Skip to main content
Log in

Assessment of Intelligence in the Preschool Period

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Intelligence testing has a long and revered history in psychological measurement in childhood. Yet, the years between infancy and early childhood have been understudied with respect to emergent intellectual and cognitive functioning. Factor analytic models of intelligence that have demonstrated applicability when testing older children and adults often appear inadequate in the preschool period. As more is learned about brain development in typically developing children during these crucial years the distinctive relationships between neural system development and intellectual functioning are being revealed more completely. The aim of this paper was to provide a brief historical background as a foundation for discussion of intelligence testing, review what is known about the dynamic course of brain development during the preschool years, acknowledge limitations specific to intelligence testing in young children, and provide support for maintaining a comprehensive neuropsychological perspective that considers the wider range of variables that influence intellectual functioning in the preschool period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amso, D., & Casey, B. J. (2006). Beyond what develops when: neuroimaging may inform how cognition changes with development. Current Directions in Psychological Science, 15, 24–29.

    Article  Google Scholar 

  • Anderson, V., Catroppa, C., Morse, S., Haritou, F., & Rosenfeld, J. V. (2009). Intellectual outcome from preschool traumatic brain injury: a 5-year prospective, longitudinal study. Pediatrics, 124, e1064–e1071.

    Article  PubMed  Google Scholar 

  • Andersson, H. W., Sonnander, K., & Sommerfelt, K. (1998). Gender and its contribution to the prediction of cognitive abilities at 5 years. Scandinavian Journal of Psychology, 39, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., …Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. The American Journal of Psychiatry, 150, 130–134.

    Google Scholar 

  • Arend, I., Colom, R., Botella, J., Contreras, M. J., Rubio, V., & Santacreu, J. (2003). Quantifying cognitive complexity: evidence from a reasoning task. Personality and Individual Differences, 35, 659–669.

    Article  Google Scholar 

  • Ballantyne, A. O., Spilkin, A. M., Hesselink, J., & Trauner, D. A. (2008). Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke. Brain, 131(Pt 11), 2975–2985.

    Article  PubMed  Google Scholar 

  • Baron, I. S. (2004). Neuropsychological evaluation of the child. New York: Oxford University Press.

    Google Scholar 

  • Bartels, M., Rietveld, M. J., Van Baal, G. C., & Boomsma, D. I. (2002). Genetic and environmental influences on the development of intelligence. Behavior Genetics, 32, 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, D. F. (1999). What individual differences can teach us about developmental function and vice versa. In F. E. W. W. Schneider (Ed.), Individual development from 3 to 12: The munich longitudinal study on the genesis of individual competencies (LOGIC) (pp. 29–37). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bjorklund, D. F. (2005). Children’s thinking: Cognitive development and individual differences. Belmont: Thomson Wadsworth.

    Google Scholar 

  • Blair, C. (2007). Inherent limits on the identification of a neural basis for general intelligence. The Behavioral and Brain Sciences, 30, 154–155.

    Article  Google Scholar 

  • Bornstein, M. H. (1985). How infant and mother jointly contribute to developing cognitive competence in the child. Proceedings of the National Academy of Sciences of the United States of America, 82, 7470–7473.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard, T. J., Jr., & McGue, M. (1981). Familial studies of intelligence: a review. Science, 212, 1055–1059.

    Article  PubMed  Google Scholar 

  • Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebral Cortex, 21, 191–199.

    Article  PubMed  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilites: A survey of factor-analytic studies. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence. Journal of Educational Psychology, 54, 1–22.

    Article  Google Scholar 

  • Ceci, S. J. (1990). On intelligence…more or less: A bioecological treatiseon intellectual development. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Lee, J. M., & Lee, K. H. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. The Journal of Neuroscience, 28, 10323–10329.

    Article  PubMed  CAS  Google Scholar 

  • Colom, R. (2007). Intelligence? What intelligence? The Behavioral and Brain Sciences, 30, 155–156.

    Article  Google Scholar 

  • Colom, R., Abad, F. J., Garcia, L. F., & Juan-Espinosa, M. (2002). Education, Wechsler’s full scale IQ, and g. Intelligence, 30, 449-462.

  • Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. NeuroImage, 31, 1359–1365.

    Article  PubMed  Google Scholar 

  • Das, J. P., Kirby, J., & Jarman, R. F. (1975). Simultaneous and successive syntheses. Psychological Bulletin, 82, 87–103.

    Article  Google Scholar 

  • Davis, O. S., Haworth, C. M., & Plomin, R. (2009). Dramatic increase in heritability of cognitive development from early to middle childhood: an 8-year longitudinal study of 8,700 pairs of twins. Psychological Science, 20, 1301–1308.

    Article  PubMed  Google Scholar 

  • Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews. Neuroscience, 11, 201–211.

    PubMed  CAS  Google Scholar 

  • Doyle, L. W., Davis, P. G., Schmidt, B., & Anderson, P. J. (2012). Cognitive outcome at 24 months is more predictive than at 18 months for IQ at 8–9 years in extremely low birth weight children. Early Human Development, 88, 95–98.

    Article  PubMed  Google Scholar 

  • Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457–460.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, C. D. (2007). Differential ability scales-II. San Antonio: Harcourt Assessment.

    Google Scholar 

  • Flashman, L. A., Andreason, N. C., Flaum, M., & Swayze, V. W. (1997). Intelligence and regional brain volume in normal controls. Intelligence, 25, 149–160.

    Article  Google Scholar 

  • Galsworthy, M. J., Dionne, G., Dale, P. S., & Plomin, R. (2000). Sex differences in early verbal and non-verbal cognitive development. Developmental Science, 3, 206–215.

    Article  Google Scholar 

  • Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan and Co.

    Book  Google Scholar 

  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861–863.

    Article  PubMed  CAS  Google Scholar 

  • Giedd, J. N., Stockman, M., Weddle, C., Liverpool, M., Alexander-Bloch, A., Wallace, G. L., & Lenroot, R. K. (2010). Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychology Review, 20, 349–361.

    Article  PubMed  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., & Morrow, M. (2005). Poor predictive validity of the bayley scales of infant development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116, 333–341.

    Article  PubMed  Google Scholar 

  • Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425–433.

    Article  PubMed  Google Scholar 

  • Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253–270.

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex- developmental changes and effects of aging. Brain Research, 163, 195–205.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, A. R. (1998). The g factor: The science of mental ability. Westport: Praeger.

    Google Scholar 

  • Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews. Neuroscience, 2, 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W., & Bouchard, T. J. (2005). The structure of human intelligence: it is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393–416.

    Article  Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. The Behavioral and Brain Sciences, 30, 135–154.

    Article  PubMed  Google Scholar 

  • Kadosh, R. C., Walsh, V., & Henik, A. (2007). Selecting between intelligent options. The Behavioral and Brain Sciences, 30, 155.

    Article  Google Scholar 

  • Karama, S., Ad-Dab’bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C., Evans, A. C., & Brain Development Cooperative Group. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year olds. Intelligence, 37, 145–155.

    Article  Google Scholar 

  • Karrass, J., & Braungart-Rieker, J. M. (2004). Infant negative emotionality and attachment: implications for preschool intelligence. International Journal of Behavioral Development, 28, 221–229.

    Article  Google Scholar 

  • Kawakubo, Y., Kono, T., Takizawa, R., Kuwabara, H., Ishii-Takahashi, A., & Kasai, K. (2011). Developmental changes of prefrontal activation in humans: a near-infrared spectroscopy study of preschool children and adults. PLoS One, 6, e25944.

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima, M., & Sawaguchi, T. (2010). Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography. Experimental Brain Research, 206, 381–397.

    Article  Google Scholar 

  • Lebel, C., & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. The Journal of Neuroscience, 31, 10937–10947.

    Article  PubMed  CAS  Google Scholar 

  • Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., & Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 1065–1073.

    Article  PubMed  Google Scholar 

  • Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., & Giedd, J. N. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30, 163–174.

    Article  PubMed  Google Scholar 

  • Lubinski, D. (2004). General intelligence’, objectively determined and measured. Journal of Personality and Social Psychology, 86, 96–111.

    Article  PubMed  Google Scholar 

  • MacLullich, A. M., Ferguson, K. J., Deary, I. J., Seckl, J. R., Starr, J. M., & Wardlaw, J. M. (2002). Intracranial capacity and brain volumes are associated with cognition in healthy elderly men. Neurology, 59, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, M. A. (2005). Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337–346.

    Article  Google Scholar 

  • McGrew, K. S. (2005). The cattell-horn-carroll theory of cognitive abilities: past, present, and future. In D. P. Flanagan, J. L. Genshaft, & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 136–182). New York: Guilford.

    Google Scholar 

  • Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D., Dimtcheva, T., & Bilder, R. M. (2007). Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cerebral Cortex, 17, 2163–2171.

    Article  PubMed  Google Scholar 

  • Potharst, E. S., Houtzager, B. A., van Sonderen, L., Tamminga, P., Kok, J. H., Last, B. F., & van Wassenaer, A. G. (2012). Prediction of cognitive abilities at the age of 5 years using developmental follow-up assessments at the age of 2 and 3 years in very preterm children. Developmental Medicine and Child Neurology, 54, 240–246.

    Article  PubMed  Google Scholar 

  • Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s progressive matrices test. Cognitive Psychology, 33, 43–63.

    Article  PubMed  CAS  Google Scholar 

  • Quereshi, M. Y., & Seitz, R. (1994). Gender differences on the WPPSI, the WISC-R, and the WPPSI-R. Current Psychology, 13, 117–123.

    Article  Google Scholar 

  • Rathbone, R., Counsell, S. J., Kapellou, O., Dyet, L., Kennea, N., Hajnal, J., & Edwards, A. D. (2011). Perinatal cortical growth and childhood neurocognitive abilities. Neurology, 77, 1510–1517.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt 5), 1763–1774.

    Article  PubMed  Google Scholar 

  • Rushton, J. P., & Ankney, C. D. (2009). Whole brain size and general mental ability: a review. The International Journal of Neuroscience, 119, 691–731.

    Article  PubMed  Google Scholar 

  • Sattler, J. M. (1988). Assessment of Intelligence (3rd ed.). San Diego: Jerome M. Sattler.

    Google Scholar 

  • Sattler, J. M. (2001). Assessment of children: Cognitive applications (4th ed.). La Mesa: Jerome M. Sattler.

    Google Scholar 

  • Saxon, T. F., Colombo, J., Robinson, E. L., & Frick, J. E. (2000). Dyadic interaction profiles in infancy and preschool intelligence. Journal of School Psychology, 38, 9–25.

    Article  Google Scholar 

  • Schmitt, J. E., Eyler, L. T., Giedd, J. N., Kremen, W. S., Kendler, K. S., & Neale, M. C. (2007). Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment. Twin Research and Human Genetics, 10, 683–694.

    Article  PubMed  Google Scholar 

  • Schneider, W., Perner, J., Bullock, M., Stefanek, J., & Ziegler, A. (1999). Development of intelligence and thinking. In F. E. W. W. Schneider (Ed.), Individual development from 3 to 12: The Munich longitudinal study on the genesis of individual competencies (LOGIC) (pp. 9–28). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Kwon, H., Reiss, A. L., & Amaral, D. G. (2007). Hippocampal size positively correlates with verbal IQ in male children. Hippocampus, 17, 486–493.

    Article  PubMed  Google Scholar 

  • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679.

    Article  PubMed  CAS  Google Scholar 

  • Simonton, D. K. (2003). Francis Galton’s hereditary genius: its place in the history and psychology of science. In R. J. Sternberg (Ed.), The anatomy of impact: What makes the great works of psychology great (pp. 3–18). Washington: American Psychological Association.

    Chapter  Google Scholar 

  • Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Spearman, C. E. (1923). The nature of intelligenceand the principles of cognition. London: Macmillan.

    Google Scholar 

  • Stern, W. (1912). The psychological methods of intelligence testing (G. Whipple, Trans.). Baltimore: Warwick and York.

    Google Scholar 

  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (1999). The theory of successful intelligence. Review of General Psychology, 3, 292–316.

    Article  Google Scholar 

  • Sternberg, R. J., & Berg, C. A. (1986). Quantitative integration: definitions of intelligence: a comparison of the 1921 and 1986 symposia. In R. J. Sternberg & D. K. Detterman (Eds.), What is intelligence? Contemporary viewpoints on its nature and definition (pp. 155–162). Norwood: Ablex.

    Google Scholar 

  • Terman, L. (1916). The measurement of intelligence. Boston: Houghton Mifflin.

    Book  Google Scholar 

  • Thatcher, R. W. (1991). Maturation of the human frontal lobes: physiological evidence for staging. Developmental Neuropsychology, 7, 397–419.

    Article  Google Scholar 

  • Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., & Toga, A. W. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  • Thorndike, R., Hagen, E. P., & Sattler, J. M. (1986). Technical manual: Stanford-binet intelligence scale (4th ed.). Chicago: Riverside.

    Google Scholar 

  • Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.

    Google Scholar 

  • Tsujimoto, S. (2008). The prefrontal cortex: functional neural development during early childhood. The Neuroscientist, 14, 345–358.

    Article  PubMed  Google Scholar 

  • Vernon, P. E. (1950). The structure of human abilities. London: Methuen.

    Google Scholar 

  • Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., & de Menezes Santos, M. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.

    Article  Google Scholar 

  • Ward, K. E., Rothlisberg, B. A., & McIntosh, D. E. (2011). Assessing the SB-V factor structure in a sample of preschool children. Psychology in the Schools, 48, 454–463.

    Article  Google Scholar 

  • Wechsler, D. (1939). The measurement of adult intelligence. Baltimore: Williams and Wilkins.

    Book  Google Scholar 

  • White, K. R. (1982). The relation between socioeconomic status and academic achievement. Psychological Bulletin, 91, 461–481.

    Article  Google Scholar 

  • Witelson, S. F., Beresh, H., & Kigar, D. L. (2006). Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain, 129(Pt 2), 386–398.

    PubMed  CAS  Google Scholar 

  • Woodcock, R. W., & Johnson, M. B. (1989). Woodcock-johnson psycho-educational battery-revised. Allen: DLM Teaching Resources.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Sue Baron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, I.S., Leonberger, K.A. Assessment of Intelligence in the Preschool Period. Neuropsychol Rev 22, 334–344 (2012). https://doi.org/10.1007/s11065-012-9215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-012-9215-0

Keywords

Navigation