Advertisement

Neuropsychology Review

, Volume 25, Issue 3, pp 356–368 | Cite as

Neuroinformatics Software Applications Supporting Electronic Data Capture, Management, and Sharing for the Neuroimaging Community

  • B. Nolan Nichols
  • Kilian M. Pohl
Review

Abstract

Accelerating insight into the relation between brain and behavior entails conducting small and large-scale research endeavors that lead to reproducible results. Consensus is emerging between funding agencies, publishers, and the research community that data sharing is a fundamental requirement to ensure all such endeavors foster data reuse and fuel reproducible discoveries. Funding agency and publisher mandates to share data are bolstered by a growing number of data sharing efforts that demonstrate how information technologies can enable meaningful data reuse. Neuroinformatics evaluates scientific needs and develops solutions to facilitate the use of data across the cognitive and neurosciences. For example, electronic data capture and management tools designed to facilitate human neurocognitive research can decrease the setup time of studies, improve quality control, and streamline the process of harmonizing, curating, and sharing data across data repositories. In this article we outline the advantages and disadvantages of adopting software applications that support these features by reviewing the tools available and then presenting two contrasting neuroimaging study scenarios in the context of conducting a cross-sectional and a multisite longitudinal study.

Keywords

Neuroimaging Neuropsychology Biomedical informatics Neuroinformatics MRI Data sharing 

Notes

Acknowledgements

This work was supported by the U.S. National Institute on Alcohol Abuse and Alcoholism (NIAAA) (U01 AA021697, R01 AA005965, R01 AA012388, U01 AA013521, U01 AA017347, U01 AA017923). It was also supported by the Creative and Novel Ideas in HIV Research Program (CNIHR) through a supplement to the University of California at San Francisco (UCSF) Center For AIDS Research funding (P30 AI027763). This funding was made possible by collaborative efforts of the Office of AIDS Research, the National Institutes of Allergies and Infectious Diseases, and the International AIDS Society.

Funding Sources

U.S. National Institute on Alcohol Abuse and Alcoholism (NIAAA).

(U01 AA021697, R01 AA005965, R01 AA012388, U01 AA013521, U01 AA017347, U01 AA017923).

Creative and Novel Ideas in HIV Research Program (CNIHR) (P30 AI027763).

Conflict of interest

Neither author has conflicts of interest with the information presented herein.

References

  1. Beekly, D., Ramos, E., Lee, W., Deitrich, W., Jacka, M., Wu, J., et al. (2007). The national Alzheimer’s coordinating center (NACC) database: the uniform data set. Alzheimer Disease & Associated Disorders, 21(3), 249–258.Google Scholar
  2. Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., & Morissette, J. (2008). Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics, 41(5). doi: 10.1016/j.jbi.2008.03.004.
  3. Bernstam, E. V., Hersh, W. R., Johnson, S. B., Chute, C. G., Nguyen, H., Sim, I., et al. (2009). Synergies and distinctions between computational disciplines in biomedical research: perspective from the clinical and translational science award programs (Vol. 84, pp. 964–970). Presented at the Academic medicine: Journal of the Association of American Medical Colleges. doi: 10.1097/ACM.0b013e3181a8144d.
  4. Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739. doi: 10.1073/pnas.0911855107.CrossRefGoogle Scholar
  5. Bjaalie, J. G., & Grillner, S. (2007). Global neuroinformatics: the international neuroinformatics coordinating facility. Journal of Neuroscience, 27(14), 3613–3615. doi: 10.1523/JNEUROSCI.0558-07.2007.CrossRefPubMedGoogle Scholar
  6. Bloom, T., Ganley, E., & Winker, M. (2014). Data access for the open access literature: PLOS’s data policy. PLoS Biology, doi: 10.1371/journal.pmed.1001607.PubMedCentralGoogle Scholar
  7. Book, G. A., Anderson, B. M., Stevens, M. C., Glahn, D. C., Assaf, M., & Pearlson, G. D. (2013). Neuroinformatics database (NiDB) - a modular, portable database for the storage, analysis, and sharing of neuroimaging data. Neuroinformatics, 11(4), 495–505. doi: 10.1007/s12021-013-9194-1.CrossRefPubMedGoogle Scholar
  8. Breeze, J. L., Poline, J. B., & Kennedy, D. N. (2012). Data sharing and publishing in the field of neuroimaging. GigaScience. doi: 10.1186/2047-217X-1-9.
  9. Brinkley, J. E., & Rosse, C. (2002). Imaging and the human brain project: a review. Methods of Information in Medicine, 41(4), 245–260.PubMedGoogle Scholar
  10. Brown, S. A., Brumback, T., Tomlinson, K., Cummins, K., Thompson, W. K., Nagel, B. J., et al. (2015). The national consortium on alcohol and neurodevelopment in adolescence (NCANDA): a multi-site study of adolescent development and substance use. Journal of Studies on Alcohol and Drugs. In Press.Google Scholar
  11. Buckow, K., Quade, M., Rienhoff, O., & Nussbeck, S. Y. (2014). Changing requirements and resulting needs for IT-infrastructure for longitudinal research in the neurosciences. Neuroscience Research. doi: 10.1016/j.neures.2014.08.005.PubMedGoogle Scholar
  12. Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. doi: 10.1038/nrn3475.CrossRefPubMedGoogle Scholar
  13. Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167. doi: 10.1016/j.neuroimage.2009.12.112.CrossRefPubMedGoogle Scholar
  14. Collins, F. S., & Tabak, L. A. (2014). Policy: NIH plans to enhance reproducibility. Nature, 505(7485), 612–613.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal, 29(3), 162–173.CrossRefPubMedGoogle Scholar
  16. Cozzarelli, N. R. (2004). UPSIDE: uniform principle for sharing integral data and materials expeditiously. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3721–3722. doi: 10.1073/pnas.0400437101.PubMedCentralCrossRefPubMedGoogle Scholar
  17. D’Esposito, M. (2000). Letter from the special issue editor. Journal of Cognitive Neuroscience, 12(supplement 2), 1. doi: 10.1162/089892900563966.CrossRefGoogle Scholar
  18. Das, S., Zijdenbos, A. P., Harlap, J., Vins, D., & Evans, A. C. (2011). LORIS: a web-based data management system for multi-center studies. Frontiers in Neuroinformatics, 5, 37. doi: 10.3389/fninf.2011.00037.PubMedCentralPubMedGoogle Scholar
  19. David, S. P., Ware, J. J., Chu, I. M., Loftus, P. D., Fusar-Poli, P., Radua, J., et al. (2013). Potential reporting bias in fMRI studies of the brain. PLoS ONE, 8(7), e70104. doi: 10.1371/journal.pone.0070104.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Day, S., Fayers, P., & Harvey, D. (1998). Double data entry: what value, what price? Controlled Clinical Trials, 19(1), 15–24.CrossRefPubMedGoogle Scholar
  21. Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667. doi: 10.1038/mp.2013.78.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Dinov, I. (2009). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in Neuroinformatics, 3, 1–10. doi: 10.3389/neuro.11.022.2009.CrossRefGoogle Scholar
  23. Ferguson, A. R., Nielson, J. L., Cragin, M. H., Bandrowski, A. E., & Martone, M. E. (2014). Big data from small data: data-sharing in the “long tail” of neuroscience. Nature Neuroscience, 17(11), 1442–1447. doi: 10.1038/nn.3838.CrossRefPubMedGoogle Scholar
  24. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.CrossRefPubMedGoogle Scholar
  25. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex (New York, N.Y. : 1991), 14(1), 11–22.CrossRefGoogle Scholar
  26. Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., et al. (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences, 109(48), 19620–19625. doi: 10.1073/pnas.1208243109.CrossRefGoogle Scholar
  27. Fox, P. T., & Lancaster, J. L. (2002). Opinion: mapping context and content: the brainmap model. Nature Reviews Neuroscience, 3(4), 319–321. doi: 10.1038/nrn789.CrossRefPubMedGoogle Scholar
  28. Fox, P., Fox, P. T., Laird, A. R., Laird, A., Fox, S. P., Fox, S., et al. (2005). BrainMap taxonomy of experimental design: description and evaluation. Human Brain Mapping, 25(1), 185–198. doi: 10.1002/hbm.20141.CrossRefPubMedGoogle Scholar
  29. Franklin, J. D., Guidry, A., & Brinkley, J. F. (2011). A partnership approach for electronic data capture in small-scale clinical trials. Journal of Biomedical Informatics, 44(Suppl 1), S103–S108. doi: 10.1016/j.jbi.2011.05.008.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 189–210.CrossRefGoogle Scholar
  31. Gadde, S., Aucoin, N., Grethe, J. S., Keator, D. B., Marcus, D. S., Pieper, S., FBIRN, MBIRN, & BIRN-CC. (2012). XCEDE: an extensible schema for biomedical data. Neuroinformatics, 10(1), 19–32. doi: 10.1007/s12021-011-9119-9.CrossRefPubMedGoogle Scholar
  32. Gardner, D., Akil, H., Ascoli, G., Bowden, D., Bug, W., Donohue, D., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6(3), 149–160.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Gershon, R. C., Gershon, R. C., Cella, D., Cella, D., Fox, N. A., Fox, N. A., et al. (2010). Assessment of neurological and behavioural function: the NIH Toolbox. Lancet Neurology, 9(2), 138–139. doi: 10.1016/S1474-4422(09)70335-7.CrossRefPubMedGoogle Scholar
  34. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., & Mainen, Z. F. (2014). Big behavioral data: psychology, ethology and the foundations of neuroscience. Nature Neuroscience, 17(11), 1455–1462. doi: 10.1038/nn.3812.CrossRefPubMedGoogle Scholar
  35. Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V. V., Ghosh, S. S., et al. (2015). NeuroVault.org: a repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. NeuroImage. doi: 10.1016/j.neuroimage.2015.04.016.Google Scholar
  36. Greenes, R., & Brinkley, J. (2006). Imaging systems in radiology. In E. H. Shortliffe & J. J. Cimino (Eds.), Biomedical and Health Informatics: Computer Applications in Healthcare (pp. 626–659). New York: Springer.Google Scholar
  37. Gur, R. C., Richard, J., Hughett, P., Calkins, M. E., Macy, L., Bilker, W. B., et al. (2010). A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. Journal of Neuroscience Methods, 187(2), 254–262. doi: 10.1016/j.jneumeth.2009.11.017.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Haak, D., Page, C.-E., Reinartz, S., Krüger, T., & Deserno, T. M. (2015). DICOM for clinical research: PACS-integrated electronic data capture in multi-center trials. Journal of Digital Imaging. doi: 10.1007/s10278-015-9802-8.
  39. Hall, D., Huerta, M. F., McAuliffe, M. J., & Farber, G. K. (2012). Sharing heterogeneous data: the national database for autism research. Neuroinformatics, 10(4), 331–339. doi: 10.1007/s12021-012-9151-4.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381. doi: 10.1016/j.jbi.2008.08.010.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Helmer, K. G., Ambite, J. L., Ambite, J. L., Ames, J., Ames, J., Ananthakrishnan, R., et al. (2011). Enabling collaborative research using the biomedical informatics research network (BIRN). Journal of the American Medical Informatics Association, 18(4), 416–422. doi: 10.1136/amiajnl-2010-000032.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., et al. (2008). Big data: the future of biocuration. Nature, 455(7209), 47–50. doi: 10.1038/455047a.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Hudson, K. L., & Collins, F. S. (2015). Sharing and reporting the results of clinical trials. JAMA, 313(4), 355–356. doi: 10.1001/jama.2014.10716.CrossRefPubMedGoogle Scholar
  44. Huerta, M. F., & Koslow, S. H. (1996). Neuroinformatics: opportunities across disciplinary and national borders. NeuroImage, 4(3), S4–S6. doi: 10.1006/nimg.1996.0040.CrossRefPubMedGoogle Scholar
  45. Hussein, R., Engelmann, U., Schroeter, A., & Meinzer, H. (2004). DICOM structured reporting. Radiographics: a Review Publication of the Radiological Society of North America, Inc, 24(3), 897–909.Google Scholar
  46. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., et al. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751. doi: 10.1176/appi.ajp.2010.09091379.CrossRefPubMedGoogle Scholar
  47. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124. doi: 10.1371/journal.pmed.0020124.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Ioannidis, J. P. A. (2011). Excess significance bias in the literature on brain volume abnormalities. Archives of General Psychiatry, 68(8), 773–780. doi: 10.1001/archgenpsychiatry.2011.28.CrossRefPubMedGoogle Scholar
  49. Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691. doi: 10.1002/jmri.21049.
  50. Johnston, L. D., OMalley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2015). Monitoring the Future national survey results on drug use: 1975–2014: Overview, key findings on adolescent drug use. Resource document. Monitoring the Future Project. http://www.monitoringthefuture.org/pubs/monographs/mtf-overview2014.pdf. Accessed 25 March 2015.
  51. Kane, R. L., & Kay, G. G. (1992). Computerized assessment in neuropsychology: a review of tests and test batteries. Neuropsychology Review, 3(1), 1–117. doi: 10.1007/BF01108787.CrossRefPubMedGoogle Scholar
  52. Keator, D. B., Wei, D., Gadde, S., Bockholt, J., Grethe, J. S., Marcus, D., et al. (2009). Derived data storage and exchange workflow for large-scale neuroimaging analyses on the BIRN grid. Frontiers in Neuroinformatics. doi: 10.3389/neuro.11.030.2009.
  53. Keator, D. B., Helmer, K., Steffener, J., Turner, J. A., Van Erp, T. G., Gadde, S., et al. (2013). Towards structured sharing of raw and derived neuroimaging data across existing resources. NeuroImage, 82, 647–661. doi: 10.1016/j.neuroimage.2013.05.094.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Kennedy, D. N., Haselgrove, C., Hodge, S. M., Rane, P. S., Rane, P. S., Makris, N., & Frazier, J. A. (2012). CANDIShare: a resource for pediatric neuroimaging data. Neuroinformatics, 10(3), 319–322. doi: 10.1007/s12021-011-9133-y.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Kennedy, D. N., Haselgrove, C., Riehl, J., Preuss, N., & Buccigrossi, R. (2015). The Three NITRCs: a guide to neuroimaging neuroinformatics resources. Neuroinformatics. doi: 10.1007/s12021-015-9263-8.
  56. Kulikowski, C. A., Shortliffe, E. H., Currie, L. M., Elkin, P. L., Hunter, L. E., Johnson, T. R., et al. (2012). AMIA board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline. Journal of the American Medical Informatics Association, 19(6), 931–938. doi: 10.1136/amiajnl-2012-001053.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3(1), 65–78.CrossRefPubMedGoogle Scholar
  58. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8.CrossRefPubMedGoogle Scholar
  59. Larson, S. D., & Martone, M. E. (2013). NeuroLex.org: an online framework for neuroscience knowledge. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2013.00018.
  60. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (1989). Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185–212.CrossRefPubMedGoogle Scholar
  61. Marcus, D., Olsen, T., Ramaratnam, M., & Buckner, R. (2007). The extensible neuroimaging archive toolkit. Neuroinformatics, 5(1), 11–33.Google Scholar
  62. Marcus, D. S., Harwell, J., Olsen, T., Hodge, M., Glasser, M. F., Prior, F., et al. (2011). Informatics and data mining tools and strategies for the human connectome project. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2011.00004.
  63. Meier, M. H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R. S. E., et al. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences, 109(40), E2657–E2664. doi: 10.1073/pnas.1206820109.CrossRefGoogle Scholar
  64. Mennes, M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2013). Making data sharing work: the FCP/INDI experience. NeuroImage, 82, 683–691. doi: 10.1016/j.neuroimage.2012.10.064.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Milchenko, M., & Marcus, D. (2012). Obscuring surface anatomy in volumetric imaging data. Neuroinformatics. doi: 10.1007/s12021-012-9160-3.Google Scholar
  66. Morris, J., Weintraub, S., Chui, H., Cummings, J., DeCarli, C., Ferris, S., et al. (2006). The uniform data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer disease centers. Alzheimer Disease & Associated Disorders, 20(4), 210–216.Google Scholar
  67. Nichols, B. N., Mejino, J. L., Jr., Detwiler, L., Nilsen, T. T., Martone, M. E., Turner, J. A., et al. (2014). Neuroanatomical domain of the foundational model of anatomy ontology. Journal of Biomedical Semantics. doi: 10.1186/2041-1480-5-1.
  68. Pernet, C., & Poline, J. B. (2015). Improving functional magnetic resonance imaging reproducibility. GigaScience. doi: 10.1186/s13742-015-0055-8.
  69. Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510–1517. doi: 10.1038/nn.3818.CrossRefPubMedGoogle Scholar
  70. Poldrack, R. A., Kittur, A., Kalar, D., Miller, E., Seppa, C., Gil, Y., et al. (2011). The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2011.00017.
  71. Poldrack, R. A., Barch, D. M., Mitchell, J. P., Wager, T. D., Wagner, A. D., Devlin, J. T., et al. (2013). Toward open sharing of task-based fMRI data: the OpenfMRI project. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2013.00012.
  72. Poline, J. B., Breeze, J. L., Ghosh, S., Gorgolewski, K., Halchenko, Y. O., Hanke, M., et al. (2012). Data sharing in neuroimaging research. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2012.00009.
  73. Rohlfing, T., Cummins, K., Henthorn, T., Chu, W., & Nichols, B. N. (2013). N-CANDA data integration: anatomy of an asynchronous infrastructure for multi-site, multi-instrument longitudinal data capture. Journal of the American Medical Informatics Association. doi: 10.1136/amiajnl-2013-002367.PubMedCentralPubMedGoogle Scholar
  74. Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45(3), 810–823. doi: 10.1016/j.neuroimage.2008.12.039.CrossRefPubMedGoogle Scholar
  75. Scott, A., Courtney, W., Wood, D., De la Garza, R., Lane, S., King, M., et al. (2011). COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2011.00033.
  76. Shepherd, G. M. (2002). Supporting databases for neuroscience research. Journal of Neuroscience, 22(5), 1497.PubMedGoogle Scholar
  77. Shepherd, G. M., Mirsky, J. S., Healy, M. D., Singer, M. S., Skoufos, E., Hines, M. S., et al. (1998). The human brain project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends in Neurosciences, 21(11), 460–468.CrossRefPubMedGoogle Scholar
  78. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.CrossRefPubMedGoogle Scholar
  79. Stover, P. J., Harlan, W. R., Hammond, J. A., Hendershot, T., & Hamilton, C. M. (2010). PhenX: a toolkit for interdisciplinary genetics research. Current Opinion in Lipidology, 21(2), 136–140. doi: 10.1097/MOL.0b013e3283377395.CrossRefPubMedGoogle Scholar
  80. Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Rentería, M. E., et al. (2014). The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153–182. doi: 10.1007/s11682-013-9269-5.PubMedCentralPubMedGoogle Scholar
  81. Toga, A. W., Crawford, K. L., & Alzheimer’s Disease Neuroimaging Initiative. (2010). The informatics core of the Alzheimer’s disease neuroimaging initiative. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association, 6(3), 247–256. doi: 10.1016/j.jalz.2010.03.001.CrossRefGoogle Scholar
  82. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.CrossRefPubMedGoogle Scholar
  83. Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., et al. (2012). The human connectome project: a data acquisition perspective. NeuroImage, 62(4), 2222–2231. doi: 10.1016/j.neuroimage.2012.02.018.PubMedCentralCrossRefPubMedGoogle Scholar
  84. Van Horn, J. D., & Toga, A. W. (2009). Is it time to re-prioritize neuroimaging databases and digital repositories? NeuroImage, 47(4), 1720–1734. doi: 10.1016/j.neuroimage.2009.03.086.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Van Horn, J. D., & Toga, A. W. (2014). Human neuroimaging as a “big data” science. Brain Imaging and Behavior, 8(2), 323–331. doi: 10.1007/s11682-013-9255-y.PubMedCentralCrossRefPubMedGoogle Scholar
  86. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670. doi: 10.1038/nmeth.1635.PubMedCentralCrossRefPubMedGoogle Scholar
  87. Young, M. P., & Scannell, J. W. (2000). Brain structure-function relationships: advances from neuroinformatics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355(1393), 3–6. doi: 10.1098/rstb.2000.0545.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center for Health Sciences, SRI InternationalMenlo ParkUSA
  2. 2.Department of Psychiatry and Behavioral Sciences, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations