Abstract
Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology.
Similar content being viewed by others
References
Acosta-Cabronero, J., Williams, G. B., Cardenas-Blanco, A., Arnold, R. J., Lupson, V., & Nestor, P. J. (2013). In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PloS One, 8(11), e81093. doi:10.1371/journal.pone.0081093.
Adamo, D. E., Daugherty, A. M., & Raz, N. (2014). Brain iron content and grasp force-matching ability in older women. Brain Imaging and Behavior, 8(4), 579–587. doi:10.1007/s11682-013-9284-6.
Anderson, C. M., Kaufman, M. J., Lowen, S. B., Rohan, M., Renshaw, P. F., & Teicher, M. H. (2005). Brain T2 relaxation times correlate with regional cerebral blood volume. MGMA, 181, 3–6.
Antonini, A., Leenders, K. L., Meier, D., Oertel, M. D., Boesiger, P., & Anliker, M. (1993). T2 relaxation time in patients with Parkinson’s disease. Neurology, 43, 697–700.
Aquino, D., Bizzi, A., Grisoli, M., Garavaglia, B., Bruzzone, M. G., Nardocci, N., Savoiardo, M., & Chiapparini, L. (2009). Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology, 252(1), 165–172. doi:10.1148/radiol.2522081399.
Atasoy, H. T., Nuyan, O., Tunc, T., Yorubulut, M., Unal, A. E., & Inan, L. E. (2004). T2-weighted MRI in Parkinson’s disease; substantia nigra pars compacta hypointensity correlates with the clinical scores. Neurology India, 52(3), 332–337.
Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Larde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Review, 30(6), 791–807. doi:10.1016/j.neubiorev.2006.06.005.
Baker, J. F., & Ghio, A. J. (2009). Iron homeostasis in rheumatic disease. Rheumatology, 48, 1339–1344. doi:10.1093/rheumatology/kep221.
Barbosa, J. H. O., Santos, A. C., Tumas, V., Liu, M., Zheng, W., Haacke, E. M., & Salmon, C. E. G. (2015). Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magnetic Resonance Imaging. doi:10.1016/j.mri.2015.02.021.
Bartzokis, G. (2011). Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiology of Aging, 32(8), 1341–1371.
Bartzokis, G., Aravagiri, M., Oldendorf, W. H., Mintz, J., & Marder, S. R. (1993). Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magnetic Resonance in Medicine, 29(4), 459–464.
Bartzokis, G., Mintz, J., Sultzer, D., Marx, P., Herzberg, J. S., Phelan, C. K., & Marder, S. R. (1994). In vivo MR evaluation of age-related increases in brain iron. American Journal of Neuroradiology, 15(6), 1129–1138.
Bartzokis, G., Cummings, J. L., Markham, C. H., Marmarelis, P. Z., Treciokas, L. J., Tishler, T. A., Marder, S. R., & Mintz, J. (1999). MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magnetic Resonance Imaging, 17(2), 213–222.
Bartzokis, G., Sultzer, D., Cummings, J., Holt, L. E., Hance, D. B., Henderson, V. W., & Mintz, J. (2000). In vivo evaluation of brin iron in Alzheimer disease using magnetic resonance imaging. Archives of General Psychiatry, 57(1), 47–53.
Bartzokis, G., Tishler, T. A., Shin, I. S., Lu, P. H., & Cummings, J. L. (2004). Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. The Annals of the New York Academy of Sciences, 1012, 224–236.
Bartzokis, G., Lu, P. H., Tishler, T., Peters, D., et al. (2010). Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men. Journal of Alzheimer’s Disease, 20, 333–341.
Bartzokis, G., Lu, P., Tingus, K., Peters, D. G., Amar, C. P., Tishler, T. A., Finn, J. P., Willablanca, P., Altshuler, L. L., Mintz, J., Neely, E., & Connor, J. R. (2011). Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology, 36, 1375–1384.
Beard, J. L., Wiesinger, J. A., Li, N., & Connor, J. R. (2005). Brain iron uptake in hypotransferrinemic mice: influence of systemic iron status. Journal of Neuroscience Research, 79(1–2), 254–261.
Becerril-Ortega, J., Bordji, K., Fréret, T., Rush, T., & Buisson, A. (2014). Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer’s disease. Neurobiology of Aging, 35(10), 2288–2301. doi:10.1016/j.neurobiolaging.2014.04.019.
Bender, A. R., & Raz, N. (2015). Normal-appearing cerebral white matter in healthy adults: mean change over 2 years and individual differences in change. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2015.02.001.
Berg, D., Kruger, R., RieB, R., & Riederer, P. (2007). Parkinson’s disease. In M. Youdim, P. Riederer, S. Mandel, & L. Battistin (Eds.), Handbook of Neurochemistry and Molecular Neurobiology: Degenerative Diseases of the Nervous System (3rd ed., pp. 1–20). New York: Springer.
Berry, C., Brosnan, M. J., Fennel, J., Hamilton, C. A., & Dominiczak, A. F. (2001). Oxidative stress and vascular damage in hypertension. Current Opinion in Nephrology and Hypertension, 10(2), 247–255.
Bilgic, B., Pfefferbuam, A., Rohlfing, T., Sullivan, E., & Adalsteinsson, E. (2012). MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage, 59(3), 2625–2635. doi:10.1016/j.neuroimage.2011.08.077.
Bizzi, A., Brooks, R. A., Brunetti, A., et al. (1990). Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology, 177, 59–65.
Blasco, G., Puig, J., Daunis-I-Estadella, J., Molina, X. L., Xifra, G., Fernández-Aranda, F., Pedraza, S., Ricart, W., Portero-Otín, M., & Fernández-Real, J. (2014). Brain iron overload, insulin resistance and cognitive performance in obese subjects: a preliminary MRI case–control study. Diabetes Care, 37(11), 3076–3083. doi:10.2337/dc14-0664.
Boumezbeur, F., Mason, G. F., de Graaf, R. A., Behar, K. L., Cline, G. W., Shulman, G. I., et al. (2010). Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 30, 211–221. doi:10.1038/jcbfm.2009.197.
Brass, S. D., Chen, N., Mulkern, R., & Baksni, R. (2006). Magnetic resonance imaging of iron deposition in neurological disorders. Topics in Magnetic Resonance Imaging, 17(1), 31–40.
Burdo, J. R., & Connor, J. R. (2003). Brain iron uptake and homeostatic mechanisms: an overview. Biometals, 16, 63–75.
Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., Diedrichsen, J., Fitzgerald, T. H., Smittenaar, P., Helms, G., Lutti, A., & Weiskopf, N. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 35, 1862–1872. doi:10.1016/j.neurobiolaging.2014.02.008.
Ceccarelli, A., Flippi, M., Neema, M., Arora, A., Valsasina, P., Rocca, M. A., Healy, B. C., & Bakshi, R. (2009). T2 hypintensity in the deep gray matter of patients with benign multiple sclerosis. Multiple Sclerosis, 15, 678–686. doi:10.1177/1352458509103611.
Cherubini, A., Péran, P., Caltagirone, C., Sabatini, U., & Spalletta, G. (2009). Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. NeuroImage, 48, 29–36.
Cohen, C. R., Duchesneau, P. M., & Weinstein, M. A. (1980). Calcification of the basal ganglia as visualized by computed tomography. Radiology, 134, 97–99.
Connor, J. R., Menzies, S. L., St Martin, S. M., & Mufson, E. J. (1990). Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research, 27, 595–611.
Cook, C. I., & Yu, B. P. (1998). Iron accumulation in aging: modulation by dietary restriction. Mechanisms of Ageing and Development, 102(1), 1–13.
Daugherty, A. M. (2014). Accumulation of subcortical iron as a modifier of volumetric and cognitive decline in healthy aging: Two longitudinal studies (Doctoral dissertation). Retrieved from ETD Collection AAI3640105.
Daugherty, A., & Raz, N. (2013). Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis. NeuroImage, 70, 113–121. doi:10.1016/j.neuroimage.2012.12.040.
Daugherty, A. M. & Raz, N. (2015). Iron accumulation over 7 years in the striatum predicts its shrinkage in healthy adults. Conference abstract, Society for Neuroscience Annual Meeting.
Daugherty, A. M., Haacke, E. M., & Raz, N. (2015). Striatal iron content predicts its shrinkage and changes in working memory after two years in healthy adults. The Journal of Neuroscience, 35(17), 6731–6743. doi:10.1523/JNEUROSCI.4717-14.2015.
Deane, R., Zheng, W., & Zlokovic, B. V. (2004). Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. Journal of Neurochemistry, 88, 813–820.
Deistung, A., Schäfer, A., Schweser, F., Biedermann, U., Turner, R., & Reichenbach, J. R. (2013). Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase- and R2*-imaging at ulta-high magnetic field strength. NeuroImage, 65, 299–314. doi:10.1016/j.neuroimage.2012.09.055.
Dexter, D. T., Jenner, P., Schapira, A. H. V., & Marsden, C. D. (1992). Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Annals of Neurology, 32, S94–S100.
Dhenain, M., Duyckaerts, C., Michot, J.-L., Volk, A., Picq, J.-L., & Boller, F. (1998). Cerebral T2-weighted signal decrease during aging in the mouse lemur primate reflects iron accumulation. Neurobiology of Aging, 19(1), 65–69.
Ding, B., Chen, K.-M., Ling, J.-W., Sun, F., et al. (2009). Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. Journal of Magnetic Resonance Imaging, 29, 793–798.
Dröge, W., & Schipper, H. M. (2007). Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 6, 361–370.
Duyn, J. H., van Gelderen, P., Li, T. Q., de Zwart, J. A., Koretsky, A. P., & Fukunaga, M. (2007). High-field MRI of brain cortical substructure based on signal phase. Proceedings of the National Academy of Sciences of the United States of America, 104, 11796–11801.
El Tannir El Tayara, N., Delatour, B., Le Cudennec, C., Guegan, M., Volk, A., & Dhenain, M. (2006). Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 22, 199–208.
Erikson, K. M., Pinero, D. J., Connor, J. R., & Beard, J. L. (1997). Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. The Journal of Nutrition, 127(10), 2030–2038.
Feng, W., Neelavalli, J., & Haacke, E. M. (2013). Catalytic multiecho phase unwrapping scheme (CAMPUS) in multiecho gradient echo imaging: removing phase wraps on a voxel-by-voxel basis. Magnetic Resonance in Medicine, 70(1), 117–126. doi:10.1002/mrm.24457.
Finch, C. E., & Crimmins, E. M. (2004). Inflammatory exposure and historical changes in human life-spans. Science, 305, 1736–1739.
Finch, C. E., & Morgan, T. E. (2007). Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Current Alzheimer Research, 4(2), 185–189.
Finch, C. E., Foster, J. R., & Mirsky, A. E. (1969). Ageing and the regulation of cell activities during exposure to cold. Journal of General Physiology, 54, 690–712.
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20–40. doi:10.1016/j.pneurobio.2014.02.004.
Franklin, S. S., Gustin, W., 4th, Wong, N. D., Larson, M. G., Weber, M. A., Kannel, W. B., & Levy, D. (1997). Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation, 96(1), 308–315.
Fukunaga, M., Li, T. Q., van Gelderen, P., de Zwart, J. A., Shmueli, K., Yao, B., Lee, J., Maric, D., Aronova, M. A., Zhang, G., Leapman, R. D., Schenck, J. F., Merkle, H., & Duyn, J. H. (2010). Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proceedings of the National Academy of Sciences of the United States of America, 107, 3834–3839.
Ghadery, C., Pirpamer, L., Hofer, E., Langkammer, C., Petrovic, K., Loitfelder, M., Schwingenschuh, P., Seiler, S., Duering, M., Jouvent, E., Schmidt, H., Fazekas, F., Mangin, J. F., Chabriat, H., Dichgans, M., Ropele, S., & Schmidt, R. (2015). R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 36, 925–932. doi:10.1016/j.neurobiolaging.2014.09.013.
Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience, 31(32), 11597–11616. doi:10.1523/JNEUROSCI.2180-11.2011.
Gomori, J., & Grossman, R. (1993). The relation between regional brain iron and T2 shortening. American Journal of Neuroradiology, 14, 1049–1050.
Gorell, J. M., Ordidge, R. J., Brown, G. G., Deniau, J.-C., Muderer, N. M., & Helpern, J. A. (1995). Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology, 45(6), 1138–1143.
Grammas, P. (2011). Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. Journal of Neuroinflammation, 8, 26. doi:10.1186/1742-2094-8-26.
Granold, M., Moosmann, B., Staib-Lasarzik, I., Arendt, T., del Rey, A., Engelhard, K., Behl, C., & Hajieva, P. (2015). High membrane protein oxidation in the human cerebral cortex. Redox Biology, 4, 200–207.
Gregory, A., & Hayflick, S. (2014). Neurodegeneration with brain iron accumulation disorders overview. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, T. D. Bird, C. R. Dolan, C. T. Fong, R. J. H. Smith, & K. Stephens (Eds.), GeneReviews (pp. 1–22). Seattle: University of Washington, Seattle.
Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. A., Gordon, D. J., Krauss, R. M., Savage, P. J., Smith, S. C., Jr., Spertus, J. A., & Costa, F. (2005). Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement. Circulation, 112, 2735–2752.
Haacke, E. M., Cheng, N. Y. C., House, M. J., Liu, Q., Neelaavalli, J., Ogg, R. J., Khan, A., Ayaz, M., Kirsch, W., & Obenaus, A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 1–25.
Haacke, E. M., Ayaz, M., Khan, A., Manova, E. S., Krishnamurthy, B., Gollapalli, L., Ciulla, C., Kim, I., Petersen, F., & Kirsch, W. (2007). Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. Journal of Magnetic Resonance Imaging, 26(2), 256–264.
Haacke, E. M., Tang, J., Neelavalli, J., & Cheng, Y. C. N. (2010). Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. Journal of Magnetic Resonance Imaging, 32, 663–676.
Haacke, E. M., Liu, S., Buch, S., Zheng, W., Wu, D., & Ye, Y. (2015). Quantitative susceptibility mapping: current status and future directions. Magnetic Resonance Imaging, 33, 1–25. doi:10.1016/j.mri.2014.09.004.
Haider, L., Simeonidou, C., Steinberger, G., Hametner, S., Grigoriadis, N., Deretzi, G., Kovacs, G. G., Kutzeinigg, A., Lassmann, H., & Frischer, J. M. (2014). Multiple sclerosis deep gray matter: the relation between demyelination, neurodegeneration, inflammation and iron. Journal of Neurology, Neurosurgery, and Psychiatry, 85(12), 1386–1395. doi:10.1136/jnnp-2014-307712.
Hallervorden, J., & Spatz, H. (1922). Eigenartige Erkrankung im extrapyramidalen System mit besonderer Beteiligung des Globus pallidus und der Substantia nigra.: Ein Beitrag zu den Beziehungen zwischen diesen beiden Zentren. [Peculiar disease in extrapyramidal system with specific involvement of the globus pallidus and the substantia nigra]. Zeitschrift für die gesamte Neurologie und Psychiatrie, 79, 254–302.
Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3, 41–51.
Halliwell, B. (1992). Iron and damage to biomolecules. In Lauffer (Ed.), Iron and Human Disease (pp. 209–236). Roca Baton: CRC Press.
Hare, D., Ayton, S., Bush, A., & Lei, P. (2013). A delicate balance: iron metabolism and diseases of the brain. Frontiers in Aging Neuroscience, 5, 34.
Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11(3), 298–300.
Hirai, W., Korogi, Y., Sakamoto, Y., Hamatake, S., Ikushima, I., & Takahashi, M. (1996). T2 shortening in the motor cortex: effect of aging and cerebrovascular diseases. Radiology, 199, 799–803.
Hossein Sadrzadeh, S. M., & Saffari, Y. (2004). Iron and brain disorders. American Journal of Clinical Pathology, 121(Suppl 1), S64–S70. doi:10.1309/EW0121LG9N3N1YL4.
House, E., Collingwood, J., Khan, A., Korchazkina, O., Berthon, G., & Exley, C. (2004). Aluminum, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6(3), 291–301.
House, M. J., St Pierre, T. G., Foster, J. K., Martins, R. N., & Clarnette, R. (2006). Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR, 27, 430–439.
Jahanshad, N., Rajagopalan, P., & Thompson, P. M. (2013). Neuroimaging, nutrition, and iron-related genes. Cellular and Molecular Life Sciences, 70, 4449–4461. doi:10.1007/s00018-013-1369-2.
Janaway, B. M., Simpson, J. E., Hoggard, N., Highley, J. R., Forster, G., Drew, D., Gebril, O. H., Matthews, F. E., Bryane, C., Wharton, S. B., Ince, P. G., & MRC Cognitive Function and Ageing Neuropathology Study. (2014). Brain haemosiderin in older people: pathological evidence for an ischemic origin of magnetic resonance imaging (MRI) microbleeds. Neuropathology and Applied Neurobiology, 40(3), 258–269. doi:10.111/nan.12062.
Joseph, J. C., Shukitt-Hale, B., Denisova, N. A., Bielinski, D., Martin, A., McEwen, J. J., & Bickford, P. C. (1999). Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. The Journal of Neuroscience, 19(18), 8114–8121.
Joseph, J. A., Shukitt-Hale, B., Casadesus, G., & Fisher, D. (2005). Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochemical Research, 30(6/7), 927–935.
Kemper, T. L. (1994). Neuroanatomical and neuropathological changes during aging and in dementia. In: Clinical neurology of aging, 2nd ed. (Albert ML, Knoepfel EJE, eds, pp. 3–67). New York: Oxford University Press.
Khabipova, D., Wiaux, Y., Gruetter, R., & Marques, J. P. (2015). A modulated closed form solution for quantitative susceptibility mapping—a thorough evaluation and comparison to iterative methods based on edge prior knowledge. NeuroImage, 107, 163–174. doi:10.1016/j.nueorimage.2014.11.038.
Khalil, M., Langkammer, C., Pichler, A., Pinter, D., Gattringer, T., Bachmaier, G., Ropele, S., Fuchs, S., Enzinger, C., & Fazekas, F. (2015). Dynamics of brain iron levels in multiple sclerosis: a longitudinal 3 T MRI study. Neurology, 84(24), 1–7. doi:10.1212/WNL.0000000000001679.
Kienzel, E., Pychinger, L., Jellinger, K., Linert, W., Stachelberger, H., & Jameson, R. (1995). The role of transition metals in the pathogenesis of Parkinson’s disease. Journal of the Neurological Sciences, 134(Suppl), 69–78.
Kirkwood, T. B., Feder, M., Finch, C. E., Franceschi, C., Globerson, A., Klingenberg, C. P., LaMarco, K., Omholt, S., & Westendorp, R. G. (2005). What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mechanisms if Ageing and Development, 126, 439–443.
Kosta, P., Argyropoulou, M. I., Markoula, S., & Konitsiotis, S. (2006). MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. Journal of Neurology, 253, 26–32.
Langkammer, C., Krebs, N., Goessler, W., Scheurer, E., Yen, K., Fazekas, F., & Ropele, S. (2012a). Susceptibility induced gray-white matter MRI contrast in the human brain. NeuroImage, 59, 1413–1419.
Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E., Sommer, K., Reishofer, G., Yen, K., Fazekas, F., Ropele, S., & Reichenbach, J. R. (2012b). Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage, 62, 1593–1599. doi:10.1016/j.neuroimage.2012.05.049.
Langkammer, C., Ropele, S., Pirpamer, L., Faezekas, F., & Schmidt, R. (2014). MRI for iron mapping in Alzheimer’s disease. Neurodegenerative Diseases, 13(2–3), 189–191. doi:10.1159/000353756.
Langkammer, C., Bredies, K., Poser, B. A., Barth, M., Reishofer, G., Fan, A. P., Bilgic, B., Fazekas, F., Mainero, C., & Ropele, S. (2015). Fast quantitative susceptibility mapping using 3D EPI and total generalizaed variation. NeuroImage, 111, 622–630.
Lauffer, R. (Ed.). (1992). Introduction. Iron, aging, and human disease: Historical background and new hypotheses. In: Iron and Human Disease (pp. 1–22). Boca Raton, FL: CRC Press.
Lee, J., Shmueli, K., Fukunaga, M., van Gelderen, P., Merkle, H., Silva, A. C., & Duyn, J. H. (2010). Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. Proceedings of the National Academy of Sciences of the United States of America, 107, 5130–5135.
Lehmann, D. J., Worwood, M., Ellis, R., Wimhurst, V. L. J., Merryweather-Clarke, A. T., Warden, D. R., Smith, A. D., & Robson, K. J. H. (2006). Iron genes, iron load and risk of Alzheimer’s disease. Journal of Medical Genetics, 43, e52. doi:10.1136/jmg.2006.040519.
Li, W., Wu, B., & Liu, C. (2011). Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage, 55, 1645–1656. doi:10.1016/j.neuroimage.2010.11.088.
Li, W., Wu, B., Batrachenko, A., Bancroft-Wu, V., Morey, R. A., Shashi, V., Langkammer, C., De Bellis, M. D., Ropele, S., Song, A. W., & Liu, C. (2014). Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Human Brain Mapping, 35, 2698–2713. doi:10.1002/hbm.22360.
Li, W., Wang, N., Yu, F., Han, H., Cao, W., Romero, R., Tantiwongkosi, B., Duong, T. Q., & Liu, C. (2015). A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. NeuroImage, 108, 111–122. doi:10.1016/j.neuroimage.2014.12.043.
Lim, I. A., Li, X., Jones, C. K., Farrell, J. A. D., Vikram, D. S., & van Zijl, P. C. M. (2014). Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. NeuroImage, 86, 265–279. doi:10.1016/j.neuroimage.2013.09.072.
Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: what’s change got to do with it? Psychology and Aging, 26(1), 34–47. doi:10.1037/a0020525.
Liu, C., Li, W., Johnson, A., & Wu, B. (2011). High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. NeuroImage, 56, 930–938. doi:10.1016/j.neuroimage.2011.02.024.
Liu, J.-Y., Ding, J., Dong, L., He, Y.-F., Dai, Z., Chen, C.-Z., Cheng, W.-Z., Wang, H., Zhou, J., & Wang, X. (2013). T2* MRI of minimal hepatic encephalopathy and cognitive correlates in vivo. Journal of Magnetic Resonance Imaging, 37, 179–186. doi:10.1002/jmri.23811.
Lodygensky, G. A., Marques, J. P., Maddage, R., Perroud, E., Sizonenko, S. V., Hüppi, P. S., & Gruetter, R. (2012). In vivo assessment of myelination by phase imaging at high magnetic field. NeuroImage, 59, 1979–1987.
Loitfelder, M., Seiler, S., Schwingenschuh, P., & Schmidt, R. (2012). Cerebral microbleeds: a review. Panimerva Medica, 54(3), 149–160.
Lorio, S., Lutti, A., Kherif, F., Ruef, A., Dukart, J., Chowdhury, R., Frackowiak, R. S., Ashburner, J., Helms, G., Weiskopf, N., & Draganski, B. (2014). Disentangling in vivo the effects of iron content and atrophy on the ageing human brain. NeuroImage, 103, 280–289.
Luo, Z., Zhuang, X., Kumar, D., Wu, X., Yue, C., Han, C., & Lv, J. (2013). The correlation of hippocampal T2-mapping with neuropsychology test in patients with Alzheimer’s disease. PLOS One, 8(9), e76203. doi:10.1371/journal.pone.0076203.
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44.
Mills, E., Dong, X., Wang, F., & Xu, H. (2010). Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2(1), 51–72.
Moos, T., & Morgan, E. H. (2004). The metabolism of neuronal iron and its pathogenic role in neurologic disease: review. Annals of the New York Academy of Sciences, 1012, 14–26.
Morita, R., Yoshii, M., Nakajima, K., Kohsaka, T., Miki, M., & Torizuka, K. (1981). Clinical evaluation of serum ferritin to iron ratio in malignant diseases. European Journal of Nuclear Medicine, 6(7), 331–336.
Morris, C. M., Candy, J. M., Keith, A. B., Oakley, A. E., Taylor, G. A., Pullen, R. G., Bloxham, C. A., Gocht, A., & Edwardson, J. A. (1992). Brain iron homeostasis. Journal of Inorganic Biochemistry, 47, 257–265.
Nandar, W., & Connor, J. R. (2011). HFE gene variants affect iron in the brain. Journal of Nutrition, 141, 729S–739S. doi:10.3945/jn.110.130351.
Nandigam, R. N. K., Viswanathan, A., Delgado, P., Skehan, M. E., Smith, E. E., Rosand, J., Greenberg, S. M., & Dickerson, B. C. (2009). MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR, 30(2), 338–343. doi:10.3174/ajnr.A1355.
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Science, 87, 9868–9872.
Ogg, R. J., Langston, J. W., Haacke, E. M., Steen, R. G., & Taylor, J. S. (1999). The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magnetic Resonance Imaging, 17(8), 1141–1148.
Ordidge, R. J., Gorell, J. M., Deniau, J. C., Knight, R. A., & Helpern, J. A. (1994). Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 tesla. Magnetic Resonance in Medicine, 32, 335–341.
Pauling, L., & Coryell, C. D. (1936). The magnetic properties and structure of the hemochromogens and related substances. Proceedings of the National Academy of Sciences of the United States of America, 22(3), 159–163.
Penke, L., Hernandéz, M. C. V., Maniega, S. M., Gow, A. J., Murray, C., Starr, J. M., Bastin, M. E., Deary, I. J., & Wardlaw, J. M. (2012). Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiology of Aging, 33, 510–517. doi:10.1016/j.neurobiolaging.2010.04.032.
Péran, P., Cherubini, A., Luccichenti, G., Hagberg, G., Démonet, J. F., Rascol, O., Celsis, P., Caltagirone, C., Spalletta, G., & Sabatini, U. (2009). Volume and iron content in the basal ganglia and thalamus. Human Brain Mapping, 30, 2667–2675.
Pfefferbaum, A., Adalsteinsson, E., Rohfling, T., & Sullivan, E. V. (2009). MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage, 47(2), 493–500. doi:10.1016/j.neuroimage.2009.05.006.
Pfefferbaum, A., Adalsteinsson, E., Rohlfing, T., & Sullivan, E. V. (2010). Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiology of Aging, 31(3), 482–500. doi:10.1016/j.neurobiolaging.2008.04.013.
Pfefferbaum, A., Rogosa, D. A., Rosenbloom, M. J., Chu, W., Sassoon, S. A., Kemper, C. A., Deresinski, S., Rohlfing, T., Zahr, N. M., & Sullivan, E. V. (2014). Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiology of Aging, 35(7), 1755–1768. doi:10.1016/j.neurobiolaging.2014.01.008.
Pinter, D., Khali, M., Pichler, A., Langkammer, C., Ropele, S., Marschik, P. B., Fuchs, S., Fazekas, F., & Enzinger, C. (2015). Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis. Neuroimage: Clinical, 7, 715–720. doi:10.1016/j.nicl.2015.02.023.
Poynton, C. B., Jenkinson, M., Adalsteinsson, E., Sullivan, E. V., Pfefferbaum, A., & Wells, W., III. (2015). Quantitative susceptibility mapping by inversion of a perturbation field model: correlation with brain iron in normal aging. IEEE Transactions on Medical Imaging, 34(1), 339–353. doi:10.1109/TMI.2014.2358552.
Pujol, J., Junque, C., Vendrell, P., Grau, J. M., Marti-Vilalta, J. L., Olivé, C., & Gili, J. (1992). Biological significance of iron-related magnetic resonance imaging changes in the brain. Archives of Neurology, 49(7), 711–717.
Qin, Y., Zhu, W., Zhan, C., Zhao, L., Wang, J., Tian, Q., & Wang, W. (2011). Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. Journal of Huazhong University of Science and Technology [Medical Sciences], 31(4), 578–585.
Quintana, C., Bellefqih, S., Laval, J. Y., Guerquin-Kern, J. L., Wu, T. D., Avila, J., Ferrer, I., Aranz, R., & Patiño, C. (2006). Study of the localization of iron, ferritin, and hemosedrin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. Journal of Structural Biology, 153, 42–54.
Raven, E. P., Lu, P. H., Tishler, T. A., Heydari, P., & Bartzokis, G. (2013). Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. Journal of Alzheimer’s Disease, 37(1), 127–136. doi:10.3233/JAD-130209.
Raz, N. & Kennedy, K. M. (2009). A systems approach to age-related change: Neuroanatomic changes, their modifiers, and cognitive correlates. In: W. Jagust, & M. D’Esposito. Imaging the Aging Brain. (Eds.) (pp. 43-70.) New York, NY: Oxford University Press.
Raz, N., & Lindenberger, U. (2011). News of cognitive cure for age-related brain shrinkage is premature: a comment on Burgmans et al., (2009). Neuropsychology, 24(2), 255–257.
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dhale, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences, and modifiers. Cerebral Cortex, 15, 1676–1689.
Raz, N., Rodrigue, K. M., & Haacke, E. M. (2007). Brain aging and its modifiers: Insights from in vivo neuromophometry and susceptibility weighted imaging. Annals of the New York Academy of Sciences, 1097, 84–93.
Raz, N., Ghisletta, P., Rodrigue, K., Kennedy, K., & Lindenberger, U. (2010). Trajectories of brain aging in middle-age and older adults: regional and individual differences. NeuroImage, 51(2), 501–511.
Recalcati, S., Minotti, G., & Cairo, G. (2010). Iron regulatory proteins: from molecular mechanisms to drug development. Antioxidants and Redox Signaling, 13(10), 1593–1616. doi:10.1089/ars.2009.2983.
Reeve, A., Simcox, E., & Turnbull, D. (2014). Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Research Reviews, 14, 19–30. doi:10.1016/j.arr.2014.01.004.
Rival, T., Page, R. M., Chandraratna, D. S., Sendall, T. J., Ryder, E., Liu, B., Lewis, H., Rosahl, T., Hider, R., Camargo, L. M., Shearman, M. S., Crowther, D. C., & Lomas, D. A. (2009). Fenton chemistry and oxidative stress mediate the toxicity of the B-amyloid peptide in a Drosophila model of Alzheimer’s disease. European Journal of Neuroscience, 29, 1335–1347.
Rockwood, K., Mogilner, A., & Mitnitski, A. (2004). Changes with age in the distribution of a frailty index. Mechanisms of Ageing and Development, 125, 517–519.
Rodrigue, K. M., Haacke, E. M., & Raz, N. (2011). Differential effects of age and history of hypertension of regional brain volumes and iron. NeuroImage, 54, 750–759. doi:10.1016/j.neuroimage.2010.09.068.
Rodrigue, K. M., Daugherty, A. M., Haacke, E. M., & Raz, N. (2012). The role of hippocampal iron content and hippocampal volume in age-related differences in memory. Cerebral Cortex, 23(7), 1533–1541. doi:10.1093/cercor/bhs139.
Rudko, D. A., Solovey, I., Gati, J. S., Kremenchutzky, M., & Menon, R. S. (2014). Multiple sclerosis: improved identification ofdisease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology, 272(3), 851–864. doi:10.1148/radiol.14132475.
Salgado, J. C., Olivera-Nappa, A., Gerdtzen, Z. P., Tapia, V., Theil, E. C., Conca, C., & Nuñez, M. T. (2010). Mathematical modeling of the dynamic storage of iron in ferritin. BMC Systems Biology, 4, 147.
Schafer, A., Wharton, S., Gowland, P., & Bowtell, R. (2009). Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI. NeuroImage, 48, 126–137.
Schenck, J. (1995). Imaging of brain iron by magnetic resonance: T2 relaxation at different field strengths. Journal of the Neurological Sciences, 134(Suppl), 10–18.
Schenck, J. F., & Zimmerman, E. A. (2004). High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR in Biomedicine, 17, 433–445. doi:10.1002/nbm.922.
Schenker, C., Meier, D., Wichmann, W., Boesiger, P., & Valavanis, A. (1993). Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology, 35, 119–124.
Schipper, H. M. (2012). Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochimica et Biophysica Acta, 1822, 350–360. doi:10.1016/j.bbadis.2011.06.016.
Schrag, M., Mueller, C., Oyoyo, U., & Kirsch, W. M. (2011). Iron, zinc, and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Progress in Neurobiology, 94(3), 296–306. doi:10.1016/j.pneurobio.2011.05.001.
Schwesser, F., Deistung, A., Lehr, B. W., & Reichenbach, J. R. (2011). Quantiative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage, 54, 2789–2807. doi:10.1016/j.neuroimage.2010.10.070.
Schwesser, F., Sommer, K., Deistung, A., & Reichenbach, J. R. (2012). Quantitative susceptibility mapping for investigating subtle susceptibility variation in the human brain. NeuroImage, 62, 2083–2100. doi:10.1016/j.neuroimage.2012.05.067.
Siemonsen, S., Finsterbusch, J., Matschke, J., Loernzen, A., Ding, X.-Q., & Fiehler, J. (2008). Age-dependent normal values of T2and T2’ in brain parenchyma. American Journal of Neuroradiology, 29, 950–955.
Singh, A., Isaac, A. O., Luo, X., Mohan, M. L., Cohen, M. L., Chen, F., Kong, Q., Bartz, J., & Singh, N. (2009). Abnormal brain iron homeostasis in human and animal prion disorders. PLoS Pathogens, 5, e1000336.
Smith, M. A., & Perry, G. (1995). Free radical damage, iron, and Alzheimer’s disease. Journal of the Neurological Sciences, 134(Suppl), 92–94.
Sohal, R. S., & Orr, W. C. (2012). The redox stress hypothesis of aging. Free Radical Biology and Medicine, 52(3), 539–555. doi:10.1016/j.freeradbiomed.2011.10.455.
Stankiewicz, J., Panter, S. S., Neema, M., Arora, A., Batt, C., & Bakshi, R. (2007). Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics, 4, 371–386.
Stiles, J., & Jernigan, T. L. (2010). The Basics of brain development. Neuropsychological Review, 20, 327–348. doi:10.1007/s11065-010-9148-4.
Sullivan, E. V., Adalsteinsson, E., Rohlfing, T., & Pfefferbaum, A. (2009). Relevance of iron deposition in deep gray matter brain structures of cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging and Behavior, 3, 167–175. doi:10.1007/s11682-008-9059-7.
Sun, H., Walsh, A. J., Lebel, R. M., Belvins, G., Catz, I., Lu, J.-Q., Johnson, E. S., Emery, D. J., Warren, K. G., & Wilman, A. H. (2015). Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter. Neuroimage, 105, 486–492. doi:10.1016/j.neuroimage.2014.11.010.
Thomas, L. O., Boyko, O. B., Anthony, D. C., & Burger, P. C. (1993). MR detection of brain iron. American Journal of Neuroradiology, 14(5), 1043–1048.
Todorich, B., Pasquini, J. M., Garcia, C. I., Paez, P. M., & Connor, J. R. (2009). Oligodendrocytes and myelination: the role of iron. Glia, 57, 467–478. doi:10.1002/glia.20784.
Ulla, M., Bonny, J. M., Ouchchane, L., Rieu, I., Claise, B., & Durif, F. (2013). Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PloS One, 8(3), e57904. doi:10.1371/journal.pone.0057904.
Urrutia, P. J., Mena, N. P., & Núñez, M. T. (2014). The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Frontiers in Pharmacology, 5, 38. doi:10.3389/fphar.2014.00038.
van Rooden, S., Buijs, M., van Vilet, M. E., Versluis, M. J., Webb, A. G., Oleksik, A. M., van de Wiel, L., Middlekoop, H. A. M., Jan Baluw, G., Weverling-Rynsburger, A. W. E., Goos, J. D. C., van der Flier, W. M., Koene, T., Scheltens, P., Barkhof, F., van de Rest, O., Slagboom, P. E., van Buchem, M. A., & van der Grond, J. (2014). Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function. NMR in Biomedicine. doi:10.1002/nbm.3248.
Vymazal, J., Brooks, R. A., Patronas, N., Hajek, M., Bulte, J. W. M., & Di Chiro, G. (1995). Magnetic resonance imaging of brain iron in health and disease. Journal of the Neurological Sciences, 134(Suppl), 19–26.
Walsh, A. J., Belvins, G., Lebel, R. M., Seres, P., Emery, D. J., & Wilman, A. H. (2014). Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology, 270(1), 186–196.
Wang, Y., & Liu, T. (2015). Qualitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magnetic Resonance in Medicine, 73, 82–101. doi:10.1002/mrm.25358.
Wang, D., Li, Y. Y., Luo, J. H., & Li, Y. H. (2014). Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging. Archives of Gerontology and Geriatrics, 59, 439–449. doi:10.1016/j.archger.2014.04.002.
Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R., & Zecca, L. (2014). The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurology, 13, 1045–1060.
Ward, R. J., Dexter, D. T., & Crichton, R. R. (2015). Neurodegenerative diseases and therapeutic strategies using iron chelators. Journal of Trace Elements in Medicine and Biology. doi:10.1016/j.jtemb.2014.12.012.
Wessling-Resnick, M. (2010). Iron homeostasis and the inflammatory response. Annual Review of Nutrition, 30, 105–122. doi:10.1146/annurev.nutr.012809.104804.
Williams, R., Buchheit, C. L., Berman, N. E., & LeVine, S. M. (2012). Pathogenic implications of iron accumulation in multiple sclerosis. Journal of Neurochemistry, 120, 7–25.
Wisnieff, C., Ramanan, S., Olesik, J., Gauthier, S., Wang, Y., & Pitt, D. (2014). Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magnetic Resonance in Medicine. doi:10.1002/mrm.25420.
Xia, S., Zheng, G., Shen, W., Liu, S., Zhang, L. J., Haacke, E. M., & Lu, G. M. (2015). Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiologica, 56(3), 339–346. doi:10.1177/0284185114525374.
Xu, J., Jia, Z., Knutson, M. D., & Leeuwenburgh, C. (2012). Impaired iron status in aging research. International Journal of Molecular Sciences, 13, 2368–2386.
Yablonskiy, D. A., & Sukstanskii, A. L. (2015). Generalized lorentzian tensor approach (GLTA) as a biophysical background for quantitative susceptibility mapping. Magnetic Resonance in Medicine, 73, 757–764. doi:10.1002/mrm.25538.
Yamada, K., Gonzalez, R. G., ØStergaard, L., Komili, S., Weisskoff, R. M., Rosen, B. R., Koroshetz, W. J., Nishimura, T., & Sorensen, A. G. (2002). Iron-induced susceptibility effect at the globus pallidus causes underestimation of flow and volume on dynamic susceptibility contrast-enhanced MR perfusion images. American Journal of Neuroradiology, 23, 1022–1029.
Yan, S. Q., Sun, J. Z., Yan, Y. Q., Wang, H., & Lou, M. (2012). Evaluation of brain iron content based on magnetic resonance imaging (MRI): comparison among phase value, R2* and magnitude signal intensity. PLoS ONE, 7, e31748.
Yao, B., Li, T. Q., Gelderen, P., Shmueli, K., de Zwart, J. A., & Duyn, J. H. (2009). Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. NeuroImage, 44, 1259–1266. doi:10.1016/j.neuroimage.2008.10.029.
Yates, P. A., Desmond, P. M., Phal, P. M., Steward, C., Szoeke, C., Salvado, O., Ellis, K. A., Martins, R. N., Masters, C. L., Ames, D., Villemagne, V. L., & Rowe, C. C. (2014a). Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology, 82, 1266–1273. doi:10.1212/WNL.0000000000000285.
Yates, P. A., Villemagne, V. L., Ellis, K. A., Desmond, P. M., Masters, C. L., & Rowe, C. C. (2014b). Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Frontiers in Neuroscience, 4, 205. doi:10.3389/fneuro.2013.00205.
Youdim, M. B. H., & Yehuda, S. (2000). The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamine-opiate system. Cellular and Molecular Biology, 46(3), 491–500.
Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Natature Reviews, 5, 863–873. doi:10.1038/nrn1537.
Zhu, W. Z., Zhong, W. D., Wang, W., Zhan, C. J., Wang, C. Y., Qi, J. P., Wang, J. Z., & Lei, T. (2009). Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology, 253(2), 497–504. doi:10.1148/radiol.2532082324.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Daugherty, A.M., Raz, N. Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods. Neuropsychol Rev 25, 272–287 (2015). https://doi.org/10.1007/s11065-015-9292-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11065-015-9292-y