Skip to main content

Advertisement

Log in

Strengthening Connections: Functional Connectivity and Brain Plasticity

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., et al. (2012). Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cerebral Cortex, 22, 1586–1592.

    PubMed  Google Scholar 

  • Adelstein, J. S., Shehzad, Z., Mennes, M., De Young, C. G., Zuo, X., Kelly, C., et al. (2011). Personality is reflected in the brain’s intrinsic functional architecture. PLoS One, 6, e27633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albert, N. B., Robertson, E. M., & Miall, R. C. (2009). The resting human brain and motor learning. Current Biology, 19, 1023–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., & Calhoun, V.D. (2012) Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex. doi:10.1093/cercor/bhs352

  • Anderson, J. S., Ferguson, M. A., Lopez-Larson, M., & Yurgelun-Todd, D. (2011). Reproducibility of single-subject functional connectivity measurements. AJNR - American Journal of Neuroradiology, 32, 548–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360, 1001–1013.

    PubMed  PubMed Central  Google Scholar 

  • Birn, R. M. (2012). The role of physiological noise in resting-state functional connectivity. NeuroImage, 62, 864–870.

    PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

    CAS  PubMed  Google Scholar 

  • Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107, 4734–4739.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bright, M. G., & Murphy, K. (2013). Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage, 64, 526–537.

    PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L. (2011). The serendipitous discovery of the brain’s default network. NeuroImage, 62, 1137–1145.

    PubMed  Google Scholar 

  • Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17, 648–665.

    PubMed  Google Scholar 

  • Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., et al. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 15, 1736–1741.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter, A. R., Astafiev, S. V., Lang, C. E., Connor, L. T., Rengachary, J., Strube, M. J., et al. (2010). Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Annals of Neurology, 67, 365–375.

    PubMed  PubMed Central  Google Scholar 

  • Carter, A. R., Shulman, G. L., & Corbetta, M. (2012). Why use a connectivity-based approach to study stroke and recovery of function? NeuroImage, 62, 2271–2280.

    PubMed  PubMed Central  Google Scholar 

  • Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16, 17–26.

    PubMed  PubMed Central  Google Scholar 

  • Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A. D., & Milham, M. P. (2013). Clinical applications of the functional connectome. NeuroImage, 80, 527–540.

    CAS  PubMed  Google Scholar 

  • Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20, 2016–2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, D. M., Beckmann, C. F., Oei, N. Y., Both, S., van Gerven, J. M., & Rombouts, S. A. (2013). Differential and distributed effects of dopamine neuromodulations on resting-state network connectivity. NeuroImage, 78, 59–67.

    CAS  PubMed  Google Scholar 

  • Coynel, D., Marrelec, G., Perlbarg, V., Pelegrini-Issac, M., Van de Moortele, P. F., Ugurbil, K., et al. (2010). Dynamics of motor-related functional integration during motor sequence learning. NeuroImage, 49, 759–766.

    PubMed  PubMed Central  Google Scholar 

  • de Vries, M. H., Barth, A. C., Maiworm, S., Knecht, S., Zwitserlood, P., & Floel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22, 2427–2436.

    PubMed  Google Scholar 

  • Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest. The Neuroscientist, 17, 107–123.

    PubMed  Google Scholar 

  • Di Martino, A., Shehzad, Z., Kelly, C., Roy, A. K., Gee, D. G., Uddin, L. Q., et al. (2009). Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. The American Journal of Psychiatry, 166, 891–899.

    PubMed  PubMed Central  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. (2013). Analysis of longitudinal data. Oxford: Oxford University Press.

    Google Scholar 

  • Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., et al. (2011). Disrupted neural synchronization in toddlers with autism. Neuron, 70, 1218–1225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, A. K., Gerloff, C., Hilgetag, C. C., & Nolte, G. (2013). Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron, 80, 867–886.

    CAS  PubMed  Google Scholar 

  • Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience and Biobehavioral Reviews, 37, 384–400.

    PubMed  Google Scholar 

  • Floel, A. (2013). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85, 934–947.

    PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.

    CAS  PubMed  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Zacks, J. M., & Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9, 23–25.

    CAS  PubMed  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56, 171–184.

    CAS  PubMed  Google Scholar 

  • Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283.

    PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., Halko, M. A., Eldaief, M. C., & Pascual-Leone, A. (2012a). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage, 62, 2232–2243.

    PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., Liu, H., & Pascual-Leone, A. (2012b). Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage, 66C, 151–160.

    PubMed  Google Scholar 

  • Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26, 15–29.

    PubMed  Google Scholar 

  • Fransson, P., Aden, U., Blennow, M., & Lagercrantz, H. (2011). The functional architecture of the infant brain as revealed by resting-state FMRI. Cerebral Cortex, 21, 145–154.

    PubMed  Google Scholar 

  • Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–14.

    CAS  PubMed  Google Scholar 

  • Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35, 346–355.

    CAS  PubMed  Google Scholar 

  • Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., et al. (2009). Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences of the United States of America, 106, 6790–6795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillebert, C. R., & Mantini, D. (2013). Functional connectivity in the normal and injured brain. The Neuroscientist, 19, 509–522.

    PubMed  Google Scholar 

  • Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., et al. (2010). Genetic control over the resting brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 1223–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gotts, S. J., Saad, Z. S., Jo, H. J., Wallace, G. L., Cox, R. W., & Martin, A. (2013). The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders. Frontiers in Human Neuroscience, 7, 356.

    PubMed  PubMed Central  Google Scholar 

  • Grefkes, C., & Fink, G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain, 134, 1264–1276.

    PubMed  PubMed Central  Google Scholar 

  • Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430.

    PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpaa, V., Alahuhta, S., Reiss, A. L., et al. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29, 839–847.

    PubMed  PubMed Central  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.

    PubMed  PubMed Central  Google Scholar 

  • Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 19067–19072.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance. Journal of Neuroscience, 26, 13338–13343.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harmelech, T., & Malach, R. (2013). Neurocognitive biases and the patterns of spontaneous correlations in the human cortex. Trends in Cognitive Sciences, 17, 606–615.

    PubMed  Google Scholar 

  • Harmelech, T., Preminger, S., Wertman, E., & Malach, R. (2013). The day-after effect: long term, Hebbian-like restructuring of resting-state fMRI patterns induced by a single epoch of cortical activation. Journal of Neuroscience, 33, 9488–9497.

    CAS  PubMed  Google Scholar 

  • Harrison, B. J., Pujol, J., Ortiz, H., Fornito, A., Pantelis, C., & Yucel, M. (2008). Modulation of brain resting-state networks by sad mood induction. PLoS One, 3, e1794.

    PubMed  PubMed Central  Google Scholar 

  • He, B. J., Shulman, G. L., Snyder, A. Z., & Corbetta, M. (2007a). The role of impaired neuronal communication in neurological disorders. Current Opinion in Neurology, 20, 655–660.

    PubMed  Google Scholar 

  • He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007b). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53, 905–918.

    CAS  PubMed  Google Scholar 

  • He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D., & Raichle, M. E. (2008). Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proceedings of the National Academy of Sciences of the United States of America, 105, 16039–16044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herringa, R. J., Birn, R. M., Ruttle, P. L., Burghy, C. A., Stodola, D. E., Davidson, R. J., et al. (2013). Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proceedings of the National Academy of Sciences of the United States of America, 110, 19119–19124.

    CAS  PubMed  Google Scholar 

  • Holland, R., & Crinion, J. (2012). Can tDCS enhance treatment of aphasia after stroke? Aphasiology, 26, 1169–1191.

    PubMed  PubMed Central  Google Scholar 

  • Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106, 2035–2040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horovitz, S. G., Fukunaga, M., de Zwart, J. A., van Gelderen, P., Fulton, S. C., Balkin, T. J., et al. (2008). Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Human Brain Mapping, 29, 671–682.

    PubMed  Google Scholar 

  • Hutchison, R. M., Gallivan, J. P., Culham, J. C., Gati, J. S., Menon, R. S., & Everling, S. (2012). Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. Journal of Neurophysiology, 107, 2463–2474.

    PubMed  Google Scholar 

  • Jolles, D. D., van Buchem, M. A., Crone, E. A., & Rombouts, S. A. (2013). Functional brain connectivity at rest changes after working memory training. Human Brain Mapping, 34, 396–406.

    PubMed  Google Scholar 

  • Keller, C. J., Bickel, S., Entz, L., Ulbert, I., Milham, M. P., Kelly, C., et al. (2011). Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 108, 10308–10313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, C. J., Bickel, S., Honey, C. J., Groppe, D. M., Entz, L., Craddock, R. C., et al. (2013). Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. Journal of Neuroscience, 33, 6333–6342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, A. M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 1089–1102.

    PubMed  Google Scholar 

  • Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39, 527–537.

    PubMed  Google Scholar 

  • Kelly, C., de Zubicaray, G., Di Martino, A., Copland, D. A., Reiss, P. T., Klein, D. F., et al. (2009). L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. Journal of Neuroscience, 29, 7364–7378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., & Milham, M. P. (2012). Characterizing variation in the functional connectome: promise and pitfalls. Trends in Cognitive Sciences, 16, 181–188.

    PubMed  Google Scholar 

  • Kim, Y. H., Park, J. W., Ko, M. H., Jang, S. H., & Lee, P. K. (2004). Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neuroscience Letters, 367, 181–185.

    CAS  PubMed  Google Scholar 

  • Kluetsch, R. C., Ros, T., Theberge, J., Frewen, P. A., Calhoun, V. D., Schmahl, C., et al. (2013). Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatrica Scandinavica. doi:10.1111/acps.12229.

    PubMed  Google Scholar 

  • Koyama, M. S., Di Martino, A., Kelly, C., Jutagir, D. R., Sunshine, J., Schwartz, S. J., et al. (2013). Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. PLoS One, 8, e55454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu, P., Brenowitz, N. D., Voon, V., Worbe, Y., Vertes, P. E., Inati, S. J., et al. (2013). Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proceedings of the National Academy of Sciences of the United States of America, 110, 16187–16192.

    CAS  PubMed  Google Scholar 

  • Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106, 17558–17563.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Song, M., Li, J., Liu, Y., Li, K., Yu, C., et al. (2010). Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. Journal of Neuroscience, 30, 64–69.

    PubMed  Google Scholar 

  • Lohmann, G., Margulies, D. S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., et al. (2010). Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One, 5, e10232.

    PubMed  PubMed Central  Google Scholar 

  • Lohmann, G., Ovadia-Caro, S., Jungehulsing, G. J., Margulies, D. S., Villringer, A., & Turner, R. (2012). Connectivity concordance mapping: a new tool for model-free analysis of FMRI data of the human brain. Frontiers in Systems Neuroscience, 6, 13.

    PubMed  PubMed Central  Google Scholar 

  • Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., & Yang, Y. (2012). Rat brains also have a default mode network. Proceedings of the National Academy of Sciences of the United States of America, 109, 3979–3984.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, L., Narayana, S., Robin, D. A., Fox, P. T., & Xiong, J. (2011). Changes occur in resting state network of motor system during 4 weeks of motor skill learning. NeuroImage, 58, 226–233.

    PubMed  PubMed Central  Google Scholar 

  • Mackey, A. P., Miller Singley, A. T., & Bunge, S. A. (2013). Intensive reasoning training alters patterns of brain connectivity at rest. Journal of Neuroscience, 33, 4796–4803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., et al. (2009). Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences of the United States of America, 106, 20069–20074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, K., Solana, A. B., Burgaleta, M., Hernandez-Tamames, J. A., Alvarez-Linera, J., Roman, F. J., et al. (2013). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34, 3143–3157.

    PubMed  Google Scholar 

  • Meinzer, M., Jahnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K., et al. (2014). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 50, 137–147.

    PubMed  Google Scholar 

  • Mennes, M., Kelly, C., Colcombe, S., Castellanos, F. X., & Milham, M. P. (2013). The extrinsic and intrinsic functional architectures of the human brain are not equivalent. Cerebral Cortex, 23, 223–229.

    PubMed  PubMed Central  Google Scholar 

  • Mitra, P. P., Ogawa, S., Hu, X., & Ugurbil, K. (1997). The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging. Magnetic Resonance in Medicine, 37, 511–518.

    CAS  PubMed  Google Scholar 

  • Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44, 893–905.

    PubMed  PubMed Central  Google Scholar 

  • Murphy, K., Birn, R. M., & Bandettini, P. A. (2013). Resting-state fMRI confounds and cleanup. NeuroImage, 80, 349–359.

    PubMed  Google Scholar 

  • Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., et al. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15, 619–626.

    PubMed  Google Scholar 

  • O’Reilly, J. X., Croxson, P. L., Jbabdi, S., Sallet, J., Noonan, M. P., Mars, R. B., et al. (2013). Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 110, 13982–13987.

    PubMed  PubMed Central  Google Scholar 

  • Ovadia-Caro, S., Villringer, K., Fiebach, J., Jungehulsing, G. J., van der Meer, E., Margulies, D. S., et al. (2013). Longitudinal effects of lesions on functional networks after stroke. Journal of Cerebral Blood Flow and Metabolism, 33, 1279–1285.

    PubMed  Google Scholar 

  • Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377–401.

    CAS  PubMed  Google Scholar 

  • Pieramico, V., Esposito, R., Sensi, F., Cilli, F., Mantini, D., Mattei, P. A., et al. (2012). Combination training in aging individuals modifies functional connectivity and cognition, and is potentially affected by dopamine-related genes. PLoS One, 7, e43901.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67, 735–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 2142–2154.

    PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2013a). Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage, 76, 439–441.

    PubMed  Google Scholar 

  • Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2013b). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84C, 320–341.

    Google Scholar 

  • Raichle, M. E. (2010). The brain’s dark energy. Scientific American, 302, 44–49.

    PubMed  Google Scholar 

  • Raichle, M. E. (2011). The restless brain. Brain Connect, 1, 3–12.

    PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.

    CAS  PubMed  Google Scholar 

  • Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N., & Sitaram, R. (2014). Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks. Biological Psychology, 95, 4–20.

    PubMed  Google Scholar 

  • Saad, Z. S., Reynolds, R. C., Jo, H. J., Gotts, S. J., Chen, G., Martin, A., et al. (2013). Correcting brain-wide correlation differences in resting-state FMRI. Brain Connect, 3, 339–352.

    PubMed  Google Scholar 

  • Samann, P. G., Wehrle, R., Hoehn, D., Spoormaker, V. I., Peters, H., Tully, C., et al. (2011). Development of the brain’s default mode network from wakefulness to slow wave sleep. Cerebral Cortex, 21, 2082–2093.

    PubMed  Google Scholar 

  • Sami, S., & Miall, R. C. (2013). Graph network analysis of immediate motor-learning induced changes in resting state BOLD. Frontiers in Human Neuroscience, 7, 166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage, 60, 623–632.

    PubMed  PubMed Central  Google Scholar 

  • Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., et al. (2013a). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage, 64, 240–256.

    PubMed  Google Scholar 

  • Satterthwaite, T. D., Wolf, D. H., Ruparel, K., Erus, G., Elliott, M. A., Eickhoff, S. B., et al. (2013b). Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. NeuroImage, 83C, 45–57.

    Google Scholar 

  • Scheinost, D., Stoica, T., Saksa, J., Papademetris, X., Constable, R. T., Pittenger, C., et al. (2013). Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl Psychiatry, 3, e250.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. (2010). Neural basis of global resting-state fMRI activity. Proceedings of the National Academy of Sciences of the United States of America, 107, 10238–10243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shehzad, Z., Kelly, A. M., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., et al. (2009). The resting brain: unconstrained yet reliable. Cerebral Cortex, 19, 2209–2229.

    PubMed  PubMed Central  Google Scholar 

  • Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shmuel, A., & Leopold, D. A. (2008). Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Human Brain Mapping, 29, 751–761.

    PubMed  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106, 13040–13045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, S. M., Miller, K. L., Moeller, S., Xu, J., Auerbach, E. J., Woolrich, M. W., et al. (2012). Temporally-independent functional modes of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America, 109, 3131–3136.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Desphande, A. S., Meier, T. B., Tudorascu, D. L., Vergun, S., Nair, V. A., et al. (2012). Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One, 7, e49847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strenziok, M., Parasuraman, R., Clarke, E., Cisler, D. S., Thompson, J. C., & Greenwood, P. M. (2014). Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. NeuroImage, 85, 1027–1039.

    PubMed  Google Scholar 

  • Sun, F. T., Miller, L. M., Rao, A. A., & D’Esposito, M. (2007). Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cerebral Cortex, 17, 1227–1234.

    PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sekiguchi, A., Kotozaki, Y., et al. (2013). Effects of working memory training on functional connectivity and cerebral blood flow during rest. Cortex, 49, 2106–2125.

    PubMed  Google Scholar 

  • Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65, 280–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taubert, M., Lohmann, G., Margulies, D. S., Villringer, A., & Ragert, P. (2011). Long-term effects of motor training on resting-state networks and underlying brain structure. NeuroImage, 57, 1492–1498.

    PubMed  Google Scholar 

  • Thomason, M. E., Dennis, E. L., Joshi, A. A., Joshi, S. H., Dinov, I. D., Chang, C., et al. (2011). Resting-state fMRI can reliably map neural networks in children. NeuroImage, 55, 165–175.

    PubMed  PubMed Central  Google Scholar 

  • Tunbridge, E. M., Farrell, S. M., Harrison, P. J., & Mackay, C. E. (2013). Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest. NeuroImage, 68, 49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, R., Howseman, A., Rees, G. E., Josephs, O., & Friston, K. (1998). Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Experimental Brain Research, 123, 5–12.

    CAS  PubMed  Google Scholar 

  • Uddin, L. Q., Mooshagian, E., Zaidel, E., Scheres, A., Margulies, D. S., Kelly, A. M., et al. (2008). Residual functional connectivity in the split-brain revealed with resting-state functional MRI. Neuroreport, 19, 703–709.

    PubMed  PubMed Central  Google Scholar 

  • Uddin, L. Q., Supekar, K., & Menon, V. (2010). Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Frontiers in Systems Neuroscience, 4, 21.

    PubMed  PubMed Central  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438.

    PubMed  PubMed Central  Google Scholar 

  • Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447, 83–86.

    CAS  PubMed  Google Scholar 

  • Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 32.

    PubMed  PubMed Central  Google Scholar 

  • Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49–76.

    PubMed  Google Scholar 

  • Wiggins, J. L., Bedoyan, J. K., Peltier, S. J., Ashinoff, S., Carrasco, M., Weng, S. J., et al. (2012). The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: a preliminary report. NeuroImage, 59, 2760–2770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One, 4, e5743.

    PubMed  PubMed Central  Google Scholar 

  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., et al. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76, 183–201.

    PubMed  PubMed Central  Google Scholar 

  • Yoo, K., Sohn, W. S., & Jeong, Y. (2013). Tool-use practice induces changes in intrinsic functional connectivity of parietal areas. Frontiers in Human Neuroscience, 7, 49.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews Neurology, 6, 15–28.

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a fellowship from the Leon Levy Foundation (C.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, C., Castellanos, F.X. Strengthening Connections: Functional Connectivity and Brain Plasticity. Neuropsychol Rev 24, 63–76 (2014). https://doi.org/10.1007/s11065-014-9252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-014-9252-y

Keywords

Navigation