Skip to main content

A Protective Effect of Musical Expertise on Cognitive Outcome Following Brain Damage?

Abstract

The current review examines the possibility that training-related changes that take place in the brains of musicians may have a beneficial effect on their cognitive outcome and recovery following neurological damage. First, we propose three different mechanisms by which training-related brain changes might result in relatively preserved function in musicians as compared to non-musicians with cerebral lesions. Next, we review the neuropsychological literature examining musical ability in professional musicians following brain damage, specifically of vascular, tumoral and epileptic aetiology. Finally, given that assessment of musician patients can greatly inform our understanding of the influence of premorbid experience on postmorbid recovery, we suggest some basic guidelines for the future evaluation of relevant patients.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    In line with the evidence of double dissociation of musical and language cognitive abilities, cases of loss of language ability without any loss in musical ability are also seen (8 patients).

  2. 2.

    Although these cases are in the left hemisphere, it is important to note that left hemisphere damage can cause deficits as evidenced by the fact that all but 4 of the 20 previously reported to have impairments showed their deficits after damage to the left cerebral hemisphere. Why so few cases of right hemisphere damage have been reported is not clear.

  3. 3.

    In those with temporal lobe epilepsy, cortical regions adjacent to the site of the foci are often depressed leading to a worsening of cognitive ability. As suggested by Zatorre (1989), the improved performance afterwards may be explained by the removal of the epileptogenic focus which results in less cortical interference over the brain.

  4. 4.

    As suggested by the authors, and as with Zatorre (1989) improvements reported by these patients are likely due to the disappearance of seizures and consequently the functional recovery of regions depressed by the epileptogenic focus.

References

  1. Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neuroscience, 19, 126–130.

    CAS  Google Scholar 

  2. Alajouanine, T. (1948). Aphasia and artistic realization. Brain, 71, 229–241.

    CAS  PubMed  Google Scholar 

  3. Assal, G. (1973). Aphasie de Wernicke sans amusie chez un pianiste. Revue Neurologique, 129, 251–255.

    CAS  PubMed  Google Scholar 

  4. Assal, G., & Buttet, J. (1983). Agraphie et conservation de l’écriture musicale chez un professeur de piano bilingue. Revue Neurologique, 139, 569–574.

    CAS  PubMed  Google Scholar 

  5. Basser, P. J., & Jones, D. K. (2002). Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR in Biomedicine, 15, 456–467.

    PubMed  Google Scholar 

  6. Basso, A., & Capitani, E. (1985). Spared musical abilities in a conductor with global aphasia and ideomotor apraxia. Journal of Neurology, Neurosurgery, and Psychiatry, 48, 407–412.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullen, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 1148–1150.

    CAS  PubMed  Google Scholar 

  8. Benton, A. L. (1977). The amusias. In M. Critchley & R. A. Henson (Eds.), Music and the brain: studies in the neurology of music (pp. 378–397). London: Heinemann Medical.

    Google Scholar 

  9. Besson, M., Chobert, J. & Marie, C. (2011). Transfer of training between music and speech: common processing, attention and memory. Frontiers in Psychology, 2.

  10. Bever, T. G., & Chiarello, R. J. (1974). Cerebral dominance in musicians and nonmusicians. Science, 185, 537–539.

    CAS  PubMed  Google Scholar 

  11. Bialystok, E., & Depape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35, 565–574.

    PubMed  Google Scholar 

  12. Bignami, G., Carro-Ciampi, G., & Albert, M. (1968). Effects of frontal lesion on ‘go-no go’avoidance behaviour in normal and scopolamine-treated rats. Physiology and Behavior, 3, 487–494.

    Google Scholar 

  13. Bogousslavsky, J., & Boller, F. (2005). Neurological disorders in famous artists. Basel: Karger.

    Google Scholar 

  14. Boller, F., Sinforiani, E., & Mazzuchi, A. (2005). Preserved painting abilities after a stroke. The case of Paul-Elie Gernez. Functional Neurology, 20, 151–155.

    PubMed  Google Scholar 

  15. Botez, M., & Wertheim, N. (1959). Expressive aphasia and amusia following a right frontal lesion in a right handed man. Brain, 82, 186–202.

    CAS  PubMed  Google Scholar 

  16. Brust, J. C. M. (1980). Music and language: musical alexia and agraphia. Brain, 103, 367–392.

    CAS  PubMed  Google Scholar 

  17. Cappelletti, M., Waley-Cohen, H., Butterworth, B., & Kopelman, M. (2000). A selective loss of the ability to read and to write music. Neurocase, 6, 321–332.

    Google Scholar 

  18. Catani, M., & Mesulam, M. (2008). The arcuate fasciculus, and the disconnection theme in language, and aphasia: history and current state. Cortex, 44, 953–961.

    PubMed Central  PubMed  Google Scholar 

  19. Celesia, G. G. (1976). Organization of auditory cortical areas in man. Brain, 99, 403–314.

    CAS  PubMed  Google Scholar 

  20. Chan, A. S., Ho, Y. C., & Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396, 128.

    CAS  PubMed  Google Scholar 

  21. Chatterjee, A. (2004). The neuropsychology of visual artistic production. Neuropsychologia, 42, 1568–1583.

    PubMed  Google Scholar 

  22. Chow, K. L., & Survis, J. (1958). Retention of overlearned visual habit after temporal ablation in the monkey. Archives of Neurology and Psychiatry, 79, 640–646.

    CAS  PubMed  Google Scholar 

  23. DeNora, T. (2000). Music in everyday life. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Desmurget, M., Bonnetblanc, F., & Duffau, H. (2007). Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain, 130, 898–914.

    PubMed  Google Scholar 

  25. Di Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia, 42, 868–877.

    PubMed  Google Scholar 

  26. Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192, 137–142.

    CAS  PubMed  Google Scholar 

  27. Draganski, B., Gaser, C., Busch, V., Schuierer, V., Bogdahn, U., & May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature, 427, 311–312.

    CAS  PubMed  Google Scholar 

  28. Drayna, D., Manichaikul, A., de Lange, M., Snieder, H., & Spector, T. (2001). Genetic correlates of musical pitch recognition in humans. Science, 291, 1969–1972.

    CAS  PubMed  Google Scholar 

  29. Driemeyer, J., Boyke, J., Gaser, C., Buchel, C., & May, A. (2008). Changes in gray matter induced by learning- revisited. PLoS ONE, 3, e2669.

    PubMed Central  PubMed  Google Scholar 

  30. Duffau, H., Capelle, L., Lopes, M., Bitar, A., Sichez, J. P., & van Effenterre, R. (2002). Medically intractable epilepsy from insular low-grade gliomas: improvement after an extended lesionectomy. Acta Neurochirurgica, 144, 563–72.

    CAS  PubMed  Google Scholar 

  31. Eagleman, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D., & Sarma, A. K. (2007). A standardized test battery for the study of synesthesia. Journal of Neuroscience Methods, 159, 139–145.

    PubMed Central  PubMed  Google Scholar 

  32. Ehrlé, N., & Samson, S. (2005). Auditory discrimination of anisochrony: influence of the tempo and musical backgrounds of listeners. Brain and Cognition, 58, 133–147.

    PubMed  Google Scholar 

  33. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307.

    CAS  PubMed  Google Scholar 

  34. Farrugia, N., Benoit C., Harding, E., Kotz, S., & Dalla Bella, S. (2012). BAASTA: Battery of Assesment of Auditory Sensorimotor and Timing Abilities. Conference proceedings in International Conference of Music Perception and Cognition (ICMPC’10), Thessaloniki, Greece.

  35. Fasanaro, A. M., Spitaleri, D. L., Valiani, R., & Grozzi, D. (1990). Dissociation in musical reading: a musician affected by alexia without agraphia. Music Perception, 7, 259–272.

    Google Scholar 

  36. Fauvel, B., Groussard, M., Eustache, F., Desgranges, B., & Platel, H. (2013). Neural implementation of musical expertise and cognitive transfers: could they be promising in the framework of normal cognitive ageing? Frontiers in Human Neuroscience, 7, 693.

    PubMed Central  PubMed  Google Scholar 

  37. Filipic, S., Tillmann, B., & Bigand, E. (2010). Judging familiarity and emotion from very brief musical excerpts. Psychonomic Bulletin & Review, 17, 335––341.

    Google Scholar 

  38. Finke, C., Esfahani, N. E., & Ploner, C. J. (2012). Preservation of musical memory in an amnesic professional cellist. Current Biology, 22, 591–R592.

    Google Scholar 

  39. Foster, N. E., & Zatorre, R. J. (2010). Cortical structure predicts success in performing musical transformation judgments. NeuroImage, 53, 26–36.

    PubMed  Google Scholar 

  40. Foster, N. E., Halpern, A. R., & Zatorre, R. J. (2013). Common parietal activation in musical mental transformations across pitch and time. NeuroImage, 75, 27–35.

    PubMed  Google Scholar 

  41. Galarza, M., Pellicer-Porcar, O., Isaac, C., Mayes, A., Broks, P., Montaldi, D., Denby, C., & Simeone, F. (2014). Jazz guitar and neurosurgery: an unusual case of left temporal. World Neurosurgery, 81, 651–657.

    PubMed  Google Scholar 

  42. Gaser, C., & Schlaug, G. (2003). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514–517.

    PubMed  Google Scholar 

  43. Gordon, E. E. (1989). Manual for the advanced measures of music audiation. Chicago: G.I.A. Publications, Inc.

    Google Scholar 

  44. Habibi, A., Wirantana, V., & Starr, A. (2013). Cortical activity during perception of musical pitch: comparing musicians and nonmusicians. Music Perception, 30, 463–479.

    Google Scholar 

  45. Halpern, A. R., Zatorre, R. J., Bouffard, M., & Johnson, J. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42, 1281–1292.

    PubMed  Google Scholar 

  46. Halwani, G. F., Loui, P., Ruber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists and non-musicians. Frontiers in Psychology, 2, 156.

    PubMed Central  PubMed  Google Scholar 

  47. Hebert, S., & Cuddy, L. L. (2006). Music reading deficiencies and the brain. Advances in Cognitive Psychology, 2, 199–206.

    Google Scholar 

  48. Hébert, S., Racette, A., Gagnon, L., & Peretz, I. (2003). Revisiting the dissociation between singing and speaking in expressive aphasia. Brain, 126, 1838–1850.

    PubMed  Google Scholar 

  49. Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: behavior, function and structure. Neuron, 76, 486–502.

    CAS  PubMed  Google Scholar 

  50. Horikoshi, T., Asari, Y., Watanabe, A., Nagaseki, Y., Nukui, H., Sasaki, H., & Komiya, K. (1997). Music alexia in a patient with mild pure alexia: disturbed visual perception of nonverbal meaningful figures. Cortex, 33, 187–194.

    CAS  PubMed  Google Scholar 

  51. Hutchinson, S., Hui-Lin Lee, L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13, 943–949.

    PubMed  Google Scholar 

  52. Hyde, K. L., Zatorre, R. J., Griffiths, T. D., Lerch, J. P., & Peretz, I. (2006). Morphometry of the amusic brain: a two-site study. Brain, 129, 2562–2570.

    PubMed  Google Scholar 

  53. Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 3019–3025.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Jackson, H. (1932). Selected writings of John Hughlings Jackson (Vol. 2). London: Hodder and Stoughton.

    Google Scholar 

  55. Jancke, L., Koeneke, S., Hoppe, A., Rominger, C., & Hanggi, J. (2009). The architecture of the golfer’s brain. PLoS ONE, 4, e4785.

    PubMed Central  PubMed  Google Scholar 

  56. Jellinek, A. (1956). Amusia: on the phenomenology and investigation of central disorders of the musical functions. Folia Phoniatrica, 8, 124–149.

    CAS  PubMed  Google Scholar 

  57. Johansen-Berg, H. (2010). Behavioural relevance of variation in white matter microstructure. Current Opinion in Neurology, 23, 351–358.

    PubMed  Google Scholar 

  58. Johansen-Berg, H., & Behrens, T. E. J. (2009). Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. London: Elsevier.

    Google Scholar 

  59. Johansen-Berg, H., Scholz, J., & Stagg, C. (2010). Relevance of structural brain connectivity to learning and recovery from stroke. Frontiers in Systems Neuroscience, 4, 146.

    PubMed Central  PubMed  Google Scholar 

  60. Judd, T. L., Arslanian, A., Davidson, L., Locke, S., & Lickel, H. (1979). A right hemisphere stroke in a composer. Paper presented at the International. New York: Neuropsychological society.

    Google Scholar 

  61. Judd, T., Gardner, H., & Geshwind, N. (1983). Alexia without agraphia in a composer. Brain, 106, 435–457.

    PubMed  Google Scholar 

  62. Kaernbach. (1991). Simple adaptive testing with the weighted up-down method. Perception & Psychophysics, 47, 227–229.

    Google Scholar 

  63. Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 43, 13–20.

    CAS  PubMed  Google Scholar 

  64. Kawamura, M., Midorikawa, A., & Kezuka, M. (2000). Cerebral localization of the center for reading and writing music. Neuroreport, 11, 3299–3303.

    CAS  PubMed  Google Scholar 

  65. Keenan, J. P., Thangaraj, V., Halpern, A. R., & Schlaug, G. (2001). Absolute pitch and planum temporale. NeuroImage, 14, 1402–1408.

    CAS  PubMed  Google Scholar 

  66. Kester, D. B., Saykin, A. J., Sperling, M. R., O’Connor, M. J., Robinson, L. J., & Gur, R. C. (1991). Acute effect of anterior temporal lobectomy on musical processing. Neuropsychologia, 29, 703–708.

    CAS  PubMed  Google Scholar 

  67. Lechevalier, B., Lambert, J., Moreau, S., Platel, H., & Viader, F. (2007). Auditory disorders related to strokes. In O. Godefroy & J. Bogousslavsky (Eds.), The behavioral and cognitive neurology of stroke (pp. 348–368). NY: Cambridge University Press.

    Google Scholar 

  68. Levin, H. S., & Rose, J. E. (1979). Alexia without agraphia in a musician after transcallosal removal of a left intraventricular meningioma. Neurosurgery, 4, 168–174.

    CAS  PubMed  Google Scholar 

  69. Liégeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain, 114, 139–51.

    PubMed  Google Scholar 

  70. Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121, 1853–1867.

    PubMed  Google Scholar 

  71. Loui, P., Aslop, D., & Schlaug, G. (2009). Tone deafness: a new disconnection syndrome? Journal of Neuroscience, 29, 10215–10220.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Luria, A. R., Tsvetkova, L. S., & Futer, D. S. (1965). Aphasia in a composer. Journal of Neurological Sciences, 2, 288–292.

    CAS  Google Scholar 

  73. Maguire, M. J. (2012). Music and epilepy: a critical review. Epilepsia, 53, 947–961.

    PubMed  Google Scholar 

  74. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Maldjian, J., Atlas, S. W., Howard, R. S., Greenstein, E., Alsop, D., & Detre, J. A. (1996). Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. Journal of Neurosurgery, 84, 477–83.

    CAS  PubMed  Google Scholar 

  76. Marin, O. S. M., & Perry, D. W. (1999). Neurological aspects of music perception and performance. In D. Deutsch (Ed.), The psychology of music (pp. 653–724). San Diego: Academic.

    Google Scholar 

  77. Mavlov, L. (1980). Amusia due to rhythm agnosia in a musician with left hemisphere damage: a non-auditory supramodal defect. Cortex, 16, 331–338.

    CAS  PubMed  Google Scholar 

  78. McFarland, H. R., & Fortin, D. (1982). Amusia due to right temporoparietal infarct. Archives of Neurology, 39, 725–727.

    CAS  PubMed  Google Scholar 

  79. Midorikawa, A., & Kawamura, M. (2000). A case of musical agraphia. Neuroreport, 11, 3053–3057.

    CAS  PubMed  Google Scholar 

  80. Midorikawa, A., Kawamura, M., & Kezuka, M. (2003). Musical alexia for rhythm notation: a discrepancy between pitch and rhythm. Neurocase, 9, 232–238.

    PubMed  Google Scholar 

  81. Milner, B. (1962). Laterality effects in audition. In V. B. Mountcastle (Ed.), Interhemispheric relations and spherical dominance (pp. 177–185). Baltimore: John Hopkins University Press.

    Google Scholar 

  82. Mogensen, J. (2011). Reorganisation of the injured brain: implications for studies of the neural substrate of cognition. Frontiers in Psychology, 2, 1–10.

    Google Scholar 

  83. Mogensen, J., & Malá, H. (2009). Post-traumatic functional recovery and reorganization in animal models.: a theoretical and methodological challenge. Scandinavian Journal of Psychology, 50, 561–573.

    PubMed  Google Scholar 

  84. Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22, 1425–1433.

    PubMed Central  PubMed  Google Scholar 

  85. Mortimer, J. A., Schuman, L., & French, L. (1981). Epidemiology of dementing illness. In J. A. Mortimer & L. M. Schuman (Eds.), The epidemiology of dementia: monographs in epidemiology and biostatistics (pp. 323–333). New York: Oxford University Press.

    Google Scholar 

  86. Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musicians brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473–478.

    PubMed  Google Scholar 

  87. Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., Katoh, A., & Imabayashi, E. (2011). Functional anatomy of musical perception in musicians. Cerebral Cortex, 11, 754–60.

    Google Scholar 

  88. Orbach, J., & Fantz, R. L. (1958). Differential aspects of temporal neocortical resections on overtrained and non-overtrained visual habits in monkeys. Journal of Comparative and Physiological Psychology, 51, 126–129.

    CAS  PubMed  Google Scholar 

  89. Penhune, V. (2011). Sensitive periods in human development: evidence from musical training. Cortex, 47, 1126–1137.

    PubMed  Google Scholar 

  90. Peretz, I., & Babai, M. (1992). The role of contour and intervals in the recognition of melody parts: evidence from cerebral asymmetries in musicians. Neuropsychologia, 30, 277–292.

    CAS  PubMed  Google Scholar 

  91. Peretz, I., & Morais, J. (1980). Modes of processing melodies and ear asymmetry in non-musicians. Neuropsychologia, 20, 447–489.

    Google Scholar 

  92. Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders. The montreal battery of evaluation of Amusia. Annals of the New York Academy of Sciences, 999, 58–75.

    PubMed  Google Scholar 

  93. Peretz, I., Gagnon, L., Hébert, S., & Macoir, J. (2004). Singing in the brain: Insights from cognitive neuropsychology. Music Perception, 21, 373–390.

    Google Scholar 

  94. Ragert, P., Schmidt, A., Altenmuller, E., & Dinse, H. R. (2004). Superior tactile performance and learning in professional pianists: evidence for metaplasticity in musicians. European Journal of Neuroscience, 19, 473–478.

    PubMed  Google Scholar 

  95. Ramon y Cajal, S. (1904/1999). Texture of the nervous system of man and the vertebrates. New York: Springer-Verlag. (Translated and edited from Textura del Sistema Nervioso del Hombre y de los Vertebrados, Moya, Madrid, Spain by P. Pasik and T. Pasik).

  96. Rose, F. C. (2004). Neurology of the arts: painting, music, literature. London: Imperial College Press.

    Google Scholar 

  97. Rosenkranz, K., Williamon, A., & Rothwell, J. C. (2007). Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. Journal of Neuroscience, 27, 5200–5206.

    CAS  PubMed  Google Scholar 

  98. Rosenow, F., & Luders, H.O. (2004). Overview. In Rosenow F., Luders H. O., (eds) Presurgical assessment of the epilepsies with clinical neurophysiology and functional imaging. In Daube JF, Mauguire F, editors. Handbook of clinical neurophysiology. Amsterdam: Elsevier; Vol. 3, p 3–7.

  99. Russell, S. M., & Golfinos, J. G. (2003). Amusia following resection of a Heschl gyrus glioma. Journal of Neurosurgery, 98, 1109–1112.

    PubMed  Google Scholar 

  100. Samson, S. (1999). Musical function and temporal lobe structures: a review of brain lesion studies. Journal of New Music Research, 28, 217–228.

    Google Scholar 

  101. Samson, S., & Zatorre, R. J. (1988). Melodic and harmonic discrimination following unilateral cerebral excision. Brain and Cognition, 7, 348–60.

    CAS  PubMed  Google Scholar 

  102. Samson, S., & Zatorre, R. J. (1992). Learning and retention of melodic and verbal information after unilateral temporal lobectomy. Neuropsychologia, 30, 815–826.

    CAS  PubMed  Google Scholar 

  103. Samson, S., & Zatorre, R. J. (1994). Contribution of the right temporal lobe to musical timbre discrimination. Neuropsychologia, 32, 231–40.

    CAS  PubMed  Google Scholar 

  104. Samson, S., Baird, A., Moussard, A., & Clément, S. (2012). Does pathological aging affect musical learning and memory? Music Perception, 29, 493–500.

    Google Scholar 

  105. Särkämö, T., Tervaniemi, M., Soinila, S., Autti, T., Silvennoinen, H. M., Laine, M., & Hietanen, M. (2009). Cognitive deficits associated with acquired amusia after stroke: a neuropsychological follow-up study. Neuropsychologia, 47, 2642–2651.

    PubMed  Google Scholar 

  106. Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7, 273–295.

    Google Scholar 

  107. Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15, 511–514.

    PubMed  Google Scholar 

  108. Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98, 457–468.

    Google Scholar 

  109. Schlaug, G. (2001). The brain of musicians. A model for functional and structural adaptation. Annals of the New York Academy of Sciences, 930, 281–299.

    CAS  PubMed  Google Scholar 

  110. Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33, 1047–1055.

    CAS  PubMed  Google Scholar 

  111. Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688–694.

    CAS  PubMed  Google Scholar 

  112. Schön, D., Semenza, C., & Denes, G. (2001). Naming of musical notes: a selective deficit in one musical clef. Cortex, 37, 407–421.

    PubMed  Google Scholar 

  113. Schulz, R., Horstmann, S., Jokeit, H., Woermann, F. G., & Ebner, A. (2005). Epilepsy surgery in professional musicians: subjective and objective reports of three cases. Epilepsy & Behavior, 7, 552–558.

    Google Scholar 

  114. Signoret, J. L., Van Eeckhout, P., Poncet, M., & Castaigne, P. (1987). Aphasie sans amusie chez un organiste aveugle. Revue Neurologique, 143, 172–181.

    CAS  PubMed  Google Scholar 

  115. Souques, A., & Baruk, H. (1926). Un cas d’amusie chez un professeur de piano. Revue Neurologique, 33, 179–183.

    Google Scholar 

  116. Souques, A., & Baruk, H. (1930). Autopsie d’un cas d’amusie (avec aphasie) chez un professeur de piano. Revue Neurologique, 37, 545–557.

    Google Scholar 

  117. Stanzione, M., Grossi, D., & Roberto, L. (1990). Note-by-note music reading: a musician with letter by letter reading. Perception, 7, 273–283.

    Google Scholar 

  118. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the research concept. Journal of the International Neuropsychological Society, 8, 448–460.

    PubMed  Google Scholar 

  119. Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20, 69–74.

    Google Scholar 

  120. Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15, 394–402.

    PubMed Central  PubMed  Google Scholar 

  121. Stewart, L., Von Kriegstein, K., Warren, J. D., & Griffiths, T. D. (2006). Music and the brain: disorders of musical listening. Brain, 129, 2533–2553.

    PubMed  Google Scholar 

  122. Tatemichi, T. K., Desmond, D. W., Stern, Y., Paik, M., Sano, M., & Bagiella, E. (1994). Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. Journal of Neurology, Neurosurgery and Neuropsychiatry with Practical Neurology, 57, 202–207.

    CAS  Google Scholar 

  123. Terao, Y., Mizuno, T., Shindoh, M., Sakurai, Y., Ugawa, Y., Kobayashi, S., et al. (2006). Vocal amusia in a professional tango singer due to a right superior temporal cortex infarction. Neuropsychologia, 44, 479–488.

    PubMed  Google Scholar 

  124. Tzortzis, C., Goldblum, M. C., Dang, M., Forette, F., & Boller, F. (2000). Absence of amusia and preserved naming of musical instruments in an aphasic composer. Cortex, 36, 227–242.

    CAS  PubMed  Google Scholar 

  125. Vieillard, S., Peretz, I., Gosselin, N., Khalfa, S., Gagnon, L., & Bouchard, B. (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognition and Emotion, 22, 720–752.

    Google Scholar 

  126. Ward, W., & Burns, E. (1982). Absolute pitch. In D. Deutsch (Ed.), The psychology of music (pp. 431–451). New York: Academic.

    Google Scholar 

  127. Watanabe, D., Savion-Lemieux, T., & Penhune, V. B. (2007). The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Experimental Brain Research, 176, 332–340.

    PubMed  Google Scholar 

  128. Weese, G. D., Neiman, D., & Finger, S. (1973). Cortical lesions and somesthesis in rats: effects of training and overtraining prior to surgery. Experimental Brain Research, 16, 542–550.

    CAS  PubMed  Google Scholar 

  129. Wertheim, N., & Botez, M. I. (1961). Receptive amusia: a clinical analysis. Brain, 84, 19–30.

    CAS  PubMed  Google Scholar 

  130. Wilson, S. J., & Saling, M. M. (2008). Contributions of the left and right mesial temporal lobes to music memory: evidence from melodic learning difficulties. Music Perception, 25, 303–314.

    Google Scholar 

  131. Wilson, S. J., Pressing, J. L., & Wales, R.J. (2002). Modelling rhythmic function in a musician post stroke. Neuropsychologia. 1494–1505.

  132. Wilson, S. J., Parsons, K., & Reutens, D. C. (2006). Preserved singing in aphasia: a case study of the efficacy of the melodic intonation therapy. Music Perception, 24, 23–36.

    Google Scholar 

  133. Wilson, S. J., Abbott, D. F., Tailby, C., Gentle, E. C., Merrett, D. L., & Jackson, G. D. (2013). Changes in singing performance and fMRI activation following right temporal lobe surgery. Cortex, 49, 2512–2524.

    PubMed  Google Scholar 

  134. Wright, I. C., McGuire, P. K., Poline, J. B., Travere, J. M., Murray, R. M., Frith, C. D., Frackowiak, R. S., & Friston, K. J. (1995). A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. NeuroImage, 2, 244–252.

    CAS  PubMed  Google Scholar 

  135. Zaidel, D. W. (2005). Neuropsychology of art: neurological, cognitive, and evolutionary perspectives. UK: Psychology Press.

    Google Scholar 

  136. Zaidel, D. W. (2010). Art and brain: insights from neuropsychology, biology and evolution. Journal of Anatomy, 216, 177–183.

    PubMed Central  PubMed  Google Scholar 

  137. Zaidel, D. W. (2013). Art and brain; the relationship of biology and evolution to art. Progress in Brain Research, 204, 217–233.

    PubMed  Google Scholar 

  138. Zatorre, R. J. (1985). Discrimination and recognition of tonal melodies after unilateral cerebral excisions. Neuropsychologia, 23, 31–41.

    CAS  PubMed  Google Scholar 

  139. Zatorre, R. J. (1989). Intact absolute pitch ability after left temporal lobectomy. Cortex, 25, 567–580.

    CAS  PubMed  Google Scholar 

  140. Zatorre, R. J., & Beckett, C. (1989). Multiple coding strategies in the retention of musical tones by possessors of absolute pitch. Memory and Cognition, 17, 582–589.

    CAS  PubMed  Google Scholar 

  141. Zatorre, R. J., & Halpern, A. (1993). Effect of unilateral temporal lobe excision in perception and imagery of songs. Neuropsychologia, 31, 221–232.

    CAS  PubMed  Google Scholar 

  142. Zatorre, R. J., & Samson, S. (1991). Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain, 114, 2403–2417.

    PubMed  Google Scholar 

  143. Zatorre, R. J., Halpern, A. R., & Bouffard, M. (2010). Mental reversal of imagined melodies: a role for the posterior parietal cortex. Journal of Cognitive Neuroscience, 22, 775–789.

    PubMed  Google Scholar 

  144. Zatorre, R. J., Fields, R. D., & Johansenberg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15, 528–536.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study has received funding from the French Ministry (ANR-09-BLAN-0310-02), the Fondation Plan Alzheimer and the Institut Universitaire de France to S.S.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diana Omigie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omigie, D., Samson, S. A Protective Effect of Musical Expertise on Cognitive Outcome Following Brain Damage?. Neuropsychol Rev 24, 445–460 (2014). https://doi.org/10.1007/s11065-014-9274-5

Download citation

Keywords

  • Musicians
  • Brain damage
  • Neuroplasticity
  • Lesion
  • Training
  • Cognitive outcome