Advertisement

Neuropsychology Review

, Volume 25, Issue 1, pp 113–124 | Cite as

Genetics and Underlying Pathology of Dementia

  • Beata Ferencz
  • Lotte GerritsenEmail author
Review

Abstract

As the population steadily ages, dementia, in all its forms, remains a great societal challenge. Yet, our knowledge of their etiology remains rather limited. To this end, genetic studies can give us insight into the underlying mechanisms that lead to the development of dementia, potentially facilitating treatments in the future. In this review we cover the most recent genetic risk factors associated with the onset of the four most common dementia types today, including Alzheimer’s disease (AD), Vascular Dementia (VaD), Frontotemporal Lobar Degeneration (FTLD) and Lewy Body Dementia (LBD). Moreover, we discuss the overlap in major underlying pathologies of dementia derived from their genetic associations. While all four dementia types appear to involve genes associated with tau-pathology and neuroinflammation only LBD, AD and VaD appear to involve amyloid genes while LBD and FTLD share alpha synuclein genes. Together these findings suggest that some of the dementias may exist along a spectrum and demonstrates the necessity to conduct large-scale studies pinpointing the etiology of the dementias and potential gene and environment interactions that may influence their development.

Keywords

Genetics Dementia Alzheimer’s disease Lewy body dementia Vascular dementia Frontotemporal lobar degeneration 

Notes

Financial Disclosures

LG is supported by a Marie Curie intra-European Fellowship of the European Community’s Seventh Framework Programme under contract number PIEF-GA-2011-300355 and a Veni grant (ZonMW 916-14-016) from the Netherlands Organisation for Scientific Research. BF is supported by Gamla Tjänarinnor, Sigurd och Elsa Goljes minne, the Swedish Research Council, the Swedish Research Council for Health Working Life and Welfare as well as a donation from the af Jochnick Foundation.

References

  1. Alam, R., Tripathi, M., Mansoori, N., Parveen, S., Luthra, K., Lakshmy, R., et al. (2014). Synergistic Epistasis of Paraoxonase 1 (rs662 and rs85460) and apolipoprotein E4 genes in pathogenesis of Alzheimer’s disease and vascular dementia. American Journal of Alzheimer’s Disease and Other Dementias. doi: 10.1177/1533317514539541.Google Scholar
  2. Altman, R., & Rutledge, J. C. (2010). The vascular contribution to Alzheimer’s disease. Clinical Science (London), 119(10), 407–421. doi: 10.1042/cs20100094.Google Scholar
  3. Baig, S., Joseph, S. A., Tayler, H., Abraham, R., Owen, M. J., Williams, J., et al. (2010). Distribution and expression of picalm in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 69(10), 1071–1077. doi: 10.1097/NEN.0b013e3181f52e01.PubMedCentralPubMedGoogle Scholar
  4. Baker, M., Mackenzie, I. R., Pickering-Brown, S. M., Gass, J., Rademakers, R., Lindholm, C., et al. (2006). Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 442(7105), 916–919. doi: 10.1038/nature05016.PubMedGoogle Scholar
  5. Bates, K. A., Verdile, G., Li, Q. X., Ames, D., Hudson, P., Masters, C. L., et al. (2009). Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Molecular Psychiatry, 14(5), 469–486. doi: 10.1038/mp.2008.96.PubMedGoogle Scholar
  6. Beecham, G. W., Hamilton, K., Naj, A. C., Martin, E. R., Huentelman, M., Myers, A. J., et al. (2014). Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genetics, 10(9), e1004606. doi: 10.1371/journal.pgen.1004606.PubMedCentralPubMedGoogle Scholar
  7. Bergem, A. L., Engedal, K., & Kringlen, E. (1997). The role of heredity in late-onset Alzheimer disease and vascular dementia. A twin study. Archives of General Psychiatry, 54(3), 264–270.PubMedGoogle Scholar
  8. Bogaerts, V., Engelborghs, S., Kumar-Singh, S., Goossens, D., Pickut, B., van der Zee, J., et al. (2007). A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain, 130(Pt 9), 2277–2291. doi: 10.1093/brain/awm167.PubMedGoogle Scholar
  9. Borroni, B., Grassi, M., Costanzi, C., Archetti, S., Caimi, L., & Padovani, A. (2006). APOE genotype and cholesterol levels in lewy body dementia and Alzheimer disease: investigating genotype-phenotype effect on disease risk. The American Journal of Geriatric Psychiatry, 14(12), 1022–1031. doi: 10.1097/01.jgp.0000225088.29353.08.PubMedGoogle Scholar
  10. Bostrom, F., Jonsson, L., Minthon, L., & Londos, E. (2007). Patients with Lewy body dementia use more resources than those with Alzheimer’s disease. International Journal of Geriatric Psychiatry, 22(8), 713–719. doi: 10.1002/gps.1738.PubMedGoogle Scholar
  11. Bras, J., Guerreiro, R., Darwent, L., Parkkinen, L., Ansorge, O., Escott-Price, V., et al. (2014). Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of Dementia with Lewy Bodies. Human Molecular Genetics. doi: 10.1093/hmg/ddu334.Google Scholar
  12. Chapman, J., Wang, N., Treves, T. A., Korczyn, A. D., & Bornstein, N. M. (1998). ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke, 29(7), 1401–1404.PubMedGoogle Scholar
  13. Clark, L. N., Kartsaklis, L. A., Wolf Gilbert, R., Dorado, B., Ross, B. M., Kisselev, S., et al. (2009). Association of glucocerebrosidase mutations with dementia with lewy bodies. Archives of Neurology, 66(5), 578–583. doi: 10.1001/archneurol.2009.54.PubMedCentralPubMedGoogle Scholar
  14. Colom-Cadena, M., Gelpi, E., Charif, S., Belbin, O., Blesa, R., Marti, M. J., et al. (2013). Confluence of alpha-synuclein, tau, and beta-amyloid pathologies in dementia with Lewy bodies. Journal of Neuropathology and Experimental Neurology, 72(12), 1203–1212. doi: 10.1097/nen.0000000000000018.PubMedGoogle Scholar
  15. Cook, L. J., Ho, L. W., Taylor, A. E., Brayne, C., Evans, J. G., Xuereb, J., et al. (2004). Candidate gene association studies of the alpha 4 (CHRNA4) and beta 2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer’s disease. Neuroscience Letters, 358(2), 142–146. doi: 10.1016/j.neulet.2004.01.016.PubMedGoogle Scholar
  16. Deelen, J., Beekman, M., Uh, H. W., Broer, L., Ayers, K. L., Tan, Q., et al. (2014). Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Human Molecular Genetics, 23(16), 4420–4432. doi: 10.1093/hmg/ddu139.PubMedCentralPubMedGoogle Scholar
  17. DeMattos, R. B., O’Dell, M. A., Parsadanian, M., Taylor, J. W., Harmony, J. A., Bales, K. R., et al. (2002). Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10843–10848. doi: 10.1073/pnas.162228299.PubMedCentralPubMedGoogle Scholar
  18. DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., et al. (2004). ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron, 41(2), 193–202.PubMedGoogle Scholar
  19. Dementia Report United Kingdom (2007). London.Google Scholar
  20. Devenney, E., Hornberger, M., Irish, M., Mioshi, E., Burrell, J., Tan, R., et al. (2014). Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. JAMA Neurology, 71(3), 331–339. doi: 10.1001/jamaneurol.2013.6002.PubMedGoogle Scholar
  21. Federico, A., Bianchi, S., & Dotti, M. T. (2005). The spectrum of mutations for CADASIL diagnosis. Neurological Science, 26(2), 117–124. doi: 10.1007/s10072-005-0444-3.Google Scholar
  22. Federico, A., Di Donato, I., Bianchi, S., Di Palma, C., Taglia, I., & Dotti, M. T. (2012). Hereditary cerebral small vessel diseases: a review. Journal of Neurological Sciences, 322(1–2), 25–30. doi: 10.1016/j.jns.2012.07.041.Google Scholar
  23. Ferencz, B., Karlsson, S., & Kalpouzos, G. (2012). Promising genetic biomarkers of preclinical Alzheimer’s disease: the influence of APOE and TOMM40 on brain integrity. International Journal of Alzheimer’s Disease, 2012, 421452. doi: 10.1155/2012/421452.PubMedCentralPubMedGoogle Scholar
  24. Ferrari, R., Hardy, J., & Momeni, P. (2011). Frontotemporal dementia: from Mendelian genetics towards genome wide association studies. Journal of Molecular Neuroscience, 45(3), 500–515. doi: 10.1007/s12031-011-9635-y.PubMedGoogle Scholar
  25. Ferrari, R., Hernandez, D. G., Nalls, M. A., Rohrer, J. D., Ramasamy, A., Kwok, J. B., et al. (2014). Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, 13(7), 686–699. doi: 10.1016/s1474-4422(14)70065-1.Google Scholar
  26. Fuchs, J., Nilsson, C., Kachergus, J., Munz, M., Larsson, E. M., Schule, B., et al. (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology, 68(12), 916–922. doi: 10.1212/01.wnl.0000254458.17630.c5.PubMedGoogle Scholar
  27. Gatz, M., Reynolds, C. A., Finkel, D., Pedersen, N. L., & Walters, E. (2010). Dementia in Swedish twins: predicting incident cases. Behavior Genetics, 40(6), 768–775. doi: 10.1007/s10519-010-9407-4.PubMedCentralPubMedGoogle Scholar
  28. Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., et al. (2011). APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903–907. doi: 10.1038/mp.2011.52.PubMedCentralPubMedGoogle Scholar
  29. George, J. M. (2002). The synucleins. Genome Biology, 3(1). REVIEWS3002.Google Scholar
  30. Gijselinck, I., Van Langenhove, T., van der Zee, J., Sleegers, K., Philtjens, S., Kleinberger, G., et al. (2012). A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology, 11(1), 54–65. doi: 10.1016/s1474-4422(11)70261-7.Google Scholar
  31. Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120(3), 885–890.PubMedGoogle Scholar
  32. Gudala, K., Bansal, D., & Muthyala, H. (2013). Role of serum cholesterol in Parkinson’s disease: a meta-analysis of evidence. Journal of Parkinsons Disease, 3(3), 363–370. doi: 10.3233/jpd-130196.Google Scholar
  33. Gusareva, E. S., Carrasquillo, M. M., Bellenguez, C., Cuyvers, E., Colon, S., Graff-Radford, N. R., et al. (2014). Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiology of Aging. doi: 10.1016/j.neurobiolaging.2014.05.014.PubMedGoogle Scholar
  34. Hanson, J. C., & Lippa, C. F. (2009). Lewy body dementia. International Review of Neurobiology, 84, 215–228. doi: 10.1016/s0074-7742(09)00411-5.PubMedGoogle Scholar
  35. Hardy, J., Guerreiro, R., & Lovestone, S. (2011). Clusterin as an Alzheimer biomarker. Archives of Neurology, 68(11), 1459–1460. doi: 10.1001/archneurol.2011.1000.PubMedGoogle Scholar
  36. Harel, A., Wu, F., Mattson, M. P., Morris, C. M., & Yao, P. J. (2008). Evidence for CALM in directing VAMP2 trafficking. Traffic, 9(3), 417–429. doi: 10.1111/j.1600-0854.2007.00694.x.PubMedGoogle Scholar
  37. Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088–1093. doi: 10.1038/ng.440.PubMedCentralPubMedGoogle Scholar
  38. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M., & Morris, J. G. (2008). The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Movement Disorders, 23(6), 837–844. doi: 10.1002/mds.21956.PubMedGoogle Scholar
  39. Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435. doi: 10.1038/ng.803.PubMedCentralPubMedGoogle Scholar
  40. Jones, L., Holmans, P. A., Hamshere, M. L., Harold, D., Moskvina, V., Ivanov, D., et al. (2010). Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One, 5(11), e13950. doi: 10.1371/journal.pone.0013950.PubMedCentralPubMedGoogle Scholar
  41. Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., et al. (2012). A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 488(7409), 96–99. doi: 10.1038/nature11283.PubMedGoogle Scholar
  42. Kara, E., Kiely, A. P., Proukakis, C., Giffin, N., Love, S., Hehir, J., et al. (2014). 6.4 Mb duplication of the alpha-Synuclein Locus causing frontotemporal dementia and Parkinsonism: phenotype-genotype correlations. JAMA Neurology. doi: 10.1001/jamaneurol.2014.994.PubMedCentralPubMedGoogle Scholar
  43. Karageorgiou, E., & Miller, B. L. (2014). Frontotemporal lobar degeneration: a clinical approach. Seminars in Neurology, 34(2), 189–201. doi: 10.1055/s-0034-1381735.PubMedGoogle Scholar
  44. Karch, C. M., & Goate, A. M. (2014). Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry. doi: 10.1016/j.biopsych.2014.05.006.PubMedGoogle Scholar
  45. Karch, C. M., Jeng, A. T., Nowotny, P., Cady, J., Cruchaga, C., & Goate, A. M. (2012). Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One, 7(11), e50976. doi: 10.1371/journal.pone.0050976.PubMedCentralPubMedGoogle Scholar
  46. Karch, C. M., Cruchaga, C., & Goate, A. M. (2014). Alzheimer’s disease genetics: from the bench to the clinic. Neuron, 83(1), 11–26. doi: 10.1016/j.neuron.2014.05.041.PubMedGoogle Scholar
  47. Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurology, 9(12), 1200–1213. doi: 10.1016/s1474-4422(10)70212-x.Google Scholar
  48. Kehoe, P. G., Russ, C., McIlory, S., Williams, H., Holmans, P., Holmes, C., et al. (1999). Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genetics, 21(1), 71–72. doi: 10.1038/5009.PubMedGoogle Scholar
  49. Khera, R., & Das, N. (2009). Complement receptor 1: disease associations and therapeutic implications. Molecular Immunology, 46(5), 761–772. doi: 10.1016/j.molimm.2008.09.026.PubMedGoogle Scholar
  50. Kim, M., Suh, J., Romano, D., Truong, M. H., Mullin, K., Hooli, B., et al. (2009a). Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity. Human Molecular Genetics, 18(20), 3987–3996. doi: 10.1093/hmg/ddp323.PubMedCentralPubMedGoogle Scholar
  51. Kim, Y., Park, J., & Lee, C. (2009b). Multilocus genotypic association with vascular dementia by multifactor dimensionality reduction and entropy-based estimation. Psychiatric Genetics, 19(5), 253–258. doi: 10.1097/YPG.0b013e32832ceebd.PubMedGoogle Scholar
  52. Kim, Y., Kong, M., & Lee, C. (2013). Association of intronic sequence variant in the gene encoding spleen tyrosine kinase with susceptibility to vascular dementia. World Journal of Biological Psychiatry, 14(3), 220–226. doi: 10.3109/15622975.2011.559272.PubMedGoogle Scholar
  53. Kirshner, H. S. (2014). Frontotemporal dementia and primary progressive aphasia, a review. Neuropsychiatric Disease and Treatment, 10, 1045–1055. doi: 10.2147/ndt.s38821.PubMedCentralPubMedGoogle Scholar
  54. Kong, M., Kim, Y., & Lee, C. (2011). A strong synergistic epistasis between FAM134B and TNFRSF19 on the susceptibility to vascular dementia. Psychiatric Genetics, 21(1), 37–41. doi: 10.1097/YPG.0b013e3283413496.PubMedGoogle Scholar
  55. Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 1094–1099. doi: 10.1038/ng.439.PubMedGoogle Scholar
  56. Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45(12), 1452–1458. doi: 10.1038/ng.2802.PubMedCentralPubMedGoogle Scholar
  57. Lathe, R., Sapronova, A., & Kotelevtsev, Y. (2014). Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatrics, 14, 36. doi: 10.1186/1471-2318-14-36.PubMedCentralPubMedGoogle Scholar
  58. Le Ber, I. (2013). Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. Revue Neurologique (Paris), 169(10), 811–819. doi: 10.1016/j.neurol.2013.07.014.Google Scholar
  59. Leduc, V., Jasmin-Belanger, S., & Poirier, J. (2010). APOE and cholesterol homeostasis in Alzheimer’s disease. Trends in Molecular Medicine, 16(10), 469–477. doi: 10.1016/j.molmed.2010.07.008.PubMedGoogle Scholar
  60. Lee, C., & Kim, Y. (2013). Complex genetic susceptibility to vascular dementia and an evidence for its underlying genetic factors associated with memory and associative learning. Gene, 516(1), 152–157. doi: 10.1016/j.gene.2012.12.032.PubMedGoogle Scholar
  61. Li, Y., Grupe, A., Rowland, C., Nowotny, P., Kauwe, J. S., Smemo, S., et al. (2006). DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Human Molecular Genetics, 15(17), 2560–2568. doi: 10.1093/hmg/ddl178.PubMedGoogle Scholar
  62. Li, K., Liu, S., Yao, S., Wang, B., Dai, D., & Yao, L. (2009). Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dementia and Geriatric Cognitive Disorders, 27(3), 286–291. doi: 10.1159/000204766.PubMedGoogle Scholar
  63. Linnertz, C., Lutz, M. W., Ervin, J. F., Allen, J., Miller, N. R., Welsh-Bohmer, K. A., et al. (2014). The genetic contributions of SNCA and LRRK2 genes to Lewy body pathology in Alzheimer’s disease. Human Molecular Genetics. doi: 10.1093/hmg/ddu196.PubMedGoogle Scholar
  64. Magaki, S., Yong, W. H., Khanlou, N., Tung, S., & Vinters, H. V. (2014). Comorbidity in dementia: update of an ongoing autopsy study. Journal of the American Geriatrics Society. doi: 10.1111/jgs.12977.PubMedGoogle Scholar
  65. Maia, L. F., Mackenzie, I. R., & Feldman, H. H. (2007). Clinical phenotypes of cerebral amyloid angiopathy. Journal of Neurological Sciences, 257(1–2), 23–30. doi: 10.1016/j.jns.2007.01.054.Google Scholar
  66. Mata, I. F., Samii, A., Schneer, S. H., Roberts, J. W., Griffith, A., Leis, B. C., et al. (2008). Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Archives of Neurology, 65(3), 379–382. doi: 10.1001/archneurol.2007.68.PubMedCentralPubMedGoogle Scholar
  67. McGeer, E. G., & McGeer, P. L. (2001). Innate immunity in Alzheimer’s disease: a model for local inflammatory reactions. Molecular Interventions, 1(1), 22–29.PubMedGoogle Scholar
  68. McKeith, I. G., Galasko, D., Kosaka, K., Perry, E. K., Dickson, D. W., Hansen, L. A., et al. (1996). Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology, 47(5), 1113–1124.PubMedGoogle Scholar
  69. Meeus, B., Theuns, J., & Van Broeckhoven, C. (2012). The genetics of dementia with Lewy bodies: what are we missing? Archives of Neurology, 69(9), 1113–1118. doi: 10.1001/archneurol.2011.3678.PubMedGoogle Scholar
  70. Miklya, I., Pencz, N., Hafenscher, F., & Goltl, P. (2014). The role of alpha-synuclein in Parkinson’s disease. Neuropsychopharmacologia Hungarica, 16(2), 77–84.PubMedGoogle Scholar
  71. Mollenhauer, B., Forstl, H., Deuschl, G., Storch, A., Oertel, W., & Trenkwalder, C. (2010). Lewy body and Parkinsonian dementia: common, but often misdiagnosed conditions. Deutsches Ärzteblatt International, 107(39), 684–691. doi: 10.3238/arztebl.2010.0684.PubMedCentralPubMedGoogle Scholar
  72. Momeni, P., Rogaeva, E., Van Deerlin, V., Yuan, W., Grafman, J., Tierney, M., et al. (2006). Genetic variability in CHMP2B and frontotemporal dementia. Neurodegenerative Diseases, 3(3), 129–133. doi: 10.1159/000094771.PubMedGoogle Scholar
  73. Moore, S. F., & Barker, R. A. (2014). Predictors of Parkinson’s disease dementia: towards targeted therapies for a heterogeneous disease. Parkinsonism & Related Disorders, 20(Suppl 1), S104–S107. doi: 10.1016/s1353-8020(13)70026-9.Google Scholar
  74. Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43(5), 436–441. doi: 10.1038/ng.801.PubMedCentralPubMedGoogle Scholar
  75. Nervi, A., Reitz, C., Tang, M. X., Santana, V., Piriz, A., Reyes, D., et al. (2011). Familial aggregation of dementia with Lewy bodies. Archives of Neurology, 68(1), 90–93. doi: 10.1001/archneurol.2010.319.PubMedCentralPubMedGoogle Scholar
  76. Nishioka, K., Wider, C., Vilarino-Guell, C., Soto-Ortolaza, A. I., Lincoln, S. J., Kachergus, J. M., et al. (2010). Association of alpha-, beta-, and gamma-Synuclein with diffuse lewy body disease. Archives of Neurology, 67(8), 970–975. doi: 10.1001/archneurol.2010.177.PubMedGoogle Scholar
  77. Nuutinen, T., Suuronen, T., Kauppinen, A., & Salminen, A. (2009). Clusterin: a forgotten player in Alzheimer’s disease. Brain Research Reviews, 61(2), 89–104. doi: 10.1016/j.brainresrev.2009.05.007.PubMedGoogle Scholar
  78. Oesterhus, R., Soennesyn, H., Rongve, A., Ballard, C., Aarsland, D., & Vossius, C. (2014). Long-term mortality in a cohort of home-dwelling elderly with mild Alzheimer’s disease and Lewy body dementia. Dementia and Geriatric Cognitive Disorders, 38(3–4), 161–169. doi: 10.1159/000358051.PubMedGoogle Scholar
  79. Olesen, O. F., Mikkelsen, J. D., Gerdes, C., & Jensen, P. H. (1997). Isoform-specific binding of human apolipoprotein E to the non-amyloid beta component of Alzheimer’s disease amyloid. Brain Research. Molecular Brain Research, 44(1), 105–112.PubMedGoogle Scholar
  80. Pant, S., Sharma, M., Patel, K., Caplan, S., Carr, C. M., & Grant, B. D. (2009). AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nature Cell Biology, 11(12), 1399–1410. doi: 10.1038/ncb1986.PubMedCentralPubMedGoogle Scholar
  81. Pericak-Vance, M. A., Bebout, J. L., Gaskell, P. C., Jr., Yamaoka, L. H., Hung, W. Y., Alberts, M. J., et al. (1991). Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. American Journal of Human Genetics, 48(6), 1034–1050.PubMedCentralPubMedGoogle Scholar
  82. Pohjasvaara, T., Mantyla, R., Ylikoski, R., Kaste, M., & Erkinjuntti, T. (2003). Clinical features of MRI-defined subcortical vascular disease. Alzheimer Disease & Associated Disorders, 17(4), 236–242.Google Scholar
  83. Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s & Dementia, 9(1), 63–75. doi: 10.1016/j.jalz.2012.11.007. e62.Google Scholar
  84. Qiu, C., von Strauss, E., Backman, L., Winblad, B., & Fratiglioni, L. (2013). Twenty-year changes in dementia occurrence suggest decreasing incidence in central Stockholm, Sweden. Neurology, 80(20), 1888–1894. doi: 10.1212/WNL.0b013e318292a2f9.PubMedGoogle Scholar
  85. Reitz, C. (2013). Dyslipidemia and the risk of Alzheimer’s disease. Current Atherosclerosis Reports, 15(3), 307. doi: 10.1007/s11883-012-0307-3.PubMedCentralPubMedGoogle Scholar
  86. Reitz, C., Tang, M. X., Luchsinger, J., & Mayeux, R. (2004). Relation of plasma lipids to Alzheimer disease and vascular dementia. Archives of Neurology, 61(5), 705–714. doi: 10.1001/archneur.61.5.705.PubMedCentralPubMedGoogle Scholar
  87. Ridge, P. G., Mukherjee, S., Crane, P. K., & Kauwe, J. S. (2013). Alzheimer’s disease: analyzing the missing heritability. PLoS One, 8(11), e79771. doi: 10.1371/journal.pone.0079771.PubMedCentralPubMedGoogle Scholar
  88. Ridolfi, E., Barone, C., Scarpini, E., & Galimberti, D. (2013). The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clinical and Developmental Immunology, 2013, 939786. doi: 10.1155/2013/939786.PubMedCentralPubMedGoogle Scholar
  89. Rogaeva, E., Meng, Y., Lee, J. H., Gu, Y., Kawarai, T., Zou, F., et al. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 39(2), 168–177. doi: 10.1038/ng1943.PubMedCentralPubMedGoogle Scholar
  90. Rogers, J., Li, R., Mastroeni, D., Grover, A., Leonard, B., Ahern, G., et al. (2006). Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiology of Aging, 27(12), 1733–1739. doi: 10.1016/j.neurobiolaging.2005.09.043.PubMedGoogle Scholar
  91. Rohrer, J. D., Guerreiro, R., Vandrovcova, J., Uphill, J., Reiman, D., Beck, J., et al. (2009). The heritability and genetics of frontotemporal lobar degeneration. Neurology, 73(18), 1451–1456. doi: 10.1212/WNL.0b013e3181bf997a.PubMedCentralPubMedGoogle Scholar
  92. Roman, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C., Garcia, J. H., et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology, 43(2), 250–260.PubMedGoogle Scholar
  93. Rosenthal, S. L., & Kamboh, M. I. (2014). Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Current Genetics Medicine Reports, 2, 85–101. doi: 10.1007/s40142-014-0034-x.Google Scholar
  94. Roses, A. D., Lutz, M. W., Amrine-Madsen, H., Saunders, A. M., Crenshaw, D. G., Sundseth, S. S., et al. (2010). A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. The Pharmacogenomics Journal, 10(5), 375–384. doi: 10.1038/tpj.2009.69.PubMedCentralPubMedGoogle Scholar
  95. Savica, R., Grossardt, B. R., Bower, J. H., Boeve, B. F., Ahlskog, J. E., & Rocca, W. A. (2013). Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurology, 70(11), 1396–1402. doi: 10.1001/jamaneurol.2013.3579.PubMedCentralPubMedGoogle Scholar
  96. Schjeide, B. M., Schnack, C., Lambert, J. C., Lill, C. M., Kirchheiner, J., Tumani, H., et al. (2011). The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Archives of General Psychiatry, 68(2), 207–213. doi: 10.1001/archgenpsychiatry.2010.196.PubMedGoogle Scholar
  97. Schmidt, H., Freudenberger, P., Seiler, S., & Schmidt, R. (2012). Genetics of subcortical vascular dementia. Experimental Gerontology, 47(11), 873–877. doi: 10.1016/j.exger.2012.06.003.PubMedCentralPubMedGoogle Scholar
  98. Schrijvers, E. M., Schurmann, B., Koudstaal, P. J., van den Bussche, H., Van Duijn, C. M., Hentschel, F., et al. (2012). Genome-wide association study of vascular dementia. Stroke, 43(2), 315–319. doi: 10.1161/strokeaha.111.628768.PubMedGoogle Scholar
  99. Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., Boada, M., et al. (2010). Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA, 303(18), 1832–1840. doi: 10.1001/jama.2010.574.PubMedCentralPubMedGoogle Scholar
  100. Seto-Salvia, N., Clarimon, J., Pagonabarraga, J., Pascual-Sedano, B., Campolongo, A., Combarros, O., et al. (2011). Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. Archives of Neurology, 68(3), 359–364. doi: 10.1001/archneurol.2011.17.PubMedGoogle Scholar
  101. Sieben, A., Van Langenhove, T., Engelborghs, S., Martin, J. J., Boon, P., Cras, P., et al. (2012). The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathologica, 124(3), 353–372. doi: 10.1007/s00401-012-1029-x.PubMedCentralPubMedGoogle Scholar
  102. Skibinski, G., Parkinson, N. J., Brown, J. M., Chakrabarti, L., Lloyd, S. L., Hummerich, H., et al. (2005). Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genetics, 37(8), 806–808. doi: 10.1038/ng1609.PubMedGoogle Scholar
  103. Spillantini, M. G., & Goedert, M. (2013). Tau pathology and neurodegeneration. Lancet Neurology, 12(6), 609–622. doi: 10.1016/s1474-4422(13)70090-5.Google Scholar
  104. Takei, N., Miyashita, A., Tsukie, T., Arai, H., Asada, T., Imagawa, M., et al. (2009). Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics, 93(5), 441–448. doi: 10.1016/j.ygeno.2009.01.003.PubMedGoogle Scholar
  105. Tang, W., Huang, Q., Yao, Y. Y., Wang, Y., Wu, Y. L., & Wang, Z. Y. (2014). Does CSF p-tau help to discriminate Alzheimer’s disease from other dementias and mild cognitive impairment? A meta-analysis of the literature. Journal of Neural Transmission. doi: 10.1007/s00702-014-1226-y.Google Scholar
  106. Trougakos, I. P., & Gonos, E. S. (2006). Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radical Research, 40(12), 1324–1334. doi: 10.1080/10715760600902310.PubMedGoogle Scholar
  107. Tsuang, D., Leverenz, J. B., Lopez, O. L., Hamilton, R. L., Bennett, D. A., Schneider, J. A., et al. (2012). GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology, 79(19), 1944–1950. doi: 10.1212/WNL.0b013e3182735e9a.PubMedCentralPubMedGoogle Scholar
  108. Urwin, H., Authier, A., Nielsen, J. E., Metcalf, D., Powell, C., Froud, K., et al. (2010). Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Human Molecular Genetics, 19(11), 2228–2238. doi: 10.1093/hmg/ddq100.PubMedCentralPubMedGoogle Scholar
  109. Van Deerlin, V. M., Sleiman, P. M., Martinez-Lage, M., Chen-Plotkin, A., Wang, L. S., Graff-Radford, N. R., et al. (2010). Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 42(3), 234–239. doi: 10.1038/ng.536.PubMedCentralPubMedGoogle Scholar
  110. van der Flier, W. M., & Scheltens, P. (2005). Epidemiology and risk factors of dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 76(Suppl 5), v2–v7. doi: 10.1136/jnnp.2005.082867.PubMedCentralPubMedGoogle Scholar
  111. van der Zee, J., Gijselinck, I., Dillen, L., Van Langenhove, T., Theuns, J., Engelborghs, S., et al. (2013). A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Human Mutation, 34(2), 363–373. doi: 10.1002/humu.22244.PubMedCentralPubMedGoogle Scholar
  112. van Swieten, J., & Spillantini, M. G. (2007). Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathology, 17(1), 63–73. doi: 10.1111/j.1750-3639.2007.00052.x.PubMedGoogle Scholar
  113. Wang, T., Baron, M., & Trump, D. (2008). An overview of Notch3 function in vascular smooth muscle cells. Progress in Biophysics and Molecular Biology, 96(1–3), 499–509. doi: 10.1016/j.pbiomolbio.2007.07.006.PubMedGoogle Scholar
  114. Wang, C. S., Burke, J. R., Steffens, D. C., Hulette, C. M., Breitner, J. C., & Plassman, B. L. (2009). Twin pairs discordant for neuropathologically confirmed Lewy body dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 80(5), 562–565. doi: 10.1136/jnnp.2008.151654.PubMedCentralPubMedGoogle Scholar
  115. Weihl, C. C., Temiz, P., Miller, S. E., Watts, G., Smith, C., Forman, M., et al. (2008). TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 79(10), 1186–1189. doi: 10.1136/jnnp.2007.131334.PubMedCentralPubMedGoogle Scholar
  116. Wider, C., Ross, O. A., Nishioka, K., Heckman, M. G., Vilarino-Guell, C., Jasinska-Myga, B., et al. (2012). An evaluation of the impact of MAPT, SNCA and APOE on the burden of Alzheimer’s and Lewy body pathology. Journal of Neurology, Neurosurgery, and Psychiatry, 83(4), 424–429. doi: 10.1136/jnnp-2011-301413.PubMedCentralPubMedGoogle Scholar
  117. Williams-Gray, C. H., Mason, S. L., Evans, J. R., Foltynie, T., Brayne, C., Robbins, T. W., et al. (2013). The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. Journal of Neurology, Neurosurgery, and Psychiatry, 84(11), 1258–1264. doi: 10.1136/jnnp-2013-305277.PubMedGoogle Scholar
  118. Winslow, A. R., Moussaud, S., Zhu, L., Post, K. L., Dickson, D. W., Berezovska, O., et al. (2014). Convergence of pathology in dementia with Lewy bodies and Alzheimer’s disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease. Brain, 137(Pt 7), 1958–1970. doi: 10.1093/brain/awu119.PubMedGoogle Scholar
  119. Yang, C., Swallows, C. L., Zhang, C., Lu, J., Xiao, H., Brady, R. O., et al. (2014). Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 249–254. doi: 10.1073/pnas.1321341111.PubMedCentralPubMedGoogle Scholar
  120. Zhu, X., Babar, A., Siedlak, S. L., Yang, Q., Ito, G., Iwatsubo, T., et al. (2006). LRRK2 in Parkinson’s disease and dementia with Lewy bodies. Molecular Neurodegeneration, 1, 17. doi: 10.1186/1750-1326-1-17.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Aging Research Center (ARC)Karolinska Institutet and Stockholm UniversityStockholmSweden
  2. 2.Department of PsychiatryVU Medical Center AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden

Personalised recommendations