss, M. A. (1997). Practical power analysis for substance abuse health services research. In K. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 367–404). Washington DC: American Psychological Association.

    Chapter  Google Scholar 

  • DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Devanand, D. P., Liu, X., Tabert, M. H., Pradhaban, G., Cuasay, K., Bell, K., et al. (2008). Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease. Biological Psychiatry, 64(10), 871–879.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doebler, P. (2015). MADA: Meta-analysis of diagnostic accuracy. Available from: cran. r-project. org/web/packages/mada/vignettes/mada. pdf. R package version 0.5. 7.

  • Doebler, P., & Holling, H. (2015). Meta-analysis of diagnostic accuracy with mada. Retrieved at: https://cran. rproject. org/web/packages/mada/vignettes/mada. pdf.

  • Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746.

    Article  PubMed  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., Dekosky, S. T., Barberger-Gateau, P., et al. (2010). Revising the definition of Alzheimer's disease: A new lexicon. Lancet Neurology, 9(11), 1118–1127.

    Article  PubMed  Google Scholar 

  • Ducharme, S., Guiot, M.-C., Nikelski, J., & Chertkow, H. (2013). Does a positive Pittsburgh compound B scan in a patient with dementia equal Alzheimer disease? JAMA Neurology, 70(7), 912–914.

    Article  PubMed  Google Scholar 

  • *Duff, K., Humphreys Clark, J. D., O'Bryant, S. E., Mold, J. W., Schiffer, R. B., & Sutker, P. B. (2008). Utility of the RBANS in detecting cognitive impairment associated with Alzheimer's disease: Sensitivity, specificity, and positive and negative predictive powers. Archives of Clinical Neuropsychology, 23(5), 603–612.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Duff, K., Hobson, V. L., Beglinger, L. J., & O'Bryant, S. E. (2010). Diagnostic accuracy of the RBANS in mild cognitive impairment: Limitations on assessing milder impairments. Archives of Clinical Neuropsychology, 25(5), 429–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckerström, C., Olsson, E., Bjerke, M., Malmgren, H., Edman, Å., Wallin, A., et al. (2013). A combination of neuropsychological, neuroimaging, and cerebrospinal fluid markers predicts conversion from mild cognitive impairment to dementia. Journal of Alzheimer's Disease, 36(3), 421–431.

    PubMed  Google Scholar 

  • Edison, P., Rowe, C. C., Rinne, J. O., Ng, S., Ahmed, I., Kemppainen, N., et al. (2008). Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C] PIB positron emission tomography. Journal of Neurology, Neurosurgery & Psychiatry, 79(12), 1331–1338.

    Article  CAS  Google Scholar 

  • Edmonds, E. C., Delano-Wood, L., Clark, L. R., Jak, A. J., Nation, D. A., McDonald, C. R., et al. (2015a). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer's & Dementia, 11, 415–424.

    Article  Google Scholar 

  • Edmonds, E. C., Delano-Wood, L., Galasko, D., Salmon, D. P., & Bondi, M. W. (2015b). Subtle cognitive decline and biomarker staging in preclinical Alzheimer's disease. Journal of Alzheimer's Disease, 47, 231–242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge: Cambridge University press.

    Book  Google Scholar 

  • *Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack Jr., C. R., et al. (2012). Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging, 33(7), 1203–1214.

    Article  CAS  PubMed  Google Scholar 

  • Fields, J. A., Ferman, T. J., Boeve, B. F., & Smith, G. E. (2011). Neuropsychological assessment of patients with dementing illness. Nature Reviews. Neurology, 7(12), 677–687.

    Article  PubMed  Google Scholar 

  • Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., et al. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68(4), 288–291.

    Article  CAS  PubMed  Google Scholar 

  • Gainotti, G., Quaranta, D., Vita, M. G., & Marra, C. (2014). Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer's disease. Journal of Alzheimer's Disease, 38(3), 481–495.

    CAS  PubMed  Google Scholar 

  • Ganguli, M., Snitz, B. E., Saxton, J. A., Chang, C.-C. H., Lee, C.-W., Vander Bilt, J., et al. (2011). Outcomes of mild cognitive impairment by definition: A population study. Archives of Neurology, 68(6), 761–767.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Gavett, B. E., Poon, S. J., Ozonoff, A., Jefferson, A. L., Nair, A. K., Green, R. C., et al. (2009). Diagnostic utility of the NAB list learning test in Alzheimer's disease and amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 15(1), 121–129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavett, B. E., Lou, K. R., Daneshvar, D. H., Green, R. C., Jefferson, A. L., & Stern, R. A. (2012). Diagnostic accuracy statistics for seven neuropsychological assessment battery (NAB) test variables in the diagnosis of Alzheimer's disease. Appl Neuropsychol Adult, 19(2), 108–115.

    Article  PubMed  Google Scholar 

  • Gomar, J. J., Conejero-Goldberg, C., Davies, P., Goldberg, T. E., & Initiative, A. s. D. N. (2014). Extension and refinement of the predictive value of different classes of markers in ADNI: Four-year follow-up data. Alzheimer's & Dementia, 10(6), 704–712.

    Article  Google Scholar 

  • *Gonzalez-Palau, F., Franco, M., Jimenez, F., Parra, E., Bernate, M., & Solis, A. (2013). Clinical utility of the hopkins verbal test-revised for detecting Alzheimer's disease and mild cognitive impairment in Spanish population. Archives of Clinical Neuropsychology, 28(3), 245–253.

  • Graham, N. L., Emery, T., & Hodges, J. R. (2004). Distinctive cognitive profiles in Alzheimer's disease and subcortical vascular dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 75(1), 61–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grober, E., & Buschke, H. (1987). Genuine memory deficits in dementia. Developmental Neuropsychology, 3(1), 13–36.

    Article  Google Scholar 

  • Growdon, J., Selkoe, D. J., Roses, A. D., et al. (1998). The Ronald and Nancy Reagan research Institute of the Alzheimer’s association and the National Institute on Aging working group. Consensus report of the working group on: molecular and biochemical markers of Alzheimer’s disease. Neurobiology of Aging, 19(2), 109–116.

  • Han, J. W., Kim, T. H., Lee, S. B., Park, J. H., Lee, J. J., Huh, Y., et al. (2012). Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimers Dement, 8(6), 553–559.

    Article  PubMed  Google Scholar 

  • Han, S. D., Nguyen, C. P., Stricker, N. H., & Nation, D. A. (2017). Detectable neuropsychological differences in early preclinical Alzheimer's disease: A meta-analysis. Neuropsychology Review. https://doi.org/10.1007/s11065-017-9345-5.

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297(5580), 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Heister, D., Brewer, J. B., Magda, S., Blennow, K., McEvoy, L. K., & Initiative, A. s. D. N. (2011). Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology, 77(17), 1619–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. Nature Neuroscience, 18, 794–799.

  • *Hogervorst, E., Combrinck, M., Lapuerta, P., Rue, J., Swales, K., & Budge, M. (2002). The Hopkins verbal learning test and screening for dementia. Dementia and Geriatric Cognitive Disorders, 13(1), 13–20.

  • *Ivanoiu, A., Adam, S., Linden, M., Salmon, E., Juillerat, A.-C., Mulligan, R., & Seron, X. (2005). Memory evaluation with a new cued recall test in patients with mild cognitive impairment and Alzheimer's disease. Journal of Neurology, 252(1), 47–55.

  • *Ivnik, R. J., Smith, G. E., Petersen, R. C., Boeve, B. F., Kokmen, E., & Tangalos, E. G. (2000). Diagnostic accuracy of four approaches to interpreting neuropsychological test data. Neuropsychology, 14(2), 163–177.

    Article  CAS  PubMed  Google Scholar 

  • Jack, C. R., Albert, M. S., Knopman, D. S., McKhann, G. M., Sperling, R. A., Carrillo, M. C., et al. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 257–262.

    Article  Google Scholar 

  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Feldman, H. H., Giovanni, B., et al. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., et al. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17(5), 368–375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. A., Minoshima, S., Bohnen, N. I., Donohoe, K. J., Foster, N. L., Herscovitch, P., et al. (2013a). Appropriate use criteria for amyloid PET: A report of the amyloid imaging task force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s association. Journal of Nuclear Medicine, 54(3), 476–490.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, K. A., Minoshima, S., Bohnen, N. I., Donohoe, K. J., Foster, N. L., Herscovitch, P., et al. (2013b). Appropriate use criteria for amyloid PET: A report of the amyloid imaging task force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement, 9(1), e-1–e16.

    Article  Google Scholar 

  • *Junkkila, J., Oja, S., Laine, M., & Karrasch, M. (2012). Applicability of the CANTAB-PAL computerized memory test in identifying amnestic mild cognitive impairment and Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 34(2), 83–89.

    Article  PubMed  Google Scholar 

  • Kanne, S. M., Balota, D. A., Storandt, M., McKeel Jr., D. W., & Morris, J. C. (1998). Relating anatomy to function in Alzheimer's disease: Neuropsychological profiles predict regional neuropathology 5 years later. Neurology, 50(4), 979–985.

    Article  CAS  PubMed  Google Scholar 

  • *Karantzoulis, S., Novitski, J., Gold, M., & Randolph, C. (2013). The repeatable battery for the assessment of neuropsychological status (RBANS): Utility in detection and characterization of mild cognitive impairment due to Alzheimer's disease. Archives of Clinical Neuropsychology, 28(8), 837–844.

    Article  PubMed  Google Scholar 

  • Karrasch, M., Sinerva, E., Gronholm, P., Rinne, J., & Laine, M. (2005). CERAD test performances in amnestic mild cognitive impairment and Alzheimer's disease. Acta Neurologica Scandinavica, 111(3), 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. W., Lee, J., Choi, S. H., Huh, J., & Park, S. H. (2015). Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: A practical review for clinical researchers-part I. General guidance and tips. Korean Journal of Radiology, 16(6), 1175–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klekociuk, S., Summers, J., Vickers, J., & Summers, M. J. (2014). Reducing false positive diagnoses in mild cognitive impairment: The importance of comprehensive neuropsychological assessment. European Journal of Neurology, 21(10), 1330–e1383.

    Article  CAS  PubMed  Google Scholar 

  • Laforce, R., & Rabinovici, G. D. (2011). Amyloid imaging in the differential diagnosis of dementia: Review and potential clinical applications. Alzheimer's Research & Therapy, 3(6), 1.

    Article  Google Scholar 

  • *Kuslansky, G., Katz, M., Verghese, J., Hall, C. B., Lapuerta, P., LaRuffa, G., & Lipton, R. B. (2004). Detecting dementia with the Hopkins Verbal Learning Test and the Mini-Mental State Examination. Archives of Clinical Neuropsychology, 19(1), 89–104.

  • Landau, S., Harvey, D., Madison, C., Reiman, E., Foster, N., Aisen, P., et al. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75(3), 230–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Kim, K. W., Choi, S. H., Huh, J., & Park, S. H. (2015). Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: A practical review for clinical researchers-part II. Statistical methods of meta-analysis. Korean Journal of Radiology, 16(6), 1188–1196.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Lehrner, J., Maly, J., Gleiß, A., Auff, E., & Dal-Bianco, P. (2007). Demenzdiagnostik mit Hilfe der Vienna Neuropsychologischen Testbatterie (VNTB): Standardisierung, Normierung und Validierung. Psychologie in Österreich, 4&5, 358–365.

  • *Lekeu, F., Magis, D., Marique, P., Delbeuck, X., Bechet, S., Guillaume, B., et al. (2010). The California verbal learning test and other standard clinical neuropsychological tests to predict conversion from mild memory impairment to dementia. Journal of Clinical and Experimental Neuropsychology, 32(2), 164–173.

    Article  PubMed  Google Scholar 

  • *Lemos, R., Duro, D., Simões, M. R., & Santana, I. (2014). The free and cued selective reminding test distinguishes frontotemporal dementia from Alzheimer's disease. Archives of Clinical Neuropsychology, 29(7), 670–679.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Lemos, R., Simoes, M. R., Santiago, B., & Santana, I. (2015). The free and cued selective reminding test: Validation for mild cognitive impairment and Alzheimer's disease. Journal of Neuropsychology, 9(2), 242–257.

    Article  PubMed  Google Scholar 

  • Lin, J. S., O'Connor, E., Rossom, R. C., Perdue, L. A., Burda, B. U., Thompson, M., et al. (2013). “U.S. Preventive Services Task Force evidence syntheses, formerly systematic evidence reviews,” in Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force, Agency for Healthcare Research and Quality (US), Rockville, Md.

  • Lindeboom, J., Schmand, B., Tulner, L., Walstra, G., & Jonker, C. (2002). Visual association test to detect early dementia of the Alzheimer type. Journal of Neurology, Neurosurgery, and Psychiatry, 73(2), 126–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lineweaver, T. T., Bondi, M. W., Galasko, D., & Salmon, D. P. (2014). Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. American Journal of Psychiatry, 171(2), 201–208.

  • *Loewenstein, D. A., Acevedo, A., Luis, C., Crum, T., Barker, W. W., & Duara, R. (2004). Semantic interference deficits and the detection of mild Alzheimer's disease and mild cognitive impairment without dementia. Journal of the International Neuropsychological Society, 10(1), 91–100.

    Article  PubMed  Google Scholar 

  • *Loewenstein, D. A., Acevedo, A., Ownby, R., Agron, J., Barker, W. W., Isaacson, R., et al. (2006). Using different memory cutoffs to assess mild cognitive impairment. The American Journal of Geriatric Psychiatry, 14(11), 911–919.

    Article  PubMed  Google Scholar 

  • Looi, J. C., & Sachdev, P. S. (1999). Differentiation of vascular dementia from AD on neuropsychological tests. Neurology, 53(4), 670–678.

    Article  CAS  PubMed  Google Scholar 

  • Lowndes, G., & Savage, G. (2007). Early detection of memory impairment in Alzheimer’s disease: A neurocognitive perspective on assessment. Neuropsychology Review, 17(3), 193–202.

    Article  PubMed  Google Scholar 

  • Lowndes, G. J., Saling, M. M., Ames, D., Chiu, E., Gonzalez, L. M., & Savage, G. R. (2008). Recall and recognition of verbal paired associates in early Alzheimer's disease. Journal of the International Neuropsychological Society, 14(4), 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Lundervold, A. J., Reinvang, I., & Lundervold, A. (1994). Characteristic patterns of verbal memory function in patients with Huntington's disease. Scandinavian Journal of Psychology, 35(1), 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Macaskill, P., Gatsonis, C., Deeks, J. J., Harbord, R. M., & Takwoingi, Y. (2009). Chapter 10: Analysing and presenting results. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 1.0.

  • Marcone, S., Gagnon, J. F., Lecomte, S., Imbeault, H., Limoges, F., Postuma, R. B., et al. (2017). Clinical utility of the envelope task in mild cognitive impairment and dementia. The Canadian Journal of Neurological Sciences, 44(1), 9–16.

    Article  PubMed  Google Scholar 

  • Matioli, M. N. P., & Caramelli, P. (2010). Limitations in differentiating vascular dementia from Alzheimer's disease with brief cognitive tests. Arquivos de Neuro-Psiquiatria, 68(2), 185–188.

    Article  PubMed  Google Scholar 

  • McDermott, A. T., & DeFilippis, N. A. (2010). Are the indices of the RBANS sufficient for differentiating Alzheimer's disease and subcortical vascular dementia? Archives of Clinical Neuropsychology, 25(4), 327–334.

    Article  PubMed  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939–944.

    Article  CAS  PubMed  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr., C. R., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 263–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252–265.

    Article  CAS  PubMed  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269.

    Article  PubMed  Google Scholar 

  • Naslund, J., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., Greengard, P., et al. (2000). Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA, 283(12), 1571–1577.

    Article  CAS  PubMed  Google Scholar 

  • Noel-Storr, A. H., McCleery, J. M., Richard, E., Ritchie, C. W., Flicker, L., Cullum, S. J., et al. (2014). Reporting standards for studies of diagnostic test accuracy in dementia: The STARDdem initiative. Neurology, 83(4), 364–373.

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Carroll, R., Conway, S., Ryman, A., & Prentice, N. (1997). Performance on the delayed word recall test (DWR) fails to differentiate clearly between depression and Alzheimer's disease in the elderly. Psychological Medicine, 27(4), 967–971.

    Article  PubMed  Google Scholar 

  • O'Connell, M. E., & Tuokko, H. (2010). Age corrections and dementia classification accuracy. Archives of Clinical Neuropsychology, 25(2), 126–138.

    Article  PubMed  Google Scholar 

  • O'Connell, H., Coen, R., Kidd, N., Warsi, M., Chin, A. V., & Lawlor, B. A. (2004). Early detection of Alzheimer's disease (AD) using the CANTAB paired associates learning test. International Journal of Geriatric Psychiatry, 19(12), 1207–1208.

    Article  PubMed  Google Scholar 

  • Oda, H., Yamamoto, Y., & Maeda, K. (2009). The neuropsychological profile in dementia with Lewy bodies and Alzheimer's disease. International Journal of Geriatric Psychiatry, 24(2), 125–131.

    Article  PubMed  Google Scholar 

  • Palmqvist, S., Hertze, J., Minthon, L., Wattmo, C., Zetterberg, H., Blennow, K., et al. (2012). Comparison of brief cognitive tests and CSF biomarkers in predicting Alzheimer’s disease in mild cognitive impairment: Six-year follow-up study. PloS One, 7(6), e38639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • *Park, S., Kim, I., Park, H. G., Shin, S. A., Cho, Y., Youn, J. H., et al. (2016). Development and validation of the rappel Indice-24: Behavioral and brain morphological evidence. Journal of Geriatric Psychiatry and Neurology, 29(3), 160–168.

    Article  PubMed  Google Scholar 

  • *Parra, M. A., Abrahams, S., Logie, R. H., Mendez, L. G., Lopera, F., & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer's disease. Brain, 133(9), 2702–2713.

    Article  PubMed  Google Scholar 

  • Parra, M. A., Sala, S. D., Abrahams, S., Logie, R. H., Mendez, L. G., & Lopera, F. (2011). Specific deficit of colour-colour short-term memory binding in sporadic and familial Alzheimer's disease. Neuropsychologia, 49(7), 1943–1952.

    Article  PubMed  Google Scholar 

  • *Parra, M. A., Ascencio, L. L., Urquina, H. F., Manes, F., & Ibanez, A. M. (2012). P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Frontiers in Neurology, 3, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Paulsen, J. S., Salmon, D. P., Monsch, A. U., Butters, N., Swenson, M. R., & Bondi, M. W. (1995). Discrimination of cortical from subcortical dementias on the basis of memory and problem-solving tests. Journal of Clinical Psychology, 51(1), 48–58.

    Article  CAS  PubMed  Google Scholar 

  • *Pengas, G., Patterson, K., Arnold, R. J., Bird, C. M., Burgess, N., & Nestor, P. J. (2010). Lost and found: Bespoke memory testing for Alzheimer's disease and semantic dementia. Journal of Alzheimer's Disease, 21(4), 1347–1365.

    Article  PubMed  Google Scholar 

  • Perani, D., Schillaci, O., Padovani, A., Nobili, F., Iaccarino, L., Della Rosa, P., et al. (2013). A survey of FDG-and amyloid-PET imaging in dementia and GRADE analysis. BioMed Research International, 2014, 785039–785039.

    Google Scholar 

  • Peters, F., Villeneuve, S., & Belleville, S. (2014). Predicting progression to dementia in elderly subjects with mild cognitive impairment using both cognitive and neuroimaging predictors. Journal of Alzheimer's Disease, 38(2), 307–318.

    PubMed  Google Scholar 

  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. (2007). Mild cognitive impairment. Continuum: Lifelong learning in neurology, 13 (2). Dementia, 15–38.

  • Petersen, R., & Kanow, C. (2001). Mild cognitive impairment-state of the art 2001. REVUE NEUROLOGIQUE, 157(10; SUPP), 4S29-24S29.

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J., et al. (2009). Mild cognitive impairment: Ten years later. Archives of Neurology, 66(12), 1447–1455.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen, R. C., Aisen, P., Boeve, B. F., Geda, Y. E., Ivnik, R. J., Knopman, D. S., et al. (2013). Mild cognitive impairment due to Alzheimer disease in the community. Annals of Neurology, 74(2), 199–208.

    PubMed  PubMed Central  Google Scholar 

  • *Pike, K. E., Kinsella, G. J., Ong, B., Mullaly, E., Rand, E., Storey, E., et al. (2013). Is the WMS-IV verbal paired associates as effective as other memory tasks in discriminating amnestic mild cognitive impairment from normal aging? The Clinical Neuropsychologist, 27(6), 908–923.

    Article  PubMed  Google Scholar 

  • Portet, F., Ousset, P. J., Visser, P. J., Frisoni, G. B., Nobili, F., Scheltens, P., et al. (2006). Mild cognitive impairment (MCI) in medical practice: A critical review of the concept and new diagnostic procedure. Report of the MCI working Group of the European Consortium on Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 77(6), 714–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • *Rabin, L. A., Pare, N., Saykin, A. J., Brown, M. J., Wishart, H. A., Flashman, L. A., et al. (2009). Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer's disease. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 16(3), 357–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., et al. (2005). Conversion of mild cognitive impairment to dementia: Predictive role of mild cognitive impairment subtypes and vascular risk factors. Dementia and Geriatric Cognitive Disorders, 21(1), 51–58.

    Article  PubMed  Google Scholar 

  • Reitsma, J. B., Rutjes, A. W. S., Whiting, P., Vlassov, V. V., Leeflang, M. M. G., & Deeks, J. J. (2009). Chapter 9: Assessing methodological quality. Cochrane handbook for systematic reviews of diagnostic test accuracy version, 1(0), 1–27.

    Google Scholar 

  • Rentz, D. M., Parra Rodriguez, M. A., Amariglio, R., Stern, Y., Sperling, R., & Ferris, S. (2013). Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer's disease: A selective review. Alzheimer's Research & Therapy, 5(6), 58.

    Article  Google Scholar 

  • *Ritter, E., Despres, O., Monsch, A. U., & Manning, L. (2006). Topographical recognition memory sensitive to amnestic mild cognitive impairment but not to depression. International Journal of Geriatric Psychiatry, 21(10), 924–929.

    Article  PubMed  Google Scholar 

  • Saka, E., & Elibol, B. (2009). Enhanced cued recall and clock drawing test performances differ in Parkinson's and Alzheimer's disease-related cognitive dysfunction. Parkinsonism & Related Disorders, 15(9), 688–691.

    Article  Google Scholar 

  • Saka, E., Mihci, E., Topcuoglu, M. A., & Balkan, S. (2006). Enhanced cued recall has a high utility as a screening test in the diagnosis of Alzheimer's disease and mild cognitive impairment in Turkish people. Archives of Clinical Neuropsychology, 21(7), 745–751.

    Article  PubMed  Google Scholar 

  • Salmon, D. P., Granholm, E., McCullough, D., Butters, N., & Grant, I. (1989). Recognition memory span in mildly and moderately demented patients with Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 11(4), 429–443.

    Article  CAS  PubMed  Google Scholar 

  • *Salmon, D. P., Thomas, R. G., Pay, M. M., Booth, A., Hofstetter, C. R., Thal, L. J., et al. (2002). Alzheimer's disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59(7), 1022–1028.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke, K., & Hüll, M. (2002). Neuropsychological differentiation of small vessel disease, Alzheimer's disease and mixed dementia. Journal of the Neurological Sciences, 203, 17–22.

    Article  PubMed  Google Scholar 

  • *Schrijnemaekers, A. M., de Jager, C. A., Hogervorst, E., & Budge, M. M. (2006). Cases with mild cognitive impairment and Alzheimer's disease fail to benefit from repeated exposure to episodic memory tests as compared with controls. Journal of Clinical and Experimental Neuropsychology, 28(3), 438–455.

  • Schneider, J. A., Arvanitakis, Z., Leurgans, S. E., & Bennett, D. A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Annals of Neurology, 66(2), 200–208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). Meta-analysis with R. New York, NY: Springer.

  • *Serna, A., Contador, I., Bermejo-Pareja, F., Mitchell, A. J., Fernández-Calvo, B., Ramos, F., et al. (2015). Accuracy of a brief neuropsychological battery for the diagnosis of dementia and mild cognitive impairment: An analysis of the NEDICES cohort. Journal of Alzheimer's Disease, 48, 163–173.

    Article  PubMed  Google Scholar 

  • *Shankle, W. R., Romney, A. K., Hara, J., Fortier, D., Dick, M. B., Chen, J. M., et al. (2005). Methods to improve the detection of mild cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4919–4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • *Shi, J., Tian, J., Wei, M., Miao, Y., & Wang, Y. (2012). The utility of the Hopkins verbal learning test (Chinese version) for screening dementia and mild cognitive impairment in a Chinese population. BMC Neurology, 12, 136.

    Article  PubMed  PubMed Central  Google Scholar 

  • *Shi, J., Wei, M., Tian, J., Snowden, J., Zhang, X., Ni, J., et al. (2014). The Chinese version of story recall: A useful screening tool for mild cognitive impairment and Alzheimer's disease in the elderly. Biomed Central Psychiatry, 14(71), 1–10.

  • Smith, G. E., Ivnik, R. I., & Lucas, J. (2008). Assessment techniques: Tests, test batteries, norms, and methodological approaches. In J. E. Morgan & J. H. Ricker (Eds.), Textbook of clinical neuropsychology (pp. 38–58). New York: Taylor & Francis Group.

    Google Scholar 

  • *Sotaniemi, M., Pulliainen, V., Hokkanen, L., Pirttila, T., Hallikainen, I., Soininen, H., et al. (2012). CERAD-neuropsychological battery in screening mild Alzheimer's disease. Acta Neurologica Scandinavica, 125(1), 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 280–292.

    Article  Google Scholar 

  • *Storandt, M., & Morris, J. C. (2010). Ascertainment bias in the clinical diagnosis of Alzheimer disease. Archives of Neurology, 67(11), 1364–1369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Summers, M. J., & Saunders, N. L. (2012). Neuropsychological measures predict decline to Alzheimer's dementia from mild cognitive impairment. Neuropsychology, 26(4), 498.

    Article  PubMed  Google Scholar 

  • *Takechi, H., & Dodge, H. H. (2010). Scenery picture memory test: A new type of quick and effective screening test to detect early stage Alzheimer's disease patients. Geriatrics & Gerontology International, 10(2), 183–190.

  • *Testa, J. A., Ivnik, R. J., Boeve, B., Petersen, R. C., Pankratz, V. S., Knopman, D., et al. (2004). Confrontation naming does not add incremental diagnostic utility in MCI and Alzheimer's disease. Journal of the International Neuropsychological Society, 10(4), 504–512.

    Article  PubMed  Google Scholar 

  • Tierney, M. C., Black, S. E., Szalai, J. P., Snow, W. G., Fisher, R. H., Nadon, G., et al. (2001). Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Archives of Neurology, 58(10), 1654–1659.

    Article  CAS  PubMed  Google Scholar 

  • Troster, A. I., Butters, N., Salmon, D. P., Cullum, C. M., Jacobs, D., Brandt, J., et al. (1993). The diagnostic utility of savings scores: Differentiating Alzheimer's and Huntington's diseases with the logical memory and visual reproduction tests. Journal of Clinical and Experimental Neuropsychology, 15(5), 773–788.

    Article  CAS  PubMed  Google Scholar 

  • *Thompson, T. A. C., Wilson, P. H., Snyder, P. J., Pietrzak, R. H., Darby, D., Maruff, P., & Buschke, H. (2011). Sensitivity and Test-Retest Reliability of the International Shopping List Test in Assessing Verbal Learning and Memory in Mild Alzheimer's Disease. Archives of Clinical Neuropsychology, 26(5), 412–424.

  • Troyer, A. K., Murphy, K. J., Anderson, N. D., Hayman-Abello, B. A., Craik, F. I., & Moscovitch, M. (2008). Item and associative memory in amnestic mild cognitive impairment: Performance on standardized memory tests. Neuropsychology, 22(1), 10–16.

    Article  PubMed  Google Scholar 

  • Troyer, A. K., Murphy, K. J., Anderson, N. D., Craik, F. I., Moscovitch, M., Maione, A., et al. (2012). Associative recognition in mild cognitive impairment: Relationship to hippocampal volume and apolipoprotein E. Neuropsychologia, 50(14), 3721–3728.

    Article  PubMed  Google Scholar 

  • Turriziani, P., Fadda, L., Caltagirone, C., & Carlesimo, G. A. (2004). Recognition memory for single items and for associations in amnesic patients. Neuropsychologia, 42(4), 426–433.

    Article  PubMed  Google Scholar 

  • US Dept of Health and Human Services, US Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry. (2013). Alzheimer’s disease: developing drugs for the treatment of early stage disease (draft guidance). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338287.pdf.

  • Vacante, M., Wilcock, G. K., & de Jager, C. A. (2013). Computerized adaptation of the placing test for early detection of both mild cognitive impairment and Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 35(8), 846–856.

    Article  PubMed  Google Scholar 

  • *Vogel, A., Mortensen, E. L., Gade, A., & Waldemar, G. (2007). The category cued recall test in very mild Alzheimer's disease: Discriminative validity and correlation with semantic memory functions. European Journal of Neurology, 14(1), 102–108.

  • Wang, H. M., Yang, C. M., Kuo, W. C., Huang, C. C., & Kuo, H. C. (2013). Use of a modified spatial-context memory test to detect amnestic mild cognitive impairment. PloS One, 8(2), e57030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler, D. (1945) A Standardized Memory Scale for Clinical Use. The Journal of Psychology, 19(1), 87-95, https://doi.org/10.1080/00223980.1945.9917223

  • Wechsler, D. (1997). WAIS-III: Administration and scoring manual: Wechsler adult intelligence scale: Psychological corporation. San Antonio, TX.

  • *Welsh, K., Butters, N., Hughes, J., Mohs, R., & Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer's disease using CERAD neuropsychological measures. Archives of Neurology, 48(3), 278–281.

    Article  CAS  PubMed  Google Scholar 

  • Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., et al. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529–536.

    Article  PubMed  Google Scholar 

  • Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., et al. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: Report of the international working group on mild cognitive impairment. Journal of Internal Medicine, 256(3), 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe, K., Petersen, R. C., Lindquist, K., Kramer, J., & Miller, B. (2006). Subtype of mild cognitive impairment and progression to dementia and death. Dementia and Geriatric Cognitive Disorders, 22(4), 312–319.

    Article  PubMed  Google Scholar 

  • Yassuda, M. S., Flaks, M. K., Viola, L. F., Pereira, F. S., Memoria, C. M., Nunes, P. V., et al. (2010). Psychometric characteristics of the Rivermead Behavioural memory test (RBMT) as an early detection instrument for dementia and mild cognitive impairment in Brazil. International Psychogeriatrics, 22(6), 1003–1011.

    Article  PubMed  Google Scholar 

  • Yonelinas, A. P., Hopfinger, J. B., Buonocore, M. H., Kroll, N. E., & Baynes, K. (2001). Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: An fMRI study. Neuroreport, 12(2), 359–363.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Smailagic, N., Hyde, C., Noel-Storr, A. H., Takwoingi, Y., McShane, R., et al. (2014). 11C–PIB-PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev, 7, CD010386.

  • Zlokovic, B. V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nature Reviews Neuroscience, 12(12), 723–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Department of Veterans Affairs, Veterans Health Administration, VISN 1 Career Development Award (N.H.S.), as well as National Institutes of Health grants R01 AG049810 (M.W.B.) and K24 AG026431 (M.W.B.). This material is also based upon work supported by the Office of Academic Affiliations, Department of Veterans Affairs. NHS serves as a consultant to Biogen. MWB serves as a consultant to Novartis and Eisai and receives royalties from Oxford University Press. KS was supported in this work by a University of the Sunshine Coast Research Scholarship. MS reports personal fees from Eli Lily (Australia) Pty Ltd and grants from Novotech Pty Ltd, outside the submitted work. The authors report no conflicts of interest. The contents of this article do not represent the views of the U.S. Department of Veterans Affairs of the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki H. Stricker.

Electronic supplementary material

ESM 1

(DOCX 825 kb)

ESM 2

(DOCX 1.13 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissberger, G.H., Strong, J.V., Stefanidis, K.B. et al. Diagnostic Accuracy of Memory Measures in Alzheimer’s Dementia and Mild Cognitive Impairment: a Systematic Review and Meta-Analysis. Neuropsychol Rev 27, 354–388 (2017). https://doi.org/10.1007/s11065-017-9360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-017-9360-6

Keywords

Navigation