Advertisement

Neuropsychology Review

, Volume 28, Issue 1, pp 1–15 | Cite as

The Effect of Non-Stroke Cardiovascular Disease States on Risk for Cognitive Decline and Dementia: A Systematic and Meta-Analytic Review

  • Kayla B. Stefanidis
  • Christopher D. Askew
  • Kim Greaves
  • Mathew J. Summers
Review

Abstract

Cardiovascular disease is associated with increased risk for cognitive decline and dementia, but it is unclear whether this risk varies across disease states or occurs in the absence of symptomatic stroke. To examine the evidence of increased risk for cognitive decline and dementia following non-stroke cardiovascular disease we conducted two independent meta-analyses in accordance with PRISMA guidelines. The first review examined cardiovascular diagnoses (atrial fibrillation, congestive heart failure, periphery artery disease and myocardial infarction) while the second review assessed the impact of atherosclerotic burden (as indicated by degree of stenosis, calcification score, plaque morphology or number of plaques). Studies eligible for review longitudinally assessed risk for clinically significant cognitive decline and/or dementia and excluded stroke and cognitive impairment at baseline. Summary statistics were computed via the inverse variance weighted method, utilising Cox Proportional Hazards data (Hazard Ratios, HR). Both atrial fibrillation (n = 5, HR = 1.26, 95% CI [1.12, 1.43]) and severe atherosclerosis (n = 4, HR = 1.59, 95% CI [1.12, 2.26]) emerged as significant risk factors for cognitive decline and/or dementia. A small set of studies reviewed, insufficient for meta-analysis, examining congestive heart failure, peripheral artery disease and myocardial infarction suggested that these conditions may also be associated with an increased risk of cognitive decline/dementia. In the absence of stroke, patients with atrial fibrillation or generalised atherosclerosis are at heightened risk for cognitive deterioration. Nonetheless, this paper highlights the need for methodologically rigorous and prospective investigation of the relationship between CVD and dementia.

Keywords

Cardiovascular disease Dementia Cognitive decline Meta-analysis 

Notes

Author Contributions

KS: conceived and designed the research, performed statistical analyses, acquired the data, drafted the manuscript.

CA: made critical revisions of the manuscript for key intellectual content.

KG: made critical revisions of the manuscript for key intellectual content.

MS: conceived and designed the research, performed statistical analyses, acquired the data, drafted the manuscript.

Compliance with Ethical Standards

Disclosures

KS is a recipient of a University of the Sunshine Coast Postgraduate Research scholarship. MS reports personal fees from Eli Lily (Australia) Pty Ltd. and grants from Novotech Pty Ltd., outside the submitted work. All other authors report nothing to disclose.

Supplementary material

11065_2017_9359_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)
11065_2017_9359_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15 kb)
11065_2017_9359_MOESM3_ESM.docx (281 kb)
ESM 3 (DOCX 280 kb)
11065_2017_9359_MOESM4_ESM.docx (180 kb)
ESM 4 (DOCX 180 kb)

References

  1. Alonso, A., Jacobs, D. R., Menotti, A., Nissinen, A., Dontas, A., Kafatos, A., & Kromhout, D. (2009). Cardiovascular risk factors and dementia mortality: 40 years of follow-up in the Seven Countries Study. Journal of the Neurological Sciences, 280, 79–83. doi: https://doi.org/10.1016/j.jns.2009.02.004.CrossRefPubMedGoogle Scholar
  2. Anstey, K. J., Cherbuin, N., Budge, M., & Young, J. (2011). Body mass index in midlife and late-life as a risk factor for dementia: A meta-analysis of prospective studies. Obesity Reviews, 12, e426–e437. doi: https://doi.org/10.1111/j.1467-789X.2010.00825.x.CrossRefPubMedGoogle Scholar
  3. Anstey, K. J., von Sanden, C., Salim, A., & O'Kearney, R. (2007). Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. American Journal of Epidemiology, 166, 367–378. doi: https://doi.org/10.1093/aje/kwm116.CrossRefPubMedGoogle Scholar
  4. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  5. *Bos, D., Vernooij, M. W., de Bruijn, R. F. A. G., Koudstaal, P. J., Hofman, A., Franco, O. H., et al. (2015). Atherosclerotic calcification is related to a higher risk of dementia and cognitive decline. Alzheimer's & Dementia, 11, 639–647. doi: https://doi.org/10.1016/j.jalz.2014.05.1758.CrossRefGoogle Scholar
  6. *Carcaillon, L., Plichart, M., Zureik, M., Rouaud, O., Majed, B., Ritchie, K., et al. (2015). Carotid plaque as a predictor of dementia in older adults: The Three-City Study. Alzheimer's & Dementia, 11, 239–248. doi: https://doi.org/10.1016/j.jalz.2014.07.160.CrossRefGoogle Scholar
  7. Cohen, R. A. (2010). Neuropsychology of heart disease: Levels of analysis. In R. A. Cohen & J. Gunstad (Eds.), Neuropsychology and cardiovascular disease (pp. 19–29). New York: Oxford University Press.Google Scholar
  8. *de Bruijn, R. F. A. G., Heeringa, J., Wolters, F. J., Franco, O. H., Stricker, B. H., Hofman, A., et al. (2015). Association between atrial fibrillation and dementia in the general population. JAMA Neurology, 72, 1288–1294. doi: https://doi.org/10.1001/jamaneurol.2015.2161.CrossRefPubMedGoogle Scholar
  9. de la Torre, J. C. (2012). Cardiovascular risk factors promote Brain hypoperfusion leading to cognitive decline and dementia. Cardiovascular Psychiatry and Neurology, 2012, 367516. doi: https://doi.org/10.1155/2012/367516.PubMedPubMedCentralGoogle Scholar
  10. Debette, S., Bauters, C., Leys, D., Lamblin, N., Pasquier, F., & de Groote, P. (2007). Prevalence and determinants of cognitive impairment in chronic heart failure patients. Congestive Heart Failure, 13, 205–208. doi: https://doi.org/10.1111/j.1527-5299.2007.06612.x.CrossRefPubMedGoogle Scholar
  11. *Dublin, S., Anderson, M. L., Haneuse, S. J., Heckbert, S. R., Crane, P. K., Breitner, J. C., et al. (2011). Atrial fibrillation and risk of dementia: A prospective cohort study. Journal of the American Geriatrics Society, 59, 1369–1375. doi: https://doi.org/10.1111/j.1532-5415.2011.03508.x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Elias, M. F., Sullivan, L. M., Elias, P. K., Vasan, R. S., D'Agostino Sr., R. B., Seshadri, S., et al. (2006). Atrial fibrillation is associated with lower cognitive performance in the Framingham offspring men. Journal of Stroke and Cerebrovascular Diseases, 15, 214–222. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2006.05.009.CrossRefPubMedGoogle Scholar
  13. Fillit, H., Nash, D. T., Rundek, T., & Zuckerman, A. (2008). Cardiovascular risk factors and dementia. The American Journal of Geriatric Pharmacotherapy, 6, 100–118. doi: https://doi.org/10.1016/j.amjopharm.2008.06.004.CrossRefPubMedGoogle Scholar
  14. Flück, D., Beaudin, A. E., Steinback, C. D., Kumarpillai, G., Shobha, N., McCreary, C. R., et al. (2014). Effects of aging on the association between cerebrovascular responses to visual stimulation, hypercapnia and arterial stiffness. Frontiers in Physiology, 5. doi: https://doi.org/10.3389/fphys.2014.00049.
  15. *Haring, B., Leng, X., Robinson, J., Johnson, K. C., Jackson, R. D., Beyth, R., et al. (2013). Cardiovascular disease and cognitive decline in postmenopausal women: Results from the Women's Health Initiative Memory Study. Journal of the American Heart Association, 2, e000369. doi: https://doi.org/10.1161/jaha.113.000369.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Higgins, J. P. T., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., et al. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ, 343, d5928. doi: https://doi.org/10.1136/bmj.d5928.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hofman, A., Ott, A., Breteler, M. M. B., Bots, M. L., Slooter, A. J. C., van Harskamp, F., et al. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. The Lancet, 349, 151–154. doi: https://doi.org/10.1016/S0140-6736(96)09328-2.CrossRefGoogle Scholar
  18. Jefferson, A. L., Holland, C. M., Tate, D. F., Csapo, I., Poppas, A., Cohen, R. A., & Guttmann, C. R. G. (2011). Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output. Neurobiology of Aging, 32, 133–139. doi: https://doi.org/10.1016/j.neurobiolaging.2009.01.011.CrossRefPubMedGoogle Scholar
  19. Jozwiak, A., Guzik, P., Mathew, A., Wykretowicz, A., & Wysocki, H. (2006). Association of atrial fibrillation and focal neurologic deficits with impaired cognitive function in hospitalized patients ≥65 years of age. The American Journal of Cardiology, 98, 1238–1241. doi: https://doi.org/10.1016/j.amjcard.2006.05.058.CrossRefPubMedGoogle Scholar
  20. Kalantarian, S., Stern, T. A., Mansour, M., & Ruskin, J. N. (2013). Cognitive impairment associated with atrial fibrillation: A meta-analysis. Annals of Internal Medicine, 158, 338–346. doi: https://doi.org/10.7326/0003-4819-158-5-201303050-00007.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kawabata-Yoshihara, L. A., Scazufca, M., Santos Ide, S., Whitaker, A., Kawabata, V. S., Benseñor, I. M., et al. (2012). Atrial fibrillation and dementia: Results from the Sao Paulo Ageing & Health study. Arquivos Brasileiros de Cardiologia, 99, 1108–1114.CrossRefPubMedGoogle Scholar
  22. Kivipelto, M., Helkala, E., Laakso, M. P., Hänninen, T., Hallikainen, M., Alhainen, K., et al. (2002). Apolipoprotein E ε4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Annals of Internal Medicine, 137, 149–155. doi: https://doi.org/10.7326/0003-4819-137-3-200208060-00006.CrossRefPubMedGoogle Scholar
  23. Knecht, S., Oelschläger, C., Duning, T., Lohmann, H., Albers, J., Stehling, C., et al. (2008). Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. European Heart Journal, 29, 2125–2132. doi: https://doi.org/10.1093/eurheartj/ehn341.CrossRefPubMedGoogle Scholar
  24. Kwok, C. S., Loke, Y. K., Hale, R., Potter, J. F., & Myint, P. K. (2011). Atrial fibrillation and incidence of dementia: A systematic review and meta-analysis. Neurology, 76, 914–922. doi: https://doi.org/10.1212/WNL.0b013e31820f2e38.CrossRefPubMedGoogle Scholar
  25. Lau, J., Ioannidis, J. P. A., Terrin, N., Schmid, C. H., & Olkin, I. (2006). The case of the misleading funnel plot. BMJ, 333(7568), 597–600. doi: https://doi.org/10.1136/bmj.333.7568.597.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6, e1000100. doi: https://doi.org/10.7326/0003-4819-151-4-200908180-00136.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Llewellyn, D. J., Lang, I. A., Matthews, F. E., Plassman, B. L., Rogers, M. A., Morgenstern, L. B., et al. (2010). Vascular health, diabetes, APoE and dementia: The Aging, Demographics, and Memory Study. Alzheimer's Research & Therapy, 2, 19. doi: https://doi.org/10.1186/alzrt43.CrossRefGoogle Scholar
  28. *Marengoni, A., Qiu, C., Winblad, B., & Fratiglioni, L. (2011). Atrial fibrillation, stroke and dementia in the very old: A population-based study. Neurobiology of Aging, 32, 1336–1337. doi: https://doi.org/10.1016/j.neurobiolaging.2009.08.002.CrossRefPubMedGoogle Scholar
  29. *Marzona, I., O'Donnell, M., Teo, K., Gao, P., Anderson, C., Bosch, J., & Yusuf, S. (2012). Increased risk of cognitive and functional decline in patients with atrial fibrillation: Results of the ONTARGET and TRANSCEND studies. CMAJ, 184, E329–E336. doi: https://doi.org/10.1503/cmaj.111173.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151, 264–269. doi: https://doi.org/10.7326/0003-4819-151-4-200908180-00135.CrossRefPubMedGoogle Scholar
  31. *Newman, A. B., Fitzpatrick, A. L., Lopez, O., Jackson, S., Lyketsos, C., Jagust, W., et al. (2005). Dementia and Alzheimer's disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. Journal of the American Geriatrics Society, 53, 1101–1107. doi: https://doi.org/10.1111/j.1532-5415.2005.53360.x.CrossRefPubMedGoogle Scholar
  32. Ott, A., Breteler, M. M. B., de Bruyne, M. C., van Harskamp, F., Grobbee, D. E., & Hofman, A. (1997). Atrial fibrillation and dementia in a population-based study: The Rotterdam Study. Stroke, 28, 316–321. doi: https://doi.org/10.1161/01.str.28.2.316.CrossRefPubMedGoogle Scholar
  33. Pinkston, J. B., Alekseeva, N., & Toledo, E. G. (2009). Stroke and dementia. Neurological Research, 31, 824–831. doi: https://doi.org/10.1179/016164109x12445505689643.CrossRefPubMedGoogle Scholar
  34. Pressler, S. J., Subramanian, U., Kareken, D., Perkins, S. M., Gradus-Pizlo, I., Sauve, M. J., et al. (2010). Cognitive deficits in chronic heart failure. Nursing Research, 59, 127–139. doi: https://doi.org/10.1097/NNR.0b013e3181d1a747.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qiu, C., Winblad, B., Marengoni, A., Klarin, I., Fastbom, J., & Fratiglioni, L. (2006). Heart failure and risk of dementia and alzheimer disease: A population-based cohort study. Archives of Internal Medicine, 166, 1003–1008. doi: https://doi.org/10.1001/archinte.166.9.1003.CrossRefPubMedGoogle Scholar
  36. Rusanen, M., Kivipelto, M., Levälahti, E., Laatikainen, T., Tuomilehto, J., Soininen, H., & Ngandu, T. (2014). Heart diseases and long-term risk of dementia and Alzheimer's disease: A population-based CAIDE study. Journal of Alzheimer's Disease, 42, 183–191. doi: https://doi.org/10.3233/jad-132363.PubMedGoogle Scholar
  37. Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology, 69, 2197–2204. doi: https://doi.org/10.1212/01.wnl.0000271090.28148.24.CrossRefPubMedGoogle Scholar
  38. Schwarzer, G. (2007). ‘meta’: An R package for meta-analysis: R News, 7, 40–45. https://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf.
  39. Silbert, B. S., Scott, D. A., Evered, L. A., Lewis, M. S., & Maruff, P. T. (2007). Preexisting cognitive impairment in patients scheduled for elective coronary artery bypass graft surgery. Anesthesia & Analgesia, 104, 1023–1028. doi: https://doi.org/10.1213/01.ane.0000263285.03361.3a.CrossRefGoogle Scholar
  40. Tierney, J. F., Stewart, L. A., Ghersi, D., Burdett, S., & Sydes, M. R. (2007). Practical methods for incorporating summary time-to-event data into meta-analysis. [journal article]. Trials, 8, 1–16. doi: https://doi.org/10.1186/1745-6215-8-16.CrossRefGoogle Scholar
  41. Waldstein, S. R., Tankard, C. F., Maier, K. J., Pelletier, J. R., Snow, J., Gardner, A. W., et al. (2003). Peripheral arterial disease and cognitive function. Psychosomatic Medicine, 65, 757–763.CrossRefPubMedGoogle Scholar
  42. *Wendell, C. R., Waldstein, S. R., Ferrucci, L., O'Brien, R. J., Strait, J. B., & Zonderman, A. B. (2012). Carotid atherosclerosis and prospective risk of dementia. Stroke, 43, 3319–3324. doi: https://doi.org/10.1161/strokeaha.112.672527.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xiang, J., Zhang, T., Yang, Q.-W., Liu, J., Chen, Y., Cui, M., et al. (2013). Carotid artery atherosclerosis is correlated with cognitive impairment in an elderly urban Chinese non-stroke population. Journal of Clinical Neuroscience, 20, 1571–1575. doi: https://doi.org/10.1016/j.jocn.2013.02.026.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kayla B. Stefanidis
    • 1
  • Christopher D. Askew
    • 2
  • Kim Greaves
    • 3
  • Mathew J. Summers
    • 1
  1. 1.Sunshine Coast Mind and Neuroscience - Thompson InstituteUniversity of the Sunshine CoastBirtinyaAustralia
  2. 2.School of Health & Sport SciencesUniversity of the Sunshine CoastSippy DownsAustralia
  3. 3.Sunshine Coast Health and Hospital Service, Nambour General Hospital, NambourUniversity of the Sunshine CoastSippy DownsAustralia

Personalised recommendations