Neuropsychology Review

, Volume 27, Issue 1, pp 62–80 | Cite as

Enhancing Cognitive Functioning in Healthly Older Adults: a Systematic Review of the Clinical Significance of Commercially Available Computerized Cognitive Training in Preventing Cognitive Decline

  • Tejal M. Shah
  • Michael Weinborn
  • Giuseppe Verdile
  • Hamid R. Sohrabi
  • Ralph N. MartinsEmail author


Successfully assisting older adults to maintain or improve cognitive function, particularly when they are dealing with neurodegenerative disorders such as Alzheimer’s disease (AD), remains a major challenge. Cognitive training may stimulate neuroplasticity thereby increasing cognitive and brain reserve. Commercial brain training programs are computerized, readily-available, easy-to-administer and adaptive but often lack supportive data and their clinical validation literature has not been previously reviewed. Therefore, in this review, we report the characteristics of commercially available brain training programs, critically assess the number and quality of studies evaluating the empirical evidence of these programs for promoting brain health in healthy older adults, and discuss underlying causal mechanisms. We searched PubMed, Google Scholar and each program’s website for relevant studies reporting the effects of computerized cognitive training on cognitively healthy older adults. The evidence for each program was assessed via the number and quality (PEDro score) of studies, including Randomized Control Trials (RCTs). Programs with clinical studies were subsequently classified as possessing Level I, II or III evidence. Out of 18 identified programs, 7 programs were investigated in 26 studies including follow-ups. Two programs were identified as possessing Level I evidence, three programs demonstrated Level II evidence and an additional two programs demonstrated Level III evidence. Overall, studies showed generally high methodological quality (average PEDro score = 7.05). Although caution must be taken regarding any potential bias due to selective reporting, current evidence supports that at least some commercially available computerized brain training products can assist in promoting healthy brain aging.


Computerized cognitive training Brain training Cognition Dementia Alzheimer’s disease 



TS is supported by the Australian Postgraduate Award from the University of Western Australia, the Research Excellence Award from Edith Cowan University and the Freemasons of Western Australia Education Grant 2010 and 2011. TS and MW reviewed the study abstracts and program relevant websites. All authors reviewed and approved the final manuscript. The McCusker Alzheimer’s Research Foundation Inc. contributed financial and in kind support.


  1. AccessEconomics (2004). Delaying the onset of Alzheimer’s disease: projections and issues. Google Scholar
  2. Anand, R., Chapman, S. B., Rackley, A., Keebler, M., Zientz, J., & Hart, J. (2011). Gist reasoning training in cognitively normal seniors. International Journal of Geriatric Psychiatry, 26(9), 961–968.PubMedCrossRefGoogle Scholar
  3. Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences, 110(11), 4357–4362.CrossRefGoogle Scholar
  4. Anderson, S., White-Schwoch, T., Choi, H. J., & Kraus, N. (2014). Partial maintenance of auditory-based cognitive training benefits in older adults. Neuropsychologia, 62, 286–296.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson-Hanley, C., Arciero, P. J., Brickman, A. M., Nimon, J. P., Okuma, N., Westen, S. C., et al. (2012). Exergaming and older adult cognition: A cluster randomized clinical trial. American Journal of Preventive Medicine, 42(2), 109–119.PubMedCrossRefGoogle Scholar
  6. Bahar-Fuchs, A., Clare, L., & Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews. doi: 10.1002/14651858.PubMedGoogle Scholar
  7. Ball, K., & Owsley, C. (1993). The useful field of view test: a new technique for evaluating age-related declines in visual function. Journal of the American Optometric Association, 64(1), 71–79.PubMedGoogle Scholar
  8. Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America A, 5(12), 2210–2219.CrossRefGoogle Scholar
  9. Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002a). Effects of cognitive training interventions with older adults: a randomized controlled trial. The Journal of the American Medical Association, 288(18), 2271–2281.PubMedCrossRefGoogle Scholar
  10. Ball, K. K., Wadley, V. G., & Edwards, J. D. (2002b). Advances in technology used to assess and retrain older drivers. Gerontechnology, 1(4), 251–261.Google Scholar
  11. Ball, K. K., Ross, L. A., Roth, D. L., & Edwards, J. D. (2013). Speed of Processing Training in the ACTIVE Study How Much Is Needed and Who Benefits? Journal of Aging and Health, 25(8 suppl), 65S–84S.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ballesteros, S., Prieto, A., Mayas, J., Toril, P., Pita, C., Ponce de León, L., et al. (2014). Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Frontiers in Aging Neuroscience, 6, 277. doi: 10.3389/fnagi.2014.00277.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ballesteros, S., Mayas, J., Prieto, A., Toril, P., Pita, C., Laura, P. D. L., et al. (2015a). A randomized controlled trial of brain training with non-action video games in older adults: results of the 3-month follow-up. Frontiers in Aging Neuroscience, 7, 45. doi: 10.3389/fnagi.2015.00045.PubMedPubMedCentralGoogle Scholar
  14. Ballesteros, S., Prieto, A., Mayas, J., & Waterworth, J. A. (2015b). Corrigendum: Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Frontiers in Aging Neuroscience, 7, 82.PubMedPubMedCentralGoogle Scholar
  15. Baltes, P. B., & Lindenberger, U. (1988). On the range of cognitive plasticity in old age as a function of experience: 15 years of intervention research. Behavior Therapy, 19(3), 283–300.CrossRefGoogle Scholar
  16. Baltes, P. B., Kliegl, R., & Dittmann-Kohli, F. (1988). On the locus of training gains in research on the plasticity of fluid intelligence in old age. Journal of Educational Psychology, 80(3), 392–400.CrossRefGoogle Scholar
  17. Bamidis, P. D., Fissler, P., Papageorgiou, S. G., Zilidou, V., Konstantinidis, E. I., Billis, A. S., et al. (2015). Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Frontiers in Aging Neuroscience, 7, 152.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Barnes, D. E., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., et al. (2009). Computer-based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer Disease and Associated Disorders, 23(3), 205–210. doi: 10.1097/WAD.0b013e31819c6137.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Barnes, D. E., Santos-Modesitt, W., Poelke, G., Kramer, A. F., Castro, C., Middleton, L. E., et al. (2013). The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Internal Medicine, 173(9), 797–804.PubMedCrossRefGoogle Scholar
  20. Berry, A. S., Zanto, T. P., Clapp, W. C., Hardy, J. L., Delahunt, P. B., Mahncke, H. W., et al. (2010). The influence of perceptual training on working memory in older adults. PloS One, 5(7), e11537.PubMedPubMedCentralCrossRefGoogle Scholar
  21. official site - brain age: concentration training for Nintendo 3DS. Accessed 16 Sept 2015.
  22. Accessed 15 Sept 2015.
  23. Brayne, C. (2007). The elephant in the room—healthy brains in later life, epidemiology and public health. Nature Reviews Neuroscience, 8(3), 233–239.PubMedCrossRefGoogle Scholar
  24. Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., & Bäckman, L. (2011). Neural correlates of training-related working-memory gains in old age. NeuroImage, 58(4), 1110–1120. doi: 10.1016/j.neuroimage.2011.06.079.PubMedCrossRefGoogle Scholar
  25. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Annual Review of Neuroscience, 21(1), 149–186.PubMedCrossRefGoogle Scholar
  26. Buschert, V., Bokde, A. L., & Hampel, H. (2010). Cognitive intervention in Alzheimer disease. Nature Reviews Neurology, 6(9), 508–517.PubMedCrossRefGoogle Scholar
  27. Cameirão, M. S., Badia, S. B. I., Oller, E. D., & Verschure, P. F. M. J. (2010). Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. Journal of NeuroEngineering and Rehabilitation, 7, 48. doi: 10.1186/1743-0003-7-48.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Casey, D. A., Antimisiaris, D., & O’Brien, J. (2010). Drugs for Alzheimer’s disease: are they effective? Pharmacy and Therapeutics, 35(4), 208–211.PubMedPubMedCentralGoogle Scholar
  29. Chapman, S. B., Aslan, S., Spence, J. S., Hart, J. J., Bartz, E. K., Didehbani, N., et al. (2013). Neural Mechanisms of Brain Plasticity with Complex Cognitive Training in Healthy Seniors. Cerebral Cortex. doi: 10.1093/cercor/bht234.PubMedPubMedCentralGoogle Scholar
  30. Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., et al. (2011). Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92(4), 519–530.PubMedCrossRefGoogle Scholar
  31. cogmed working memory training. Accessed 17 Sept 2015.
  32. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Academic.Google Scholar
  33. Dakim brainfitness. Accessed 17 Sept 2015.
  34. Edwards, J. D., Wadley, V. G., Myers, R. S., Roenker, D. L., Cissell, G. M., & Ball, K. K. (2002). Transfer of a Speed of Processing Intervention to Near and Far Cognitive Functions. Gerontology, 48(5), 329–340.PubMedCrossRefGoogle Scholar
  35. Edwards, J. D., Vance, D. E., Wadley, V. G., Cissell, G. M., Roenker, D. L., & Ball, K. K. (2005). Reliability and validity of useful field of view test scores as administered by personal computer. Journal of Clinical and Experimental Neuropsychology, 27(5), 529–543.PubMedCrossRefGoogle Scholar
  36. Edwards, J. D., Ross, L. A., Wadley, V. G., Clay, O. J., Crowe, M., Roenker, D. L., et al. (2006). The useful field of view test: normative data for older adults. Archives of Clinical Neuropsychology, 21(4), 275–286.PubMedCrossRefGoogle Scholar
  37. Edwards, J. D., Valdés, E. G., Peronto, C., Castora-Binkley, M., Alwerdt, J., Andel, R., et al. (2013). The efficacy of InSight cognitive training to improve useful field of view performance: A brief report. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70(3), 417–422. doi: 10.1093/geronb/gbt113.CrossRefGoogle Scholar
  38. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., et al. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 1667–1676.PubMedCrossRefGoogle Scholar
  39. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., et al. (2012). Memory training impacts short-term changes in aging white matter: A longitudinal diffusion tensor imaging study. Human Brain Mapping, 33(10), 2390–2406.PubMedCrossRefGoogle Scholar
  40. Fernandez, A. (2010). Transforming brain health with digital tools to assess, enhance and treat cognition across the lifespan: the state of the brain health market. <>. Accessed 9 Feb 2011.
  41. Frantzidis, C. A., Ladas, A.-K. I., Vivas, A. B., Tsolaki, M., & Bamidis, P. D. (2014). Cognitive and physical training for the elderly: Evaluating outcome efficacy by means of neurophysiological synchronization. International Journal of Psychophysiology, 93(1), 1–11. doi: 10.1016/j.ijpsycho.2014.01.007.PubMedCrossRefGoogle Scholar
  42. Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343–353.PubMedCrossRefGoogle Scholar
  43. Galante, E., Venturini, G., & Fiaccadori, C. (2007). Computer-based cognitive intervention for dementia: Preliminary results of a randomized clinical trial. The Italian Journal of Occupational Medicine and Ergonomics, 29(3 suppl B), B26–B32.Google Scholar
  44. Gates, N., Sachdev, P., Singh, M. F., & Valenzuela, M. (2011). Cognitive and memory training in adults at risk of dementia: A systematic review. BMC Geriatrics, 11(1), 55. doi: 10.1186/1471-2318-11-55.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Geyer, J., Insel, P., Farzin, F., Sternberg, D., Hardy, J. L., Scanlon, M., et al. (2015). Evidence for age-associated cognitive decline from internet game scores. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 1(2), 260–267.Google Scholar
  46. Günther, V. K., Schäfer, P., Holzner, B., & Kemmler, G. (2003). Long-term improvements in cognitive performance through computer-assisted cognitive training: A pilot study in a residential home for older people. Aging & Mental Health, 7(3), 200–206.CrossRefGoogle Scholar
  47. Haier, R. J., Siegel, B. V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research, 570(1), 134–143.PubMedCrossRefGoogle Scholar
  48. Haimov, I., Hanuka, E., & Horowitz, Y. (2008). Chronic insomnia and cognitive functioning among older adults. Behavioral Sleep Medicine, 6(1), 32–54.PubMedCrossRefGoogle Scholar
  49. Hardy, J., & Scanlon, M. (2009). The science behind lumosity. Google Scholar
  50. Hardy, J. L., Nelson, R. A., Thomason, M. E., Sternberg, D. A., Katovich, K., Farzin, F., et al. (2015). Enhancing cognitive abilities with comprehensive training: A large, online, randomized, active-controlled trial. PloS One, 10(9), e0134467.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jobe, J. B., Smith, D. M., Ball, K., Tennstedt, S. L., Marsiske, M., Willis, S. L., et al. (2001). ACTIVE: A cognitive intervention trial to promote independence in older adults. Controlled Clinical Trials, 22(4), 453–479.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Johansson, B. B. (2004). Brain plasticity in health and disease. The Keio Journal of Medicine, 53(4), 231–246.PubMedCrossRefGoogle Scholar
  53. Koepp, M., Gunn, R., Lawrence, A., Cunningham, V., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–267.PubMedCrossRefGoogle Scholar
  54. Kueider, A. M., Parisi, J. M., Gross, A. L., & Rebok, G. W. (2012). Computerized cognitive training with older adults: A systematic review. PloS One, 7(7), e40588.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11), e1001756.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O’Neil, J. P., et al. (2012). Association of lifetime cognitive engagement and low beta-amyloid deposition. Archives of Neurology, 69(5), 623–629.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Leung, N. T., Tam, H. M., Chu, L. W., Kwok, T. C., Chan, F., Lam, L. C., et al. (2015). Neural plastic effects of cognitive training on aging brain. Neural Plasticity, 501, 535618. doi: 10.1155/2015/535618.Google Scholar
  58. Lewis, M. S., & Miller, L. S. (2007). Executive control functioning and functional ability in older adults. The Clinical Neuropsychologist, 21(2), 274–285.PubMedCrossRefGoogle Scholar
  59. brain games & brain training - lumosity. Accessed 17 Sept 2015.
  60. Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83(8), 713–721.PubMedGoogle Scholar
  61. Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., et al. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proceedings of the National Academy of Sciences, 103(33), 12523–12528.CrossRefGoogle Scholar
  62. Mayas, J., Parmentier, F. B., Andrés, P., & Ballesteros, S. (2014). Plasticity of attentional functions in older adults after non-action video game training: a randomized controlled trial. PloS One, 9(3), e92269.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Merzenich, M. M. & Jenkins, W. M. (1993). Cortical representation of learned behaviors. In P. Andersen (Ed.), Memory Concepts (pp. 437-453). Amsterdam: Elsevier.Google Scholar
  64. Merzenich, M. M. & Jenkins, W. M. (1999). In S. Levy-Reiner (Ed.), The adaptable brain (Vol. II, pp 37-50). Washington, DC: Library of Congress. Google Scholar
  65. Miller, K. J., Dye, R. V., Kim, J., Jennings, J. L., O’Toole, E., Wong, J., et al. (2013). Effect of a computerized brain exercise program on cognitive performance in older adults. American Journal of Geriatric Psychiatry, 21(7), 655–663. doi: 10.1016/j.jagp.2013.01.077.PubMedCrossRefGoogle Scholar
  66. Mowszowski, L., Batchelor, J., & Naismith, S. L. (2010). Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique? International Psychogeriatrics, 22(04), 537–548.PubMedCrossRefGoogle Scholar
  67. brain exercises, brain age test and cognitive exercises by MyBrainTrainer. Accessed 17 Sept 2015.
  68. Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. The Lancet, 385(9984), 2255–2263.CrossRefGoogle Scholar
  69. Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Akitsuki, Y., Shigemune, Y., et al. (2012). Brain training game improves executive functions and processing speed in the elderly: A randomized controlled trial. PLoS One, 7(1), e29676.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., et al. (2013). Brain training game boosts executive functions, working memory and processing speed in the young adults: A randomized controlled trial. PloS One, 8(2), e55518.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences, 100(23), 13728–13733.CrossRefGoogle Scholar
  72. O’Brien, J. L., Edwards, J. D., Maxfield, N. D., Peronto, C. L., Williams, V. A., & Lister, J. J. (2013). Cognitive training and selective attention in the aging brain: An electrophysiological study. Clinical Neurophysiology, 124(11), 2198–2208.PubMedCrossRefGoogle Scholar
  73. Olesen, P. J., Westerberg, H., & Klingberg, T. (2003). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.PubMedCrossRefGoogle Scholar
  74. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–778.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Owsley, C., Ball, K., McGwin, G., Sloane, M. E., Roenker, D. L., White, M. F., et al. (1998). Visual processing impairment and risk of motor vehicle crash among older adults. The Journal of the American Medical Association, 279(14), 1083–1088.PubMedCrossRefGoogle Scholar
  76. Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Neuroscience, 28(1), 377–401.Google Scholar
  77. Peretz, C., Korczyn, A. D., Shatil, E., Aharonson, V., Birnboim, S., & Giladi, N. (2011). Computer-based, personalized cognitive training versus classical computer games: A randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 36(2), 91–99.PubMedCrossRefGoogle Scholar
  78. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.PubMedCrossRefGoogle Scholar
  79. Rebok, G. W., Ball, K., Guey, L. T., Jones, R. N., Kim, H. Y., King, J. W., et al. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62(1), 16–24.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67(5), 1031–1056.PubMedGoogle Scholar
  81. Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.PubMedGoogle Scholar
  82. Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews Neurology, 7(3), 137–152.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rosen, A. C., Sugiura, L., Kramer, J. H., Whitfield-Gabrieli, S., & Gabrieli, J. D. (2011). Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. Journal of Alzheimer’s Disease, 3, 349–357.Google Scholar
  84. Ruthirakuhan, M., Luedke, A. C., Tam, A., Goel, A., Kurji, A., & Garcia, A. (2012). Use of physical and intellectual activities and socialization in the management of cognitive decline of aging and in dementia: A review. Journal of Aging Research, 2012, 384875. doi: 10.1155/2012/384875.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sanders, A. F. (1970). Some aspects of the selective process in the functional visual field. Ergonomics, 13(1), 101–117.PubMedCrossRefGoogle Scholar
  86. Scanlon, M., Drescher, D., & Sarkar, K. (2007). Improvement of visual attention and working memory through a web-based cognitive training program. A Lumos Labs White Paper.Google Scholar
  87. Scarmeas, N., Levy, G., Tang, M. X., Manly, J., & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology, 57(12), 2236–2242.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Schaie, K. W., & Willis, S. L. (1986). Can decline in adult intellectual functioning be reversed. Developmental Psychology, 22(2), 223–232.CrossRefGoogle Scholar
  89. Schonknecht, P., Pantel, J., Kruse, A., & Schroder, J. (2005). Prevalence and natural course of aging-associated cognitive decline in a population-based sample of young-old subjects. American Journal of Psychiatry, 162(11), 2071–2077. doi: 10.1176/appi.ajp.162.11.2071.PubMedCrossRefGoogle Scholar
  90. Shah, T., Verdile, G., Sohrabi, H., Campbell, A., Putland, E., Cheetham, C., et al. (2014). A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Translational Psychiatry, 4(12), e487.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shao, Y.-K., Mang, J., Li, P.-L., Wang, J., Deng, T., & Xu, Z.-X. (2015). Computer-based cognitive programs for improvement of memory, processing speed and executive function during age-related cognitive decline: a meta-analysis. PloS One, 10(6), e0130831.Google Scholar
  92. Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? a four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5, 8. doi: 10.3389/fnagi.2013.00008.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shatil, E., Mikulecká, J., Bellotti, F., & Bureš, V. (2014). Novel television-based cognitive training improves working memory and executive function. PloS One, 9(7), e101472. doi: 10.1371/journal.pone.0101472.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Simpson, T., Camfield, D., Pipingas, A., Macpherson, H., & Stough, C. (2012). Improved processing speed: Online computer-based cognitive training in older adults. Educational Gerontology, 38(7), 445–458.CrossRefGoogle Scholar
  95. Slegers, K., van Boxtel, M., & Jolles, J. (2009). Effects of computer training and internet usage on cognitive abilities in older adults: A randomized controlled study. Aging Clinical and Experimental Research, 21(1), 43–54.PubMedCrossRefGoogle Scholar
  96. Small, G. W., Silverman, D. H. S., Siddarth, P., Ercoli, L. M., Miller, K. J., Lavretsky, H., et al. (2006). Effects of a 14-day healthy longevity lifestyle program on cognition and brain function. American Journal of Geriatric Psychiatry, 14(6), 538–545.PubMedCrossRefGoogle Scholar
  97. Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease & Associated Disorders, 20, S69.CrossRefGoogle Scholar
  99. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology, 11(11), 1006–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Strenziok, M., Parasuraman, R., Clarke, E., Cisler, D. S., Thompson, J. C., & Greenwood, P. M. (2014). Neurocognitive enhancement in older adults: Comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. NeuroImage, 85, 1027–1039. doi: 10.1016/j.neuroimage.2013.07.069.PubMedCrossRefGoogle Scholar
  101. Tárraga, L., Boada, M., Modinos, G., Espinosa, A., Diego, S., Morera, A., et al. (2006). A randomised pilot study to assess the efficacy of an interactive, multimedia tool of cognitive stimulation in Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 77(10), 1116–1121.CrossRefGoogle Scholar
  102. Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36(04), 441–454.PubMedCrossRefGoogle Scholar
  103. Valenzuela, M. J., Jones, M., Wen, W., Rae, C., Graham, S., Shnier, R., et al. (2003). Memory training alters hippocampal neurochemistry in healthy elderly. Neuroreport, 14(10), 1333–1337.PubMedCrossRefGoogle Scholar
  104. Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., et al. (2003). Leisure activities and the risk of dementia in the elderly. New England Journal of Medicine, 348(25), 2508–2516.PubMedCrossRefGoogle Scholar
  105. Verghese, J., Mahoney, J., Ambrose, A. F., Wang, C., & Holtzer, R. (2010). Effect of cognitive remediation on gait in sedentary seniors. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 65(12), 1338–1343. doi: 10.1093/gerona/glq127.CrossRefGoogle Scholar
  106. Vinogradov, S., Fisher, M., Holland, C., Shelly, W., Wolkowitz, O., & Mellon, S. H. (2009). Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biological Psychiatry, 66(6), 549–553.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Walser, R. F., Meserve, B. B., & Boucher, T. R. (2009). The effectiveness of thoracic spine manipulation for the management of musculoskeletal conditions: A systematic review and meta-analysis of randomized clinical trials. The Journal of Manual & Manipulative Therapy, 17(4), 237–246. doi: 10.1179/106698109791352085.CrossRefGoogle Scholar
  108. Willis, S. L. (1987). Cognitive training and everyday competence. Annual Review of Gerontology & Geriatrics, 7, 159–188.Google Scholar
  109. Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. The Journal of the American Medical Association, 296(23), 2805–2814.PubMedCrossRefGoogle Scholar
  110. Wilson, R., Scherr, P., Schneider, J., Tang, Y., & Bennett, D. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69(20), 1911–1920.PubMedCrossRefGoogle Scholar
  111. Wolinsky, F. D., Unverzagt, F. W., Smith, D. M., Jones, R., Stoddard, A., & Tennstedt, S. L. (2006a). The ACTIVE cognitive training trial and health-related quality of life: protection that lasts for 5 years. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(12), 1324–1329.CrossRefGoogle Scholar
  112. Wolinsky, F. D., Unverzagt, F. W., Smith, D. M., Jones, R., Wright, E., & Tennstedt, S. L. (2006b). The effects of the ACTIVE cognitive training trial on clinically relevant declines in health-related quality of life. The Journals of Gerontology: Series B, 61(5), S281–S287.CrossRefGoogle Scholar
  113. Wolinsky, F. D., Vander Weg, M. W., Howren, M. B., Jones, M. P., & Dotson, M. M. (2013). A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. PloS One, 8, (5), e61624. doi: 10.1371/journal.pone.0061624.
  114. Woods, S. P., Weinborn, M., Velnoweth, A., Rooney, A., & Bucks, R. S. (2012). Memory for intentions is uniquely associated with instrumental activities of daily living in healthy older adults. Journal of the International Neuropsychological Society, 18(1), 134–138. doi: 10.1017/S1355617711001263.PubMedCrossRefGoogle Scholar
  115. Woodward, M., & Brodaty, H. (2007). Dementia risk reduction: the evidence: Alzheimer’s Australia. Google Scholar
  116. Xerri, C., Merzenich, M. M., Jenkins, W., & Santucci, S. (1999). Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. Cerebral Cortex, 9(3), 264–276.PubMedCrossRefGoogle Scholar
  117. Zelinski, E. M., Spina, L. M., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., et al. (2011). Improvement in memory with plasticity-based adaptive cognitive training: Results of the 3-month follow-up. Journal of the American Geriatrics Society, 59(2), 258–265.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tejal M. Shah
    • 1
    • 2
    • 3
  • Michael Weinborn
    • 1
    • 2
    • 4
  • Giuseppe Verdile
    • 1
    • 2
    • 3
    • 5
  • Hamid R. Sohrabi
    • 1
    • 2
    • 3
  • Ralph N. Martins
    • 1
    • 2
    • 3
    Email author
  1. 1.McCusker Alzheimer’s Research FoundationHollywood Medical CentreNedlandsAustralia
  2. 2.Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical SciencesEdith Cowan UniversityJoondalupAustralia
  3. 3.School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyAustralia
  4. 4.School of PsychologyUniversity of Western AustraliaCrawleyAustralia
  5. 5.School of Biomedical Sciences, CHIRI BiosciencesCurtin UniversityBentleyAustralia

Personalised recommendations