Neuropsychology Review

, 21:119 | Cite as

Functional Neuroimaging in the Examination of Effects of Prenatal Alcohol Exposure

Review

Abstract

Functional neuroimaging offers the opportunity to understand the effect of prenatal alcohol exposure on the activities of the brain as well as providing a window into the relationship between neural activation and the behavioral outcomes that have been described in affected individuals. Several different methodologies have been used to examine the neurophysiological signal changes associated with different brain functions in prenatally exposed individuals and those diagnosed with fetal alcohol syndrome (FAS) or other fetal alcohol spectrum disorders (FASD). These include electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI). These studies demonstrate that it is feasible to use these technologies with this clinical population and that the damage to the central nervous system associated with prenatal alcohol exposure has widespread functional implications; however, currently, the literature in these areas is limited and unsystematic. Functional MRI with this clinical population has just begun to explore the implications of prenatal alcohol exposure with the first paper published in 2005. Other methodologies are similarly limited in scope. Nonetheless, these functional neuroimaging studies suggest that prenatal alcohol exposure, or a diagnosis of FAS, may lead to restrictions in neural efficiency or a global decrement in processing resources.

Keywords

Prenatal alcohol exposure EEG PET SPECT fMRI Review 

References

  1. Aguirre, G. K., Detre, J. A., & Wang, J. (2005). Perfusion fMRI for functional neuroimaging. International Review of Neurobiology, 66, 213–236.PubMedCrossRefGoogle Scholar
  2. Amaro, E., & Barker, G. J. (2006). Study design in fMRI: basic principles. Brain and Cognition, 60, 220–232.PubMedCrossRefGoogle Scholar
  3. Archibald, S. L., Fennema-Notestine, C., Gamst, A., Riley, E. P., Mattson, S. N., & Jernigan, T. L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Developmental Medicine and Child Neurology, 43(3), 148–154.PubMedGoogle Scholar
  4. Astley, S. J., Aylward, E. H., Olson, H. C., Kerns, K., Brooks, A., Coggins, T. E., et al. (2009). Functional magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fatal alcohol spectrum disorders. Journal of Neurodevelopmental Disorders, 1(1), 61–80.PubMedCrossRefGoogle Scholar
  5. Bhatara, V. S., Lovrein, F., Kirkeby, J., Swayze, V., Unruh, E., & Johnson, V. (2002). Brain function in fetal alcohol syndrome assessed by single photon emission computed tomography. South Dakota Journal of Medicine, 55(2), 59–62.PubMedGoogle Scholar
  6. Bookheimer, S. Y., & Sowell, E. R. (2005). Brain imaging in FAS commentary on the article by Malisza et al. Pediatric Research, 58(6), 1148–1149.PubMedCrossRefGoogle Scholar
  7. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Science, 1124, 1–38.CrossRefGoogle Scholar
  8. Burden, M. J., Andrew, C., Saint-Amour, D., Meintjes, E. M., Molteno, C. D., Hoyme, H. E., et al. (2009). The effects of fetal alcohol syndrome on response execution and inhibition: an event-related potential study. Alcoholism: Clinical and Experimental Research, 33(11), 1994–2004.CrossRefGoogle Scholar
  9. Burden, M. J., Jacobson, J. L., Westerlund, A., Lundahl, L. H., Morrison, A., Dodge, N. C., et al. (2010). An event-related potential study of response inhibition in ADHD with and without prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 34(4), 617–627.CrossRefGoogle Scholar
  10. Burden, M. J., Westerlund, A., Muckle, G., Dodge, N., Dewailly, E., Nelson, C. A., et al. (2011). The effects of maternal binge drinking during pregnancy on neural correlates of response inhibition and memory in childhood. Alcoholism: Clinical and Experimental Research, 35(1), 69–82.CrossRefGoogle Scholar
  11. Chen, X., Coles, C. D., Lynch, M. E., & Hu, X. (2011). Understanding specific effects of prenatal alcohol exposure on brain structure in young adults. Human Bran Mapping, In press.Google Scholar
  12. Chernick, V., Childiaeva, R., & Ioffe, S. (1983). Effects of maternal alcohol intake and smoking on neonatal electroencephalogram and anthropometric measurements. American Journal of Obstetrics and Gynecology, 146(1), 41–47.PubMedGoogle Scholar
  13. Church, M. W., & Gerkin, K. P. (1988). Hearing disorders in children with fetal alcohol syndrome: findings from case reports. Pediatrics, 82(2), 147–154.PubMedGoogle Scholar
  14. Clark, C. M., Li, D., Conry, J., Conry, R., & Loock, C. (2000). Structural and functional brain integrity of fetal alcohol syndrome in nonretarded cases. Pediatrics, 105(5), 1096–1099.PubMedCrossRefGoogle Scholar
  15. Cohen, M. S., & Bookheimer, S. Y. (1994). Localization of brain function using magnetic resonance imaging. Trends in Neurosciences, 17(7), 268–277.PubMedCrossRefGoogle Scholar
  16. D’Angiulli, A., Grunau, P., Maggi, S., & Herdman, A. (2006). Electroencephalographic correlates of prenatal exposure to alcohol in infants and children: a review of findings and implications for neurocognitive development. Alcohol Research & Health, 40(2), 127–133.Google Scholar
  17. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.PubMedCrossRefGoogle Scholar
  18. Derauf, C., Kekatpure, M., Neyzi, N., Lester, B., & Kosofsky, B. (2009). Neuroimaging of children following prenatal drug exposure. Seminars in Cell & Developmental Biology, 20, 441–454.CrossRefGoogle Scholar
  19. Fabiani, M., Gratton, G., & Coles, M. G. H. (2000). Event-related brain potentials methods, theory, and applications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 53–84). Cambridge: Cambridge University Press.Google Scholar
  20. Feng, C.-M., Narayana, S., Lancaster, J. L., Jerabek, P. A., Arnow, T. L., Zhu, F., et al. (2004). CBF changes during brain activation: fMRI vs. PET. Neuroimage, 22, 443–446.PubMedCrossRefGoogle Scholar
  21. Frankel, F., Paley, B., Marquardt, R., & O’Connor, M. (2006). Stimulants, neuroleptics, and children’s friendship training for children with fetal alcohol spectrum disorders. Journal of Child and Adolescent Psychopharmacology, 16(6), 777–789.PubMedCrossRefGoogle Scholar
  22. Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165–189.CrossRefGoogle Scholar
  23. Fryer, S. L., Tapert, S. F., Mattson, S. N., Paulus, M. P., Spadoni, A. D., & Riley, E. P. (2007). Prenatal alcohol exposure affects frontal-striatal BOLD response during inhibitory control. Alcoholism: Clinical and Experimental Research, 31(8), 1415–1424.CrossRefGoogle Scholar
  24. Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage, 38, 346–356.PubMedCrossRefGoogle Scholar
  25. Havlicek, V., Childiaeva, R., & Chernick, V. (1977). EEG frequency spectrum characteristics of sleep states in infants of alcoholic mothers. Neuropädiatrie, 8(4), 360–373.PubMedCrossRefGoogle Scholar
  26. Ioffe, S., & Chernick, V. (1990). Prediction of subsequent motor and mental retardation in newborn infants exposed to alcohol in utero by computerized EEG analysis. Neuropediatrics, 21(1), 11–17.PubMedCrossRefGoogle Scholar
  27. Ioffe, S., Childiaeva, R., & Chernick, V. (1984). Prolonged effects of maternal alcohol ingestion on the neonatal electroencephalogram. Pediatrics, 74(3), 330–335.Google Scholar
  28. Jones, K. L., & Smith, D. W. (1973). Recognition of the fetal alcohol syndrome in early infancy. Lancet, 302(7836), 999–1001.PubMedCrossRefGoogle Scholar
  29. Kable, J. A., & Coles, C. D. (2004). Teratology of alcohol: Implications for school settings. In R. T. Brown (Ed.), Handbook of pediatric psychology in school settings. Mahwah: Lawrence Erlbaum Associates Publishers.Google Scholar
  30. Kable, J. A., Coles, C. D., Lynch, M. E., & Carroll, J. (2009). The impact of maternal smoking on fast auditory brainstem responses. Neurotoxicology and Teratology, 31(4), 216–224.PubMedCrossRefGoogle Scholar
  31. Kaneko, W. M., Phillips, E. L., Riley, E. P., & Ehlers, C. L. (1996). EEG findings in fetal alcohol syndrome and Down syndrome children. Electroencephalography and Clinical Neurophysiology, 98, 20–28.PubMedCrossRefGoogle Scholar
  32. Kotsoni, E., Byrd, D., & Casey, B. J. (2006). Special considerations for functional magnetic resonance imaging of pediatric populations. Journal of Magnetic Resonance Imaging, 23, 877–886.PubMedCrossRefGoogle Scholar
  33. Li, Z., Coles, C. D., Lynch, M. E., Ma, X., Peltier, S., & Hu, X. (2008). Occipital-temporal reduction and sustained visual attention deficit in prenatal alcohol exposed adults. Brain Imaging and Behavior, 2, 39–48.PubMedCrossRefGoogle Scholar
  34. Li, Z., Santhanam, P., Coles, C. D., Lynch, M. E., Hamann, S., Peltier, S., et al. (2010). Increased default mode activity in adolescents prenatally exposed to cocaine. Human Bran Mapping, In press, doi:10.1002/hbm.21059.
  35. Liddle, E. B., Hollis, C., Batty, M. J., Groom, M. J., Totman, J. J., Liotti, M., et al. (2010). Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. Journal of Child Psychology and Psychiatry, In press, doi:10.1111/j.1469-7610.2010.02333.x.
  36. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.PubMedCrossRefGoogle Scholar
  37. Malisza, K. L., Allman, A.-A., Shiloff, D., Jakobson, L., Longstaffe, S., & Chudley, A. E. (2005). Evaluation of spatial working memory function in children and adults with fetal alcohol spectrum disorders: a functional magnetic resonance imaging study. Pediatric Research, 58, 1150–1157.PubMedCrossRefGoogle Scholar
  38. Mattson, S. N., Riley, E. P., Jernigan, T. L., Ehlers, C. L., Delis, D. C., Jones, K. L., et al. (1992). Fetal alcohol syndrome: a case report of neuropsychological, MRI and EEG assessment of two children. Alcoholism: Clinical and Experimental Research, 16(5), 1001–1003.CrossRefGoogle Scholar
  39. Mattson, S. N., Calarco, K. E., & Lang, A. R. (2006). Focused and shifting attention in children with heavy prenatal alcohol exposure. Neuropsychology, 20(3), 361–369.PubMedCrossRefGoogle Scholar
  40. Meintjes, E. M., Jacobson, J. L., Molteno, C. D., Gatenby, J. C., Warton, C., Cannistraci, C. J., et al. (2010). An fMRI study of number processing in children with fetal alcohol syndrome. Alcoholism: Clinical and Experimental Research, 34(8), 1450–1464.Google Scholar
  41. Norman, A. L., Crocker, N., Mattson, S. N., & Riley, E. P. (2009). Neuroimaging and fetal alcohol spectrum disorders. Developmental Disabilities Research Reviews, 15(3), 209–217.PubMedCrossRefGoogle Scholar
  42. Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysis of EEG (2nd ed.). New York: Oxford University Press.CrossRefGoogle Scholar
  43. Oakes, T. R., Fox, A. S., Johnstone, T., Chung, M. K., Kalin, N., & Davidson, R. J. (2007). Integrating VBM into the general linear model with voxelwise anatomical covariates. Neuroimage, 34, 500–508.PubMedCrossRefGoogle Scholar
  44. O’Hare, E. D., Lu, L. H., Houston, S. M., Bookheimer, S. Y., Mattson, S. N., O’Connor, M. J., et al. (2009). Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Human Brain Mapping, 30, 3200–3208.PubMedCrossRefGoogle Scholar
  45. Olegård, R., Sabel, K.-G., Aronsson, M., Sandin, B., Johansson, P. R., Carlsson, C., et al. (1979). Effects on the child of alcohol abuse during pregnancy. Retrospective and prospective studies. Acta Paediatrica, 68(Supplement S275), 112–121.CrossRefGoogle Scholar
  46. O’Malley, K. D., & Nanson, J. (2002). Clinical implications of a link between fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder. Canadian Journal of Psychiatry, 47(4), 349–354.Google Scholar
  47. Pettigrew, A. G., & Hutchinson, I. (1984). Effects of alcohol on functional development of the auditory pathway in the brainstem of infants and chick embryos. Ciba Foundation Symposium, 105, 26–46.PubMedGoogle Scholar
  48. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. Neuroimage, 37, 1083–1090.PubMedCrossRefGoogle Scholar
  49. Riikonen, R., Salonen, I., Partanen, K., & Verho, S. (1999). Brain perfusion SPECT and MRI in foetal alcohol syndrome. Developmental Medicine and Child Neurology, 41, 652–659.PubMedCrossRefGoogle Scholar
  50. Riikonen, R. S., Nokelainen, P., Valkonen, K., Kolehmainen, A. I., Kumpulainen, K. I., Könönen, M., et al. (2005). Deep serotonergic and dopaminergic structures in fetal alcoholic syndrome: a study with nor-beta-CIT-single-photon emission computed tomography and magnetic resonance imaging volumetry. Biological Psychiatry, 57, 1565–1572.PubMedCrossRefGoogle Scholar
  51. Rössig, C., Wässer, S., & Oppermann, P. (1994). Audiologic manifestations in fetal alcohol syndrome assessed by brainstem auditory-evoked potentials. Neuropediatrics, 25(5), 245–249.PubMedCrossRefGoogle Scholar
  52. Santhanam, P., Li, Z., Hu, X., Lynch, M. E., & Coles, C. D. (2009). Effects of prenatal alcohol exposure on brain activation during an arithmetic task: an fMRI study. Alcoholism: Clinical and Experimental Research, 33(11), 1901–1908.CrossRefGoogle Scholar
  53. Scher, M. S., Richardson, G. A., Coble, P. A., Day, N. L., & Stoffer, D. S. (1988). The effects of prenatal alcohol and marijuana exposure: disturbances in neonatal sleep cycling and arousal. Pediatric Research, 24(1), 101–105.PubMedCrossRefGoogle Scholar
  54. Scher, M. S., Richardson, G. A., Robles, N., Geva, D., Goldschmidt, L., Dahl, R. E., et al. (1998). Effects of prenatal substance exposure: altered maturation of visual evoked potentials. Pediatric Neurology, 18(3), 236–243.PubMedCrossRefGoogle Scholar
  55. Sonuga-Barke, E. J. S., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31, 977–986.PubMedCrossRefGoogle Scholar
  56. Sowell, E. R., Lu, L. H., O’Hare, E. D., McCourt, S. T., Mattson, S. N., O’Connor, M. J., et al. (2007). Functional magnetic resonance imaging of verbal learning in children with heavy prenatal alcohol exposure. Neuroreport, 18(7), 635–639.PubMedCrossRefGoogle Scholar
  57. Spadoni, A. D., McGee, C. L., Fryer, S. L., & Riley, E. P. (2007). Neuroimaging and fetal alcohol spectrum disorders. Neuroscience and Biobehavioral Reviews, 31(2), 239–245.PubMedCrossRefGoogle Scholar
  58. Spadoni, A. D., Bazinet, A. D., Fryer, S. L., Tapert, S. F., Mattson, S. N., & Riley, E. P. (2009). BOLD response during spatial working memory in youth with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 33(12), 2067–2076.CrossRefGoogle Scholar
  59. Spohr, H. L., & Steinhausen, H. C. (1987). Follow-up studies of children with fetal alcohol syndrome. Neuropediatrics, 18(1), 13–17.PubMedCrossRefGoogle Scholar
  60. Wernick, M. N., & Aarsvold, J. N. (2004). Emission tomography: The fundamentals of PET and SPECT. San Diego: Elsevier Academic Press.Google Scholar
  61. Whittingstall, K., Stroink, G., Gates, L., Connolly, J., & Finley, A. (2003). Effects of dipole position, orientation and noise on the accuracy of EEG source localization. Biomedical Engineering Online, 2, 14.PubMedCrossRefGoogle Scholar
  62. Wilke, M., Schmithorst, V. J., & Holland, S. K. (2002). Assessment of spatial normalization of whole-brain magnetic resonance images in children. Human Brain Mapping, 17, 48–60.PubMedCrossRefGoogle Scholar
  63. Wilke, M., Schmithorst, V. J., & Holland, S. K. (2003). Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magnetic Resonance in Medicine, 50, 749–757.PubMedCrossRefGoogle Scholar
  64. Wozniak, J. R., Mueller, B. A., Muetzel, R. L., Bell, C. J., Hoecker, H. L., Nelson, M. L., et al. (2011). Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 35(5), 1–13.CrossRefGoogle Scholar
  65. Yoon, U., Fonov, V. S., Perusse, D., & Evans, A. C. (2009). The effect of template choice on morphometric analysis of pediatric brain data. Neuroimage, 45, 769–777.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA
  2. 2.Department of PediatricsEmory University School of MedicineAtlantaUSA
  3. 3.Biomedical Imaging Technology Center, Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA

Personalised recommendations