Abstract
Meta-analysis is widely accepted as the preferred method to synthesize research findings in various disciplines. This paper provides an introduction to when and how to conduct a meta-analysis. Several practical questions, such as advantages of meta-analysis over conventional narrative review and the number of studies required for a meta-analysis, are addressed. Common meta-analytic models are then introduced. An artificial dataset is used to illustrate how a meta-analysis is conducted in several software packages. The paper concludes with some common pitfalls of meta-analysis and their solutions. The primary goal of this paper is to provide a summary background to readers who would like to conduct their first meta-analytic study.
Similar content being viewed by others
References
Aytug, Z. G., Rothstein, H. R., Zhou, W., & Kern, M. C. (2012). Revealed or concealed? Transparency of procedures, decisions, and judgment calls in meta-analyses. Organizational Research Methods, 15(1), 103–133. doi:10.1177/1094428111403495.
Bax, L., Yu, L.-M., Ikeda, N., & Moons, K. G. (2007). A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Medical Research Methodology, 7(1), 40. doi:10.1186/1471-2288-7-40.
Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 221–235). New York: Russell Sage Foundation.
Borenstein, M., Hedges, L. V., & Rothstein, H. R. (2005). Comprehensive meta-analysis (version 2). Englewood NJ: Biostat.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, West Sussex, U.K.; Hoboken: John Wiley & Sons.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111. doi:10.1002/jrsm.12.
Chalmers, I., Hedges, L. V., & Cooper, H. (2002). A brief history of research synthesis. Evaluation & the Health Professions, 25(1), 12–37. doi:10.1177/0163278702025001003.
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 20(3), 429–454. doi:10.1080/10705511.2013.797827.
Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychological Methods, 19(2), 211–229. doi:10.1037/a0032968.
Cheung, M. W.-L. (2015a). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley & Sons, Inc..
Cheung, M. W.-L. (2015b). metaSEM: an R package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5(1521). doi:10.3389/fpsyg.2014.01521.
Cheung, M. W.-L., Ho, R. C. M., Lim, Y., & Mak, A. (2012). Conducting a meta-analysis: Basics and good practices. International Journal of Rheumatic Diseases, 15(2), 129–135. doi:10.1111/j.1756-185X.2012.01712.x
Cooper, H., & Hedges, L. V. (2009). Research synthesis as a scientific process. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 3–16). New York: Russell Sage Foundation.
Cooper, H., Maxwell, S., Stone, A., & Sher, K. (2008). Reporting standards for research in psychology why do we need them? What might they be? American Psychologist, 63(9), 839–851. doi:10.1037/0003-066X.63.9.839.
Cooper, H. M., Hedges, L. V., & Valentine, J. C. (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York: Russell Sage Foundation.
Davey, J., Turner, R. M., Clarke, M. J., & Higgins, J. P. (2011). Characteristics of meta-analyses and their component studies in the Cochrane database of systematic reviews: a cross-sectional, descriptive analysis. BMC Medical Research Methodology, 11, 160. doi:10.1186/1471-2288-11-160.
Dewey, M. (2015). CRAN task view: Meta-analysis. Retrieved from http://CRAN.R-project.org/view=MetaAnalysis
Dickersin, K., Chan, S., Chalmersx, T. C., Sacks, H. S., & Smith, H. (1987). Publication bias and clinical trials. Controlled Clinical Trials, 8(4), 343–353. doi:10.1016/0197-2456(87)90155-3.
Easterbrook, P. J., Gopalan, R., Berlin, J. A., & Matthews, D. R. (1991). Publication bias in clinical research. The Lancet, 337(8746), 867–872. doi:10.1016/0140-6736(91)90201-Y.
Eysenck, H. J. (1978). An exercise in mega-silliness. American Psychologist, 33(5), 517.
Ferguson, C. J., & Brannick, M. T. (2012). Publication bias in psychological science: prevalence, methods for identifying and controlling, and implications for the use of meta-analyses. Psychological Methods, 17(1), 120–128. doi:10.1037/a0024445.
Fioravanti, M., Carlone, O., Vitale, B., Cinti, M. E., & Clare, L. (2005). A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review, 15(2), 73–95. doi:10.1007/s11065-005-6254-9.
Fleiss, J. L., & Berlin, J. A. (2009). Effect sizes for dichotomous data. In H. M. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 237–253). New York: Russell Sage Foundation.
Francis, G. (2013). Replication, statistical consistency, and publication bias. Journal of Mathematical Psychology, 57(5), 153–169. doi:10.1016/j.jmp.2013.02.003.
Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3–8. doi:10.2307/1174772.
Harwell, M. (1997). An empirical study of Hedge’s homogeneity test. Psychological Methods, 2(2), 219–231. doi:10.1037/1082-989X.2.2.219.
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
Hedges, L. V., & Pigott, T. D. (2001). The power of statistical tests in meta-analysis. Psychological Methods, 6(3), 203–217. doi:10.1037/1082-989X.6.3.203.
Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psychological Methods, 9(4), 426–445. doi:10.1037/1082-989X.9.4.426.
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. doi:10.1002/sim.1186.
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557–560.
Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis. Q statistic or I2 index? Psychological Methods June 2006, 11(2), 193–206.
Hunt, M. (1997). How science takes stock: The story of meta-analysis. New York: Russell Sage Foundation.
Koricheva, J., Gurevitch, J., & Mengersen, K. (Eds.) (2013). Handbook of meta-analysis in ecology and evolution. Princeton: Princeton University Press.
Kupfersmid, J., & Fiala, M. (1991). A survey of attitudes and behaviors of authors who publish in psychology and education journals. American Psychologist, 46(3), 249–250. doi:10.1037/0003-066X.46.3.249.
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339(jul21 1), b2700–b2700. doi:10.1136/bmj.b2700.
Lindsay, D. S. (2015). Replication in psychological science. Psychological Science, 26(12), 1827–1832. doi:10.1177/0956797615616374.
Lipsey, M. W., & Wilson, D. (2000). Practical meta-analysis. Sage Publications, Inc ,Thousand Oaks.
Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press. Retrieved from http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195326543.001.0001/acprof-9780195326543
Lucas, R. E., & Brent Donnellan, M. (2013). Improving the replicability and reproducibility of research published in the journal of research in personality. Journal of Research in Personality, 47(4), 453–454. doi:10.1016/j.jrp.2013.05.002.
Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? American Psychologist, 70(6), 487–498. doi:10.1037/a0039400.
Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7(1), 105–125. doi:10.1037/1082-989X.7.1.105.
National Research Council (1992). Combining information: statistical issues and opportunities for research. Washington, DC: National Academies Press.
O’Rourke, K. (2007). An historical perspective on meta-analysis: dealing quantitatively with varying study results. JRSM, 100(12), 579–582. doi:10.1258/jrsm.100.12.579.
Open Science Collaboration (2012). An open, large-scale, collaborative effort to estimate the reproducibility of psychological science. Perspectives on Psychological Science, 7(6), 657–660. doi:10.1177/1745691612462588.
Open Science Collaboration (2015). Estimating the reproducibility of psychological. Science, 349(6251), aac4716. doi:10.1126/science.aac4716.
Palmer, T. M., & Sterne, J. A. C. (Eds.) (2016). Meta-analysis: an updated collection from the Stata journal (2nd ed.). College Station: Stata Press.
Pearson, K. (1904). Report on certain enteric fever inoculation statistics. BMJ, 2(2288), 1243–1246. doi:10.1136/bmj.2.2288.1243.
Pigott, T. D. (2012). Advances in meta-analysis. New York: Springer. Retrieved from http://www.springer.com.libproxy1.nus.edu.sg/statistics/social+sciences+%26+law/book/978-1-4614-2277-8
R Development Core Team. (2016). R: a language and environment for statistical computing. Vienna, Austria. Retrieved from http://www.R-project.org/
Reed, J. G., & Baxter, P. M. (2009). Using reference databases. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 73–101). New York: Russell Sage Foundation.
Rothstein, H. R., & Bushman, B. J. (2012). Publication bias in psychological science: comment on Ferguson and Brannick (2012). Psychological Methods, 17(1), 129–136. doi:10.1037/a0027128.
Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis: Prevention, assessment and adjustments. Chichester: John Wiley and Sons.
Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Thousand Oaks, CA: Sage.
Shadish, W. R. (2015). Introduction to the special issue on the origins of modern meta-analysis. Research Synthesis Methods, 6(3), 219–220. doi:10.1002/jrsm.1148.
Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American Psychologist, 32(9), 752–760.
Song, F., Parekh, S., Hooper, L., Loke, Y., Ryder, J., Sutton, A., et al. (2010). Dissemination and publication of research findings: an updated review of related biases. Health Technology Assessment, 14(8). doi:10.3310/hta14080.
Sterne, J. A. C., Egger, M., & Sutton, A. J. (2001). Meta-analysis software. In M. Egger, G. D. Smith, & D. G. Altman (Eds.), Systematic Reviews in Health Care: Meta-Analysis in Context (pp. 336–346). London: BMJ Publishing Group. Retrieved from doi:10.1002/9780470693926.ch17/summary
Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics, 35(2), 215–247. doi:10.3102/1076998609346961.
Viechtbauer, W. (2007). Hypothesis tests for population heterogeneity in meta-analysis. British Journal of Mathematical and Statistical Psychology, 60(1), 29–60. doi:10.1348/000711005X64042.
Wallace, B. C., Schmid, C. H., Lau, J., & Trikalinos, T. A. (2009). Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Medical Research Methodology, 9(1), 80. doi:10.1186/1471-2288-9-80.
Weare, K., & Nind, M. (2011). Mental health promotion and problem prevention in schools: what does the evidence say? Health Promotion International, 26(suppl 1), i29–i69. doi:10.1093/heapro/dar075.
Acknowledgments
Mike W.-L. Cheung was supported by the Academic Research Fund Tier 1 (FY2013-FRC5-002) from the Ministry of Education, Singapore. We would like to thank Maggie Chan for providing comments on an earlier version of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cheung, M.WL., Vijayakumar, R. A Guide to Conducting a Meta-Analysis. Neuropsychol Rev 26, 121–128 (2016). https://doi.org/10.1007/s11065-016-9319-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11065-016-9319-z