Skip to main content
Log in

Insights into the Genetic Foundations of Human Communication

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addis, L., Friederici, A. D., Kotz, S. A., Sabisch, B., Barry, J., Richter, N., et al. (2010). A locus for an auditory processing deficit and language impairment in an extended pedigree maps to 12p13.31-q14.3. Genes, Brain, and Behavior, 9(6), 545–561.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., et al. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anthoni, H., Zucchelli, M., Matsson, H., Muller-Myhsok, B., Fransson, I., Schumacher, J., et al. (2007). A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Human Molecular Genetics, 16(6), 667–677.

    CAS  PubMed  Google Scholar 

  • Bacon, C., & Rappold, G. A. (2012). The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human Genetics, 131(11), 1687–1698.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baek, S. T., Kerjan, G., Bielas, S. L., Lee, J. E., Fenstermaker, A. G., Novarino, G., et al. (2014). Off-target effect of doublecortin family shRNA on neuronal migration associated with endogenous microRNA dysregulation. Neuron, 82(6), 1255–1262.

    CAS  PubMed  Google Scholar 

  • Bartlett, C. W., Hou, L., Flax, J. F., Hare, A., Cheong, S. Y., Fermano, Z., et al. (2014). A genome scan for loci shared by autism spectrum disorder and language impairment. The American Journal of Psychiatry, 171(1), 72–81.

    PubMed  Google Scholar 

  • Becker, J., Czamara, D., Scerri, T. S., Ramus, F., Csepe, V., Talcott, J. B., et al. (2014). Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 22(5), 675–680.

    CAS  PubMed  Google Scholar 

  • Belengeanu, V., Gamage, T. H., Farcas, S., Stoian, M., Andreescu, N., Belengeanu, A., et al. (2014). A de novo 2.3 Mb deletion in 2q24.2q24.3 in a 20-month-old developmentally delayed girl. Gene, 539(1), 168–172.

    CAS  PubMed  Google Scholar 

  • Berwick, R. C., Okanoya, K., Beckers, G. J., & Bolhuis, J. J. (2011). Songs to syntax: the linguistics of birdsong. Trends in Cognitive Sciences, 15(3), 113–121.

    PubMed  Google Scholar 

  • Bishop, D. V. (2010). Overlaps between autism and language impairment: phenomimicry or shared etiology? Behavior Genetics, 40(5), 618–629.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bishop, D. V. (2014). Ten questions about terminology for children with unexplained language problems. International journal of language & communication disorders / Royal College of Speech & Language Therapists, 49(4), 381–415.

    CAS  Google Scholar 

  • Bishop D. V., Chan J., Adams C., Hartley J., Weir F. (2000) Conversational responsiveness in specific language impairment: evidence of disproportionate pragmatic difficulties in a subset of children. Developmental Psychopathology, 12(2), 177–99.

  • Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–759.

    CAS  PubMed  Google Scholar 

  • Boyle, A. P., Hong, E. L., Hariharan, M., Cheng, Y., Schaub, M. A., Kasowski, M., et al. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Research, 22(9), 1790–1797.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brereton, A. V., Tonge, B. J., & Einfeld, S. L. (2006). Psychopathology in children and adolescents with autism compared to young people with intellectual disability. Journal of Autism and Developmental Disorders, 36(7), 863–870.

    PubMed  Google Scholar 

  • Briscoe, J., Chilvers, R., Baldeweg, T., & Skuse, D. (2012). A specific cognitive deficit within semantic cognition across a multi-generational family. Proceedings of the Royal Society, B, 279(1743), 3652–3661.

    Google Scholar 

  • Buiting, K. (2010). Prader-Willi syndrome and angelman syndrome. American Journal of Medical Genetics Part C, 154C(3), 365–376.

  • Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187–192.

    PubMed  Google Scholar 

  • Carrion-Castillo, A., Franke, B., & Fisher, S. E. (2013). Molecular genetics of dyslexia: an overview. Dyslexia, 19(4), 214–240.

    PubMed  Google Scholar 

  • Carvill, G. L., Regan, B. M., Yendle, S. C., O’Roak, B. J., Lozovaya, N., Bruneau, N., et al. (2013). GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nature Genetics, 45(9), 1073–1076.

    CAS  PubMed  Google Scholar 

  • Chen, Q., Zhu, T., Jones, G., Zhang, J., & Sun, Y. (2013). First knockdown gene expression in bat (Hipposideros armiger) brain mediated by lentivirus. Molecular Biotechnology, 54(2), 564–571.

    CAS  PubMed  Google Scholar 

  • Chokas, A. L., Trivedi, C. M., Lu, M. M., Tucker, P. W., Li, S., Epstein, J. A., et al. (2010). Foxp1/2/4-NuRD interactions regulate gene expression and epithelial injury response in the lung via regulation of interleukin-6. The Journal of Biological Chemistry, 285(17), 13304–13313.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christopher, M. E., Hulslander, J., Byrne, B., Samuelsson, S., Keenan, J. M., Pennington, B., et al. (2013). Modeling the etiology of individual differences in early reading development: evidence for strong genetic influences. Scientific Studies of Reading, 17(5), 350–368.

  • Clarke, T., Strug, L. J., Murphy, P. L., Bali, B., Carvalho, J., Foster, S., et al. (2007). High risk of reading disability and speech sound disorder in rolandic epilepsy families: case–control study. Epilepsia, 48(12), 2258–2265.

    PubMed Central  PubMed  Google Scholar 

  • Clovis, Y. M., Enard, W., Marinaro, F., Huttner, W. B., & De Pietri Tonelli, D. (2012). Convergent repression of Foxp2 3’UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development, 139(18), 3332–3342.

    CAS  PubMed  Google Scholar 

  • Coop, G., Bullaughey, K., Luca, F., & Przeworski, M. (2008). The timing of selection at the human FOXP2 gene. Molecular Biology and Evolution, 25(7), 1257–1259.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper, G. M., & Shendure, J. (2011). Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nature Reviews Genetics, 12(9), 628–640.

    CAS  PubMed  Google Scholar 

  • Cope, N., Eicher, J. D., Meng, H., Gibson, C. J., Hager, K., Lacadie, C., et al. (2012). Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. NeuroImage, 63(1), 148–156.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coutinho, P., Pavlou, S., Bhatia, S., Chalmers, K. J., Kleinjan, D. A., & van Heyningen, V. (2011). Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Research, 21(8), 1349–1359.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coutinho, M. F., Prata, M. J., & Alves, S. (2012). Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Molecular Genetics and Metabolism, 105(4), 542–550.

    CAS  PubMed  Google Scholar 

  • Daily, D. K., Ardinger, H. H., & Holmes, G. E. (2000). Identification and evaluation of mental retardation. American Family Physician, 61(4), 1059–1067.

  • Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676.

    CAS  PubMed  Google Scholar 

  • Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 996–1005.

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Kovel, C. G., Hol, F. A., Heister, J. G., Willemen, J. J., Sandkuijl, L. A., Franke, B., et al. (2004). Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal of Medical Genetics, 41(9), 652–657.

    PubMed Central  PubMed  Google Scholar 

  • Dediu, D. (2011). Are languages really independent from genes? If not, what would a genetic bias affecting language diversity look like? Human Biology, 83(2), 279–296.

    PubMed  Google Scholar 

  • Dediu, D., & Levinson, S. C. (2013). On the antiquity of language: the reinterpretation of neandertal linguistic capacities and its consequences. Frontiers in Psychology, 4, 397.

    PubMed Central  PubMed  Google Scholar 

  • Dennis, M. Y., Paracchini, S., Scerri, T. S., Prokunina-Olsson, L., Knight, J. C., Wade-Martins, R., et al. (2009). A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genetics, 5(3), e1000436.

    PubMed Central  PubMed  Google Scholar 

  • Dennis, E. L., Jahanshad, N., Rudie, J. D., Brown, J. A., Johnson, K., McMahon, K. L., et al. (2011). Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connectivity, 1(6), 447–459.

    PubMed Central  PubMed  Google Scholar 

  • Deriziotis, P., & Fisher, S. E. (2013). Neurogenomics of speech and language disorders: the road ahead. Genome Biology, 14(4), 204.

    PubMed Central  PubMed  Google Scholar 

  • Deriziotis, P., O’Roak, B. J., Graham, S. A., Estruch, S. B., Dimitropoulou, D., Bernier, R., et al. (2014). De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 5(4954).

  • des Portes, V. (2013). X-linked mental deficiency. Handbook of Clinical Neurology, 111, 297–306.

    PubMed  Google Scholar 

  • DeVries, S. P., & Patel, A. D. (2013). Two patients with a GRIN2A mutation and childhood-onset epilepsy. Pediatric Neurology, 49(6), 482–485.

    PubMed  Google Scholar 

  • Dimassi, S., Andrieux, J., Labalme, A., Lesca, G., Cordier, M. P., Boute, O., et al. (2013). Interstitial 12p13.1 deletion involving GRIN2B in three patients with intellectual disability. American Journal of Medical Genetics Part A, 161(10), 2564–2569.

    CAS  Google Scholar 

  • Domingues, C. E., Olivera, C. M., Oliveira, B. V., Juste, F. S., Andrade, C. R., Giacheti, C. M., et al. (2014). A genetic linkage study in Brazil identifies a new locus for persistent developmental stuttering on chromosome 10. Genetics and Molecular Research, 13(1), 2094–2101.

  • Dorfman, R., Nalpathamkalam, T., Taylor, C., Gonska, T., Keenan, K., Yuan, X. W., et al. (2010). Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene? Clinical Genetics, 77(5), 464–473.

    CAS  PubMed  Google Scholar 

  • Ebstein, R. P., Israel, S., Chew, S. H., Zhong, S., & Knafo, A. (2010). Genetics of human social behavior. Neuron, 65(6), 831–844.

    CAS  PubMed  Google Scholar 

  • Eicher, J. D., & Gruen, J. R. (2013). Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 110(3), 201–212.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eicher, J. D., Powers, N. R., Miller, L. L., Akshoomoff, N., Amaral, D. G., Bloss, C. S., et al. (2013). Genome-wide association study of shared components of reading disability and language impairment. Genes, Brain, and Behavior, 12(8), 792–801.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology, 21(3), 415–424.

    CAS  PubMed  Google Scholar 

  • Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–872.

    CAS  PubMed  Google Scholar 

  • Enard, W., Gehre, S., Hammerschmidt, K., Holter, S. M., Blass, T., Somel, M., et al. (2009). A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell, 137(5), 961–971.

    CAS  PubMed  Google Scholar 

  • Evans, N., & Levinson, S. C. (2009). The myth of language universals: language diversity and its importance for cognitive science. The Behavioral and Brain Sciences, 32(5), 429–448. discussion 448–494.

    PubMed  Google Scholar 

  • Fan, X., Jin, W. Y., & Wang, Y. T. (2014). The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Frontiers in Cellular Neuroscience, 8, 160.

    PubMed Central  PubMed  Google Scholar 

  • Fedurek, P., & Slocombe, K. E. (2011). Primate vocal communication: a useful tool for understanding human speech and language evolution? Human Biology, 83(2), 153–173.

    PubMed  Google Scholar 

  • Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E., & Walsh, C. A. (2003). Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. The Journal of Comparative Neurology, 460(2), 266–279.

    CAS  PubMed  Google Scholar 

  • Feuk, L., Kalervo, A., Lipsanen-Nyman, M., Skaug, J., Nakabayashi, K., Finucane, B., et al. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. American Journal of Human Genetics, 79(5), 965–972.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Field, L. L., Shumansky, K., Ryan, J., Truong, D., Swiergala, E., & Kaplan, B. J. (2013). Dense-map genome scan for dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. Genes, Brain, and Behavior, 12(1), 56–69.

    CAS  PubMed  Google Scholar 

  • Fisher, S. E. (2015). Translating the genome in human neuroscience. In G. Marcus, & J. Freeman (Eds.), The future of the brain: Essays by the world's leading neuroscientists (pp. 149–159). Princeton, NJ: Princeton University Press.

  • Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: genetic dissection of a complex cognitive trait. Nature Reviews Neuroscience, 3(10), 767–780.

    CAS  PubMed  Google Scholar 

  • Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 7(1), 9–20.

    CAS  PubMed  Google Scholar 

  • Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166–177.

    CAS  PubMed  Google Scholar 

  • Fisher, S. E., & Vernes, S. C. (2015). Genetics and the Language Sciences. Annual Review of Linguistics, 1. doi:10.1146/annurev-linguist-030514-125024.

  • Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18(2), 168–170.

    CAS  PubMed  Google Scholar 

  • Fitch, W. T. (2010). The Evolution of Language. Cambridge: Cambridge University Press.

  • Flanagan, S. E., Patch, A. M., & Ellard, S. (2010). Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genetic Testing and Molecular Biomarkers, 14(4), 533–537.

    CAS  PubMed  Google Scholar 

  • Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., et al. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75(6), 1046–1058.

    PubMed Central  CAS  PubMed  Google Scholar 

  • French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28C, 72–79.

    Google Scholar 

  • French, C. A., Groszer, M., Preece, C., Coupe, A. M., Rajewsky, K., & Fisher, S. E. (2007). Generation of mice with a conditional Foxp2 null allele. Genesis, 45(7), 440–446.

    PubMed Central  CAS  PubMed  Google Scholar 

  • French, C. A., Jin, X., Campbell, T. G., Gerfen, E., Groszer, M., Fisher, S. E., et al. (2012). An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Molecular Psychiatry, 17(11), 1077–1085.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gabel, L. A., Marin, I., LoTurco, J. J., Che, A., Murphy, C., Manglani, M., et al. (2011). Mutation of the dyslexia-associated gene Dcdc2 impairs LTM and visuo-spatial performance in mice. Genes, Brain, and Behavior, 10(8), 868–875.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233.

    CAS  PubMed  Google Scholar 

  • Gaugler, T., Klei, L., Sanders, S. J., Bodea, C. A., Goldberg, A. P., Lee, A. B., et al. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885.

  • Gaya-Vidal, M., & Alba, M. M. (2014). Uncovering adaptive evolution in the human lineage. BMC Genomics, 15(1), 599.

    PubMed Central  PubMed  Google Scholar 

  • Gialluisi, A., Dediu, D., Francks, C., & Fisher, S. E. (2013). Persistence and transmission of recessive deafness and sign language: new insights from village sign languages. European Journal of Human Genetics, 21(9), 894–896.

  • Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., et al. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 137(7), 686–701.

  • Gibson, J., Adams, C., Lockton, E., & Green, J. (2013). Social communication disorder outside autism? a diagnostic classification approach to delineating pragmatic language impairment, high functioning autism and specific language impairment. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 54(11), 1186–1197.

    PubMed  Google Scholar 

  • Gilissen, C., Hehir-Kwa, J. Y., Thung, D. T., van de Vorst, M., van Bon, B. W., Willemsen, M. H., et al. (2014). Genome sequencing identifies major causes of severe intellectual disability. Nature, 511(7509), 344–347.

    CAS  PubMed  Google Scholar 

  • Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23(1), 43–51.

    CAS  PubMed  Google Scholar 

  • Griebel, U., & Oller, D. K. (2012). Vocabulary learning in a Yorkshire terrier: slow mapping of spoken words. PLoS One, 7(2), e30182.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Groszer, M., Keays, D. A., Deacon, R. M., de Bono, J. P., Prasad-Mulcare, S., Gaub, S., et al. (2008). Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Current Biology CB, 18(5), 354–362.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guidugli, L., Carreira, A., Caputo, S. M., Ehlen, A., Galli, A., Monteiro, A. N., et al. (2014). Functional assays for analysis of variants of uncertain significance in BRCA2. Human Mutation, 35(2), 151–164.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haesler, S., Wada, K., Nshdejan, A., Morrisey, E. E., Lints, T., Jarvis, E. D., et al. (2004). FoxP2 expression in avian vocal learners and non-learners. The Journal of Neuroscience, 24(13), 3164–3175.

    CAS  PubMed  Google Scholar 

  • Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P., & Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biology, 5(12), e321.

    PubMed Central  PubMed  Google Scholar 

  • Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28C, 136–141.

    Google Scholar 

  • Han, T. U., Park, J., Domingues, C. F., Moretti-Ferreira, D., Paris, E., Sainz, E., et al. (2014). A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering. Neurobiology of Disease, 69, 23–31.

    CAS  PubMed  Google Scholar 

  • Hancarova, M., Simandlova, M., Drabova, J., Mannik, K., Kurg, A., & Sedlacek, Z. (2013). A patient with de novo 0.45 Mb deletion of 2p16.1: the role of BCL11A, PAPOLG, REL, and FLJ16341 in the 2p15-p16.1 microdeletion syndrome. American Journal of Medical Genetics Part A, 161A(4), 865–870.

    PubMed  Google Scholar 

  • Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., Eklund, R., Nopola-Hemmi, J., Kaariainen, H., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1(4), e50.

    PubMed Central  PubMed  Google Scholar 

  • Harlaar, N., Meaburn, E. L., Hayiou-Thomas, M. E., Davis, O. S., Docherty, S., Hanscombe, K. B., et al. (2014). Genome-wide association study of receptive language ability of 12-year-olds. Journal of Speech, Language, and Hearing Research, 57(1), 96–105.

    PubMed Central  PubMed  Google Scholar 

  • Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., et al. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron, 29(2), 353–366.

    CAS  PubMed  Google Scholar 

  • Hilliard, A. T., Miller, J. E., Fraley, E. R., Horvath, S., & White, S. A. (2012). Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron, 73(3), 537–552.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hobaiter, C., & Byrne, R. W. (2014). The meanings of chimpanzee gestures. Current Biology, 24(14), 1596–1600.

    CAS  PubMed  Google Scholar 

  • Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8, 473.

    PubMed Central  PubMed  Google Scholar 

  • Horner, V., & de Waal, F. B. (2009). Controlled studies of chimpanzee cultural transmission. Progress in Brain Research, 178, 3–15.

    PubMed  Google Scholar 

  • Huguet, G., Ey, E., & Bourgeron, T. (2013). The genetic landscapes of autism spectrum disorders. Annual Review of Genomics and Human Genetics, 14, 191–213.

    CAS  PubMed  Google Scholar 

  • Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.

    PubMed Central  PubMed  Google Scholar 

  • Janik, V. M. (2014). Cetacean vocal learning and communication. Current Opinion in Neurobiology, 28C, 60–65.

    Google Scholar 

  • Kang, C., & Drayna, D. (2011). Genetics of speech and language disorders. Annual Review of Genomics and Human Genetics, 12, 145–164.

    CAS  PubMed  Google Scholar 

  • Kang, C., Riazuddin, S., Mundorff, J., Krasnewich, D., Friedman, P., Mullikin, J. C., et al. (2010). Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. The New England Journal of Medicine, 362(8), 677–685.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khan, Z., Ford, M. J., Cusanovich, D. A., Mitrano, A., Pritchard, J. K., & Gilad, Y. (2013). Primate transcript and protein expression levels evolve under compensatory selection pressures. Science, 342(6162), 1100–1104.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kilpinen, H., & Dermitzakis, E. T. (2012). Genetic and epigenetic contribution to complex traits. Human Molecular Genetics, 21(R1), R24–28.

    CAS  PubMed  Google Scholar 

  • Kim, H., & Kim, J. S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5), 321–334.

    CAS  PubMed  Google Scholar 

  • Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., et al. (2014). A draft map of the human proteome. Nature, 509(7502), 575–581.

    CAS  PubMed  Google Scholar 

  • Kirby, S., Griffiths, T., & Smith, K. (2014). Iterated learning and the evolution of language. Current Opinion in Neurobiology, 28C, 108–114.

    Google Scholar 

  • Kirkpatrick, R. M., McGue, M., Iacono, W. G., Miller, M. B., Basu, S., & Pankratz, N. (2014). Low-frequency copy-number variants and general cognitive ability: No evidence of association. Intelligence, 42, 98–106.

    PubMed Central  PubMed  Google Scholar 

  • Knornschild, M. (2014). Vocal production learning in bats. Current Opinion in Neurobiology, 28C, 80–85.

    Google Scholar 

  • Konopka, G., Bomar, J. M., Winden, K., Coppola, G., Jonsson, Z. O., Gao, F., et al. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature, 462(7270), 213–217.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kos, M., van den Brink, D., Snijders, T. M., Rijpkema, M., Franke, B., Fernandez, G., et al. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLoS One, 7(10), e46995.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krumm, N., O’Roak, B. J., Shendure, J., & Eichler, E. E. (2014). A de novo convergence of autism genetics and molecular neuroscience. Trends in Neurosciences, 37(2), 95–105.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuo, T. Y., Hong, C. J., & Hsueh, Y. P. (2009). Bcl11A/CTIP1 regulates expression of DCC and MAP1b in control of axon branching and dendrite outgrowth. Molecular and Cellular Neurosciences, 42(3), 195–207.

    CAS  PubMed  Google Scholar 

  • Kuo, T. Y., Chen, C. Y., & Hsueh, Y. P. (2010a). Bcl11A/CTIP1 mediates the effect of the glutamate receptor on axon branching and dendrite outgrowth. Journal of Neurochemistry, 114(5), 1381–1392.

    CAS  PubMed  Google Scholar 

  • Kuo, T. Y., Hong, C. J., Chien, H. L., & Hsueh, Y. P. (2010b). X-linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth. Journal of Neuroscience Research, 88(11), 2364–2373.

    CAS  PubMed  Google Scholar 

  • Kurt, S., Groszer, M., Fisher, S. E., & Ehret, G. (2009). Modified sound-evoked brainstem potentials in Foxp2 mutant mice. Brain Research, 1289, 30–36.

    CAS  PubMed  Google Scholar 

  • Kurt, S., Fisher, S. E., & Ehret, G. (2012). Foxp2 mutations impair auditory-motor association learning. PLoS One, 7(3), e33130.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laffin, J. J., Raca, G., Jackson, C. A., Strand, E. A., Jakielski, K. J., & Shriberg, L. D. (2012). Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization. Genetics in Medicine, 14(11), 928–936.

  • Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519–523.

    CAS  PubMed  Google Scholar 

  • Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(Pt 11), 2455–2462.

    PubMed  Google Scholar 

  • Lamminmaki, S., Massinen, S., Nopola-Hemmi, J., Kere, J., & Hari, R. (2012). Human ROBO1 regulates interaural interaction in auditory pathways. The Journal of Neuroscience, 32(3), 966–971.

    CAS  PubMed  Google Scholar 

  • Law, J., Boyle, J., Harris, F., Harkness, A., & Nye, C. (2000). Prevalence and natural history of primary speech and language delay: findings from a systematic review of the literature. International Journal of Language & Communication Disorders, 35(2), 165–188.

    CAS  Google Scholar 

  • Le Fevre, A. K., Taylor, S., Malek, N. H., Horn, D., Carr, C. W., Abdul-Rahman, O. A., et al. (2013). FOXP1 mutations cause intellectual disability and a recognizable phenotype. American Journal of Medical Genetics Part A, 161A(12), 3166–3175.

    PubMed  Google Scholar 

  • Lee, W. S., Kang, C., Drayna, D., & Kornfeld, S. (2011). Analysis of mannose 6-phosphate uncovering enzyme mutations associated with persistent stuttering. The Journal of Biological Chemistry, 286(46), 39786–39793.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lemke, J. R., Lal, D., Reinthaler, E. M., Steiner, I., Nothnagel, M., Alber, M., et al. (2013). Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nature Genetics, 45(9), 1067–1072.

    CAS  PubMed  Google Scholar 

  • Lennon, P. A., Cooper, M. L., Peiffer, D. A., Gunderson, K. L., Patel, A., Peters, S., et al. (2007). Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review. American Journal of Medical Genetics Part A, 143A(8), 791–798.

    CAS  PubMed  Google Scholar 

  • Leonard, L. B. (2014). Specific language impairment across languages. Child Development Perspectives, 8(1), 1–5.

    PubMed Central  PubMed  Google Scholar 

  • Lesca, G., Rudolf, G., Bruneau, N., Lozovaya, N., Labalme, A., Boutry-Kryza, N., et al. (2013). GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nature Genetics, 45(9), 1061–1066.

    CAS  PubMed  Google Scholar 

  • Li, S., Weidenfeld, J., & Morrisey, E. E. (2004). Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Molecular and Cellular Biology, 24(2), 809–822.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liegeois, F., Baldeweg, T., Connelly, A., Gadian, D. G., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6(11), 1230–1237.

    CAS  PubMed  Google Scholar 

  • Liegeois, F., Morgan, A. T., Connelly, A., & Vargha-Khadem, F. (2011). Endophenotypes of FOXP2: dysfunction within the human articulatory network. European Journal of Paediatric Neurology, 15(4), 283–288.

  • Liu, X. B., Murray, K. D., & Jones, E. G. (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. The Journal of Neuroscience, 24(40), 8885–8895.

    CAS  PubMed  Google Scholar 

  • Luciano, M., Evans, D. M., Hansell, N. K., Medland, S. E., Montgomery, G. W., Martin, N. G., et al. (2013). A genome-wide association study for reading and language abilities in two population cohorts. Genes, Brain, and Behavior, 12(6), 645–652.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lyn, H., Russell, J. L., Leavens, D. A., Bard, K. A., Boysen, S. T., Schaeffer, J. A., et al. (2014). Apes communicate about absent and displaced objects: methodology matters. Animal Cognition, 17(1), 85–94.

    PubMed  Google Scholar 

  • MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A. M., Lai, C. S., Vernes, S. C., et al. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76(6), 1074–1080.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Makrythanasis, P., & Antonarakis, S. E. (2013). Pathogenic variants in non-protein-coding sequences. Clinical Genetics, 84(5), 422–428.

    CAS  PubMed  Google Scholar 

  • Maricic, T., Gunther, V., Georgiev, O., Gehre, S., Curlin, M., Schreiweis, C., et al. (2013). A Recent Evolutionary Change Affects a Regulatory Element in the Human FOXP2 Gene. Molecular Biology and Evolution, 30(4), 844–852.

  • Marignier, S., Lesca, G., Marguin, J., Bussy, G., Sanlaville, D., & des Portes, V. (2012). Childhood apraxia of speech without intellectual deficit in a patient with cri du chat syndrome. European Journal of Medical Genetics, 55(6–7), 433–436.

    PubMed  Google Scholar 

  • Mason, K., Rowley, K., Marshall, C. R., Atkinson, J. R., Herman, R., Woll, B., et al. (2010). Identifying specific language impairment in deaf children acquiring British sign language: implications for theory and practice. The British Journal of Developmental Psychology, 28(Pt 1), 33–49.

    PubMed  Google Scholar 

  • Matson, J. L., & Shoemaker, M. (2009). Intellectual disability and its relationship to autism spectrum disorders. Research in Developmental Disabilities, 30(6), 1107–1114.

    PubMed  Google Scholar 

  • Matsuzawa, T. (2013). Evolution of the brain and social behavior in chimpanzees. Current Opinion in Neurobiology, 23(3), 443–449.

    CAS  PubMed  Google Scholar 

  • Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., et al. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One, 9(6), e101165.

    PubMed Central  PubMed  Google Scholar 

  • McRae, A. F., Wright, M. J., Hansell, N. K., Montgomery, G. W., & Martin, N. G. (2013). No association between general cognitive ability and rare copy number variation. Behavior Genetics, 43(3), 202–207.

    PubMed  Google Scholar 

  • Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17053–17058.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, J. E., Spiteri, E., Condro, M. C., Dosumu-Johnson, R. T., Geschwind, D. H., & White, S. A. (2008). Birdsong decreases protein levels of FoxP2, a molecule required for human speech. Journal of Neurophysiology, 100(4), 2015–2025.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell, K. J. (2007). The genetics of brain wiring: from molecule to mind. PLoS Biology, 5(4), e113.

    PubMed Central  PubMed  Google Scholar 

  • Mitchell, K. J. (2012). What is complex about complex disorders? Genome Biology, 13(1), 237.

    PubMed Central  PubMed  Google Scholar 

  • Moosa, A. N., Jehi, L., Marashly, A., Cosmo, G., Lachhwani, D., Wyllie, E., et al. (2013). Long-term functional outcomes and their predictors after hemispherectomy in 115 children. Epilepsia, 54(10), 1771–1779.

    PubMed  Google Scholar 

  • Murugan, M., Harward, S., Scharff, C., & Mooney, R. (2013). Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron, 80(6), 1464–1476.

    CAS  PubMed  Google Scholar 

  • Musante, L., & Ropers, H. H. (2014). Genetics of recessive cognitive disorders. Trends in Genetics, 30(1), 32–39.

    CAS  PubMed  Google Scholar 

  • Nelson, C. S., Fuller, C. K., Fordyce, P. M., Greninger, A. L., Li, H., & DeRisi, J. L. (2013). Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets. Nucleic Acids Research, 41(12), 5991–6004.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neul, J. L., Kaufmann, W. E., Glaze, D. G., Christodoulou, J., Clarke, A. J., Bahi-Buisson, N., et al. (2010). Rett syndrome: revised diagnostic criteria and nomenclature. Annals of Neurology, 68(6), 944–950.

    PubMed Central  PubMed  Google Scholar 

  • Newbury, D. F., & Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron, 68(2), 309–320.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newbury, D. F., Bonora, E., Lamb, J. A., Fisher, S. E., Lai, C. S., Baird, G., et al. (2002). FOXP2 is not a major susceptibility gene for autism or specific language impairment. American Journal of Human Genetics, 70(5), 1318–1327.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newbury, D. F., Winchester, L., Addis, L., Paracchini, S., Buckingham, L. L., Clark, A., et al. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. American Journal of Human Genetics, 85(2), 264–272.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newbury, D. F., Mari, F., Sadighi Akha, E., Macdermot, K. D., Canitano, R., Monaco, A. P., et al. (2012). Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 21(4), 361–365.

    PubMed Central  PubMed  Google Scholar 

  • Newbury, D. F., Monaco, A. P., & Paracchini, S. (2014). Reading and language disorders: the importance of both quantity and quality. Genes, 5(2), 285–309.

    PubMed Central  PubMed  Google Scholar 

  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., et al. (2014). Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes, Brain, and Behavior, 13(4), 418–429.

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43(6), 585–589.

    PubMed Central  PubMed  Google Scholar 

  • O’Roak, B. J., Vives, L., Fu, W., Egertson, J. D., Stanaway, I. B., Phelps, I. G., et al. (2012). Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science, 338(6114), 1619–1622.

    PubMed Central  PubMed  Google Scholar 

  • Pal, D. K. (2011). Epilepsy and neurodevelopmental disorders of language. Current Opinion in Neurology, 24(2), 126–131.

    PubMed  Google Scholar 

  • Palka, C., Alfonsi, M., Mohn, A., Cerbo, R., Guanciali Franchi, P., Fantasia, D., et al. (2012). Mosaic 7q31 deletion involving FOXP2 gene associated with language impairment. Pediatrics, 129(1), e183–188.

    PubMed  Google Scholar 

  • Palumbo, O., D’Agruma, L., Minenna, A. F., Palumbo, P., Stallone, R., Palladino, T., et al. (2013). 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and deficit of motor coordination. Gene, 516(1), 107–113.

    CAS  PubMed  Google Scholar 

  • Palumbo, O., Fichera, M., Palumbo, P., Rizzo, R., Mazzolla, E., Cocuzza, D. M., et al. (2014). TBR1 is the candidate gene for intellectual disability in patients with a 2q24.2 interstitial deletion. American Journal of Medical Genetics Part A, 164A(3), 828–833.

    PubMed  Google Scholar 

  • Paracchini, S. (2011). Dissection of genetic associations with language-related traits in population-based cohorts. Journal of Neurodevelopmental Disorders, 3(4), 365–373.

    PubMed Central  PubMed  Google Scholar 

  • Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., et al. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659–1666.

    CAS  PubMed  Google Scholar 

  • Paracchini, S., Steer, C. D., Buckingham, L. L., Morris, A. P., Ring, S., Scerri, T., et al. (2008). Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. The American Journal of Psychiatry, 165(12), 1576–1584.

    PubMed  Google Scholar 

  • Paracchini, S., Ang, Q. W., Stanley, F. J., Monaco, A. P., Pennell, C. E., & Whitehouse, A. J. (2011). Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population. Genes, Brain, and Behavior, 10(2), 158–165.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pennington, B. F., & Bishop, D. V. (2009). Relations among speech, language, and reading disorders. Annual Review of Psychology, 60, 283–306.

    PubMed  Google Scholar 

  • Peschansky, V. J., Burbridge, T. J., Volz, A. J., Fiondella, C., Wissner-Gross, Z., Galaburda, A. M., et al. (2010). The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cerebral Cortex, 20(4), 884–897.

    PubMed Central  PubMed  Google Scholar 

  • Peter, B., Matsushita, M., & Raskind, W. H. (2012). Motor sequencing deficit as an endophenotype of speech sound disorder: a genome-wide linkage analysis in a multigenerational family. Psychiatric Genetics, 22(5), 226–234.

    PubMed Central  PubMed  Google Scholar 

  • Peter, B., Button, L., Stoel-Gammon, C., Chapman, K., & Raskind, W. H. (2013). Deficits in sequential processing manifest in motor and linguistic tasks in a multigenerational family with childhood apraxia of speech. Clinical Linguistics & Phonetics, 27(3), 163–191.

    Google Scholar 

  • Peter, B., Matsushita, M., Oda, K., & Raskind, W. (2014). De novo microdeletion of BCL11A is associated with severe speech sound disorder. American Journal of Medical Genetics Part A, 164(8), 2091–2096.

    CAS  Google Scholar 

  • Petrill, S. A., Deater-Deckard, K., Thompson, L. A., Dethorne, L. S., & Schatschneider, C. (2006). Reading skills in early readers: genetic and shared environmental influences. Journal of Learning Disabilities, 39(1), 48–55

  • Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Zelenika, D., et al. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. The Journal of Neuroscience, 32(3), 817–825.

    CAS  PubMed  Google Scholar 

  • Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American Journal of Human Genetics, 94(5), 677–694.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piton, A., Redin, C., & Mandel, J. L. (2013). XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. American Journal of Human Genetics, 93(2), 368–383.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10(12), 872–878.

    CAS  PubMed  Google Scholar 

  • Plomin, R., Haworth, C. M., Meaburn, E. L., Price, T. S., & Davis, O. S. (2013). Common DNA markers can account for more than half of the genetic influence on cognitive abilities. Psychological Science, 24(4), 562–568.

    PubMed Central  PubMed  Google Scholar 

  • Pober, B. R. (2010). Williams-Beuren syndrome. The New England Journal of Medicine, 362(3), 239–252.

    CAS  PubMed  Google Scholar 

  • Preeprem, T., & Gibson, G. (2014). SDS, a structural disruption score for assessment of missense variant deleteriousness. Frontiers in Genetics, 5, 82.

    PubMed Central  PubMed  Google Scholar 

  • Raca, G., Baas, B. S., Kirmani, S., Laffin, J. J., Jackson, C. A., Strand, E. A., et al. (2013). Childhood apraxia of speech (CAS) in two patients with 16p11.2 microdeletion syndrome. European Journal of Human Genetics, 21(4), 455–459.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raza, M. H., Amjad, R., Riazuddin, S., & Drayna, D. (2012). Studies in a consanguineous family reveal a novel locus for stuttering on chromosome 16q. Human Genetics, 131(2), 311–313.

    PubMed Central  PubMed  Google Scholar 

  • Raza, M. H., Gertz, E. M., Mundorff, J., Lukong, J., Kuster, J., Schaffer, A. A., et al. (2013). Linkage analysis of a large African family segregating stuttering suggests polygenic inheritance. Human Genetics, 132(4), 385–396.

    PubMed Central  PubMed  Google Scholar 

  • Reichmuth, C., & Casey, C. (2014). Vocal learning in seals, sea lions, and walruses. Current Opinion in Neurobiology, 28C, 66–71.

    Google Scholar 

  • Reimers-Kipping, S., Hevers, W., Paabo, S., & Enard, W. (2011). Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience, 175, 75–84.

    CAS  PubMed  Google Scholar 

  • Reinthaler, E. M., Lal, D., Jurkowski, W., Feucht, M., Steinbock, H., Gruber-Sedlmayr, U., et al. (2014). Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia, 55(8), e89–93.

  • Rice, G. M., Raca, G., Jakielski, K. J., Laffin, J. J., Iyama-Kurtycz, C. M., Hartley, S. L., et al. (2012). Phenotype of FOXP2 haploinsufficiency in a mother and son. American Journal of Medical Genetics Part A, 158A(1), 174–181.

    PubMed Central  PubMed  Google Scholar 

  • Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: the role of orthographic depth. Frontiers in Human Neuroscience, 8, 347.

    PubMed Central  PubMed  Google Scholar 

  • Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., et al. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340(6139), 1467–1471.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rilling, J. K. (2014). Comparative primate neurobiology and the evolution of brain language systems. Current Opinion in Neurobiology, 28C, 10–14.

    Google Scholar 

  • Roberts, A. I., Roberts, S. G., & Vick, S. J. (2014). The repertoire and intentionality of gestural communication in wild chimpanzees. Animal Cognition, 17(2), 317–336.

    PubMed  Google Scholar 

  • Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: complex functions to complex disorders. European Journal of Human Genetics, 22(2), 171–178.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roll, P., Rudolf, G., Pereira, S., Royer, B., Scheffer, I. E., Massacrier, A., et al. (2006). SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 15(7), 1195–1207.

    CAS  PubMed  Google Scholar 

  • Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., et al. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19(24), 4848–4860.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai, Y., Shaw, C. A., Dawson, B. C., Dugas, D. V., Al-Mohtaseb, Z., Hill, D. E., et al. (2011). Protein interactome reveals converging molecular pathways among autism disorders. Science Translational Medicine, 3(86), 86ra49.

    PubMed Central  PubMed  Google Scholar 

  • Salmi, M., Bruneau, N., Cillario, J., Lozovaya, N., Massacrier, A., Buhler, E., et al. (2013). Tubacin prevents neuronal migration defects and epileptic activity caused by rat Srpx2 silencing in utero. Brain, 136(Pt 8), 2457–2473.

    PubMed  Google Scholar 

  • Sankaran, V. G., Xu, J., & Orkin, S. H. (2010). Advances in the understanding of haemoglobin switching. British Journal of Haematology, 149(2), 181–194.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scerri, T. S., & Schulte-Korne, G. (2010). Genetics of developmental dyslexia. European Child & Adolescent Psychiatry, 19(3), 179–197.

    Google Scholar 

  • Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., et al. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237–245.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scerri, T. S., Darki, F., Newbury, D. F., Whitehouse, A. J., Peyrard-Janvid, M., Matsson, H., et al. (2012). The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure. PLoS One, 7(11), e50321.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scharff, C., & Petri, J. (2011). Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1574), 2124–2140.

    PubMed Central  PubMed  Google Scholar 

  • Schulz, S. B., Haesler, S., Scharff, C., & Rochefort, C. (2010). Knockdown of FoxP2 alters spine density in Area X of the zebra finch. Genes, Brain, and Behavior, 9(7), 732–740.

    CAS  PubMed  Google Scholar 

  • Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J. D., Ghahremani, D., et al. (2010). Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Science Translational Medicine, 2(56), 56ra80.

    PubMed Central  PubMed  Google Scholar 

  • Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., & Walsh, T. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445-449.

  • Seyfarth, R. M., & Cheney, D. L. (2014). The evolution of language from social cognition. Current Opinion in Neurobiology, 28C, 5–9.

    Google Scholar 

  • Shi, Z., Luo, G., Fu, L., Fang, Z., Wang, X., & Li, X. (2013). miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. The Journal of Neuroscience, 33(42), 16510–16521.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shriberg, L. D., Tomblin, J. B. & McSweeny, J. L. (1999). Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. Journal of Speech, Language, and Hearing Research, 42(6), 1461–81.

  • Shriberg, L. D., Ballard, K. J., Tomblin, J. B., Duffy, J. R., Odell, K. H., & Williams, C. A. (2006). Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. Journal of Speech, Language, and Hearing Research, 49(3), 500–525.

    PubMed  Google Scholar 

  • Shriberg, L. D., Jakielski, K. J., & El-Shanti, H. (2008). Breakpoint localization using array-CGH in three siblings with an unbalanced 4q;16q translocation and childhood apraxia of speech (CAS). American Journal of Medical Genetics, 146A(17), 2227–2233.

    PubMed  Google Scholar 

  • Shriberg, L. D., Potter, N. L., & Strand, E. A. (2011). Prevalence and phenotype of childhood apraxia of speech in youth with galactosemia. Journal of Speech, Language, and Hearing Research, 54(2), 487–519.

    PubMed Central  PubMed  Google Scholar 

  • Shu, W., Lu, M. M., Zhang, Y., Tucker, P. W., Zhou, D., & Morrisey, E. E. (2007). Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development, 134(10), 1991–2000.

    CAS  PubMed  Google Scholar 

  • Sia, G. M., Clem, R. L., & Huganir, R. L. (2013). The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice. Science, 342(6161), 987–991.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simonyan, K. (2014). The laryngeal motor cortex: its organization and connectivity. Current Opinion in Neurobiology, 28C, 15–21.

    Google Scholar 

  • Smith, N. V., & Tsimpli, I. M. (1995). The mind of a savant: Language learning and modularity. Oxford: Blackwell.

    Google Scholar 

  • Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., et al. (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American Journal of Human Genetics, 81(6), 1144–1157.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava, A. K., & Schwartz, C. E. (2014). Intellectual disability and autism spectrum disorders: Causal genes and molecular mechanisms. Neuroscience and Biobehavioral Reviews, 46(2), 161–174.

  • St Pourcain, B., Whitehouse, A. J., Ang, W. Q., Warrington, N. M., Glessner, J. T., Wang, K., et al. (2013). Common variation contributes to the genetic architecture of social communication traits. Molecular Autism, 4(1), 34.

    PubMed Central  PubMed  Google Scholar 

  • St Pourcain, B., Cents, R. A., Whitehouse, A. J., Haworth, C. M., Davis, O. S., & O’Reilly, P. F. (2014a). Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nature Communications, 16(5), 4831.

  • St Pourcain, B., Skuse, D. H., Mandy, W. P., Wang, K., Hakonarson, H., Timpson, N. J., et al. (2014b). Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Molecular Autism, 5(1), 18.

    PubMed Central  PubMed  Google Scholar 

  • Stessman, H. A., Bernier, R., & Eichler, E. E. (2014). A genotype-first approach to defining the subtypes of a complex disease. Cell, 156(5), 872–877.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stoeger, A. S., & Manger, P. (2014). Vocal learning in elephants: neural bases and adaptive context. Current Opinion in Neurobiology, 28C, 101–107.

    Google Scholar 

  • Strauss, K. A., Puffenberger, E. G., Huentelman, M. J., Gottlieb, S., Dobrin, S. E., Parod, J. M., et al. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. The New England Journal of Medicine, 354(13), 1370–1377.

    CAS  PubMed  Google Scholar 

  • Stromswold, K. (2001). The heritability of language: a review and meta-analysis of twin, adoption and linkage studies. Language, 77, 647–723.

    Google Scholar 

  • Szalkowski, C. E., Fiondella, C. G., Galaburda, A. M., Rosen, G. D., Loturco, J. J., & Fitch, R. H. (2012). Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. International Journal of Developmental Neuroscience, 30(4), 293–302.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taipale, M., Kaminen, N., Nopola-Hemmi, J., Haltia, T., Myllyluoma, B., Lyytinen, H., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11553–11558.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi, D. Y., Narayanan, D. Z., & Ghazanfar, A. A. (2013). Coupled oscillator dynamics of vocal turn-taking in monkeys. Current Biology, 23(21), 2162–2168.

    CAS  PubMed  Google Scholar 

  • Tan, G. C., Doke, T. F., Ashburner, J., Wood, N. W., & Frackowiak, R. S. (2010). Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2. NeuroImage, 53(3), 1030–1042.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanner, D., & Van Hell, J. G. (2014). ERPs reveal individual differences in morphosyntactic processing. Neuropsychologia, 56, 289–301.

    PubMed  Google Scholar 

  • Tarkar, A., Loges, N. T., Slagle, C. E., Francis, R., Dougherty, G. W., Tamayo, J. V., et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 45(9), 995–1003.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teramitsu, I., & White, S. A. (2006). FoxP2 regulation during undirected singing in adult songbirds. The Journal of Neuroscience, 26(28), 7390–7394.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teramitsu, I., Kudo, L. C., London, S. E., Geschwind, D. H., & White, S. A. (2004). Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. The Journal of Neuroscience, 24(13), 3152–3163.

    CAS  PubMed  Google Scholar 

  • Teramitsu, I., Poopatanapong, A., Torrisi, S., & White, S. A. (2010). Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS One, 5(1), e8548.

    PubMed Central  PubMed  Google Scholar 

  • Thevenon, J., Callier, P., Andrieux, J., Delobel, B., David, A., Sukno, S., et al. (2013). 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. European Journal of Human Genetics, 21(1), 82–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thiebaut de Schotten, M., Ffytche, D. H., Bizzi, A., Dell’Acqua, F., Allin, M., Walshe, M., et al. (2011). Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage, 54(1), 49–59.

    PubMed  Google Scholar 

  • Thomas, M. S., Annaz, D., Ansari, D., Scerif, G., Jarrold, C., & Karmiloff-Smith, A. (2009). Using developmental trajectories to understand developmental disorders. Journal of Speech, Language, and Hearing Research, 52(2), 336–358.

    PubMed  Google Scholar 

  • Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., et al. (2014). The ENIGMA consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8(2), 153–182.

    PubMed Central  PubMed  Google Scholar 

  • Threlkeld, S. W., McClure, M. M., Bai, J., Wang, Y., LoTurco, J. J., Rosen, G. D., et al. (2007). Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. Brain Research Bulletin, 71(5), 508–514.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O'Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 40(6), 1245–60

  • Toma, C., Hervas, A., Torrico, B., Balmana, N., Salgado, M., Maristany, M., et al. (2013). Analysis of two language-related genes in autism: a case–control association study of FOXP2 and CNTNAP2. Psychiatric Genetics, 23(2), 82–85.

    CAS  PubMed  Google Scholar 

  • Tran, C., Wigg, K. G., Zhang, K., Cate-Carter, T. D., Kerr, E., Field, L. L., et al. (2014). Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes, Brain, and Behavior, 13(4), 430–438.

    CAS  PubMed  Google Scholar 

  • Traylor, R. N., Dobyns, W. B., Rosenfeld, J. A., Wheeler, P., Spence, J. E., Bandholz, A. M., et al. (2012). Investigation of TBR1 hemizygosity: four individuals with 2q24 microdeletions. Molecular Syndromology, 3(3), 102–112.

    PubMed Central  PubMed  Google Scholar 

  • Turner, S. J., Hildebrand, M. S., Block, S., Damiano, J., Fahey, M., Reilly, S., et al. (2013). Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria. American Journal of Medical Genetics Part A, 161(9), 2321–2326.

    CAS  Google Scholar 

  • Van Bogaert, P. (2013). Epileptic encephalopathy with continuous spike-waves during slow-wave sleep including Landau-Kleffner syndrome. Handbook of Clinical Neurology, 111, 635–640.

    PubMed  Google Scholar 

  • van Bokhoven, H. (2011). Genetic and epigenetic networks in intellectual disabilities. Annual Review of Genetics, 45, 81–104.

    PubMed  Google Scholar 

  • Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., et al. (1998). Neural basis of an inherited speech and language disorder. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 12695–12700.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Veltman, J. A., & Brunner, H. G. (2012). De novo mutations in human genetic disease. Nature Reviews Genetics, 13(8), 565–575.

    CAS  PubMed  Google Scholar 

  • Venselaar, H., Camilli, F., Gholizadeh, S., Snelleman, M., Brunner, H. G., & Vriend, G. (2013). Status quo of annotation of human disease variants. BMC Bioinformatics, 14, 352.

    PubMed Central  PubMed  Google Scholar 

  • Vernes, S. C., Nicod, J., Elahi, F. M., Coventry, J. A., Kenny, N., Coupe, A. M., et al. (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 15(21), 3154–3167.

    CAS  PubMed  Google Scholar 

  • Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., et al. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. American Journal of Human Genetics, 81(6), 1232–1250.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., et al. (2008). A functional genetic link between distinct developmental language disorders. The New England Journal of Medicine, 359(22), 2337–2345.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vernes, S. C., Oliver, P. L., Spiteri, E., Lockstone, H. E., Puliyadi, R., Taylor, J. M., et al. (2011). Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genetics, 7(7), e1002145.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Villanueva, P., Newbury, D. F., Jara, L., De Barbieri, Z., Mirza, G., Palomino, H. M., et al. (2011). Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population. European Journal of Human Genetics, 19(6), 687–695.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Y., Yin, X., Rosen, G., Gabel, L., Guadiana, S. M., Sarkisian, M. R., et al. (2011). Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience, 190, 398–408.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watkins, K. (2011). Developmental disorders of speech and language: from genes to brain structure and function. Progress in Brain Research, 189, 225–238.

    PubMed  Google Scholar 

  • Watkins, K. E., Gadian, D. G., & Vargha-Khadem, F. (1999). Functional and structural brain abnormalities associated with a genetic disorder of speech and language. American Journal of Human Genetics, 65(5), 1215–1221.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watkins, K. E., Vargha‐Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., et al. (2002). MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain, 125(3), 465–478.

    CAS  PubMed  Google Scholar 

  • Whalley, H. C., O’Connell, G., Sussmann, J. E., Peel, A., Stanfield, A. C., Hayiou-Thomas, M. E., et al. (2011). Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. American Journal of Medical Genetics Part B, 156B(8), 941–948.

  • Whitehouse, A. J., Bishop, D. V., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011a). CNTNAP2 variants affect early language development in the general population. Genes, Brain, and Behavior, 10(4), 451–456.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whitehouse, A. J., Robinson, M., & Zubrick, S. R. (2011b). Late talking and the risk for psychosocial problems during childhood and adolescence. Pediatrics, 128(2), e324–332.

    PubMed  Google Scholar 

  • Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., et al. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997–1007.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wiszniewski, W., Hunter, J. V., Hanchard, N. A., Willer, J. R., Shaw, C., Tian, Q., et al. (2013). TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities. American Journal of Human Genetics, 93(2), 197–210.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wohlgemuth, S., Adam, I., & Scharff, C. (2014). FoxP2 in songbirds. Current Opinion in Neurobiology, 28C, 86–93.

    Google Scholar 

  • Wong, P. C., Perrachione, T. K., Gunasekera, G., & Chandrasekaran, B. (2009). Communication disorders in speakers of tone languages: etiological bases and clinical considerations. Seminars in Speech and Language, 30(3), 162–173.

    PubMed Central  PubMed  Google Scholar 

  • Worthey, E. A., Raca, G., Laffin, J. J., Wilk, B. M., Harris, J. M., Jakielski, K. J., et al. (2013). Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. Journal of Neurodevelopmental Disorders, 5(1), 29.

    PubMed Central  PubMed  Google Scholar 

  • Zeesman, S., Nowaczyk, M. J., Teshima, I., Roberts, W., Cardy, J. O., Brian, J., et al. (2006). Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. American Journal of Medical Genetics Part A, 140(5), 509–514.

    PubMed  Google Scholar 

  • Zhou, B., Zhong, Q., Minoo, P., Li, C., Ann, D. K., Frenkel, B., et al. (2008). Foxp2 inhibits Nkx2.1-mediated transcription of SP-C via interactions with the Nkx2.1 homeodomain. American Journal of Respiratory Cell and Molecular Biology, 38(6), 750–758.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zuberbuhler, K. (2014). Experimental field studies with non-human primates. Current Opinion in Neurobiology, 28C, 150–156.

    Google Scholar 

  • Zweier, C., de Jong, E. K., Zweier, M., Orrico, A., Ousager, L. B., Collins, A. L., et al. (2009). CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. American Journal of Human Genetics, 85(5), 655–666.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon E. Fisher.

Additional information

Sarah A. Graham and Pelagia Deriziotis contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, S.A., Deriziotis, P. & Fisher, S.E. Insights into the Genetic Foundations of Human Communication. Neuropsychol Rev 25, 3–26 (2015). https://doi.org/10.1007/s11065-014-9277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-014-9277-2

Keywords

Navigation