Skip to main content

The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy

Abstract

The cognitive neuroscience of the cerebellum is now an established multidisciplinary field of investigation. This essay traces the historical evolution of this line of inquiry from an emerging field to its current status, with personal reflections over almost three decades on this journey of discovery. It pays tribute to early investigators who recognized the wider role of the cerebellum beyond motor control, traces the origins of new terms and concepts including the dysmetria of thought theory, the universal cerebellar transform, and the cerebellar cognitive affective syndrome, and places these developments within the broader context of the scientific efforts of a growing community of cerebellar cognitive neuroscientists. This account considers the converging evidence from theoretical, anatomical, physiological, clinical, and functional neuroimaging approaches that have resulted in the transition from recognizing the cerebellar incorporation into the distributed neural circuits subserving cognition and emotion, to a hopeful new era of treatment of neurocognitive and neuropsychiatric manifestations of cerebellar diseases, and to cerebellar-based interventions for psychiatric disorders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbie, A. A. (1934). The projection of the forebrain on the pons and cerebellum. Proceedings of the Royal Society of London [Biol.] 115504–115522.

  2. Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  3. Aleman, A., Sommer, I. E., & Kahn, R. S. (2007). Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. The Journal of Clinical Psychiatry, 68(3), 416–421.

    PubMed  Article  Google Scholar 

  4. Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological Reviews, 54(4), 957–1006.

    CAS  PubMed  Google Scholar 

  5. Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Ponto, L. L., et al. (1996). Schizophrenia and cognitive dysmetria: a positron emission tomography study of dysfunctional prefrontal-thalamic-cerebelar circuitry. Proceedings of the National Academy of Sciences of the United States of America, 93, 9985–9990.

    CAS  PubMed  Article  Google Scholar 

  6. Angevine, J. B., Mancall, E. L., & Yakovlev, P. I. (1961). The human cerebellum: An atlas of gross topography in serial sections. Boston: Little, Brown and Co.

    Google Scholar 

  7. Baillieux, H., De Smet, H. J., Dobbeleir, A., Paquier, P. F., De Deyn, P. P., & Mariën, P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex, 46(7), 869–879.

    PubMed  Article  Google Scholar 

  8. Ball, G., Micco, D. J., & Berntson, G. (1974). Cerebellar stimulation in the rat. Complex stimulation bound oral behaviors and self-stimulation. Physiology & Behavior, 13, 123–127.

    CAS  Article  Google Scholar 

  9. Barlow, J. S. (2002). The cerebellum and adaptive control. New York: Cambridge University Press.

    Book  Google Scholar 

  10. Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35(6), 866–874.

    CAS  PubMed  Google Scholar 

  11. Berman, A. F., Berman, D., & Prescott, J. W. (1978). The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In I. S. Cooper, M. Riklan, & R. S. Snider (Eds.), The cerebellum, epilepsy and behavior (pp. 277–284). New York: Plenum. Adapted and reprinted as Berman, A. J. (1997). Amelioration of aggression: Response to selective cerebellar lesions in the rhesus monkey. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 111–119. San Diego: Academic.

  12. Berntson, G. G., Potolicchio, S. J., Jr., & Miller, N. E. (1973). Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proceedings of the National Academy of Sciences of the United States of America, 70(9), 2497–2499.

    CAS  PubMed  Article  Google Scholar 

  13. Bishop, D. V. (2007). Curing dyslexia and attention-deficit hyperactivity disorder by training motor co-ordination: miracle or myth? Journal of Paediatrics and Child Health, 43(10), 653–655.

    PubMed  Article  Google Scholar 

  14. Botez-Marquard, T., & Botez, M. I. (1993). Cognitive behavior in heredodegenerative ataxias. European Neurology, 33(5), 351–357.

    CAS  PubMed  Article  Google Scholar 

  15. Botez, M. I., Gravel, J., Attig, E., & Vezina, J. L. (1985). Reversible chronic cerebellar ataxia after phenytoin intoxication: possible role of cerebellum in cognitive thought. Neurology, 35(8), 1152–1157.

    CAS  PubMed  Google Scholar 

  16. Bower, J. M. (1995). The cerebellum as sensory acquisition controller. Human Brain Mapping, 2, 12–13.

    Google Scholar 

  17. Brodal, P. (1978). The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain, 101(2), 251–283.

    CAS  PubMed  Article  Google Scholar 

  18. Brodal, A. (1981). Neurological anatomy in relation to clinical medicine (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  19. Cannon, W. B. (1939). Law of denervation. American Journal of Medical Science 198(737–50).

    Google Scholar 

  20. Caplan, L. R., Schmahmann, J. D., Kase, C. S., Feldmann, E., Baquis, G., Greenberg, J. P., et al. (1990). Caudate Infarcts. Archives of Neurology, 47, 133–143.

  21. Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. Neuroimage, 41(4), 1184–1191.

    PubMed  Article  Google Scholar 

  22. Chambers, W. W., & Sprague, J. M. (1955a). Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. The Journal of Comparative Neurology, 103(1), 105–129.

    CAS  Article  Google Scholar 

  23. Chambers, W. W., & Sprague, J. M. (1955b). Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. A.M.A. Archives of Neurology & Psychiatry, 74(6), 653–680.

    CAS  Google Scholar 

  24. Chheda, M., Sherman, J., & Schmahmann, J. D. (2002). Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology, 58(Suppl 3), 356.

    Google Scholar 

  25. Clarke, E., & O’Malley, C. D. (1996). The human brain and spinal cord. A historical study illustrated by writings from antiquity to the twentieth century (2nd ed.). San Francisco: Norman.

    Google Scholar 

  26. Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. The Journal of Neuroscience, 21(16), 6283–6291.

    CAS  PubMed  Google Scholar 

  27. Combettes. (1831). Absence complète du cervelet, des pédoncules postérieurs et de la protubérance cérébrale chez une jeune fille morte dans sa onzième année. Bulletins de la Societe anatomique de Paris, 5, 148–157.

    Google Scholar 

  28. Cooper, I. S., Amin, L., & Gilman, S. W. J. M. (1974). The effect of chronic stimulation of cerebellar cortex on epilepsy in man. In I. S. Cooper, M. Riklan, & R. S. Snider (Eds.), The cerebellum, epilepsy and behavior (pp. 119–172). New York: Plenum.

    Google Scholar 

  29. Cooper, I. S., Riklan, M., Amin, I., & Cullinan, T. (1978). A long-term follow-up study of cerebellar stimulation for the control of epilepsy. In I. S. Cooper (Ed.), Cerebellar stimulation in man (pp. 19–38). New York: Raven.

    Google Scholar 

  30. Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning & Memory, 4(1), 1–35.

    CAS  Article  Google Scholar 

  31. Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. The New England Journal of Medicine, 318(21), 1349–1354.

    CAS  PubMed  Article  Google Scholar 

  32. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., & Woolsey, T. A. (1972). The autoradiographic demonstration of axonal connections in the central nervous system. Brain Research, 37, 21–51.

    CAS  PubMed  Article  Google Scholar 

  33. Dejerine, J. J. (1895). Anatomie des centres nerveux. Paris: Rueff et Cie.

    Google Scholar 

  34. Demirtas-Tatlidede, A., Freitas, C., Cromer, J., Safar, L., Ongur, D., & Stone, W. S., et al. (2010). A proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophrenia Research, doi:10.1016/j.schres.2010.08.015

  35. Denny-Brown, D. (1942). The sequelae of war head injuries. New England Journal of Medicine, 227, 771–789 and 813–821.

    Google Scholar 

  36. Denny-Brown, D. (1962). The Basal Ganglia and their relation to disorders of movement. London: Oxford University Press.

    Google Scholar 

  37. Denny-Brown, D. (1964). Department of neurology. In J. J. Byrne (Ed.), A history of the Boston City Hospital, 1905–1964 (pp. 110–122). Boston: Sheldon.

    Google Scholar 

  38. Denny-Brown, D., & Banker, B. Q. (1954). Amorphosynthesis from left parietal lesion. AMA Archives of Neurology and Psychiatry, 71, 302–313.

    CAS  Google Scholar 

  39. Denny-Brown, D., & Chambers, R. A. (1958). The parietal lobe and behavior. Research Publications - Association for Research in Nervous and Mental Disease, 36, 35–117.

    CAS  PubMed  Google Scholar 

  40. Denny-Brown, D., Meyer, J. S., & Horenstein, S. (1952). The significance of perceptual rivalry resulting from parietal lesion. Brain, 75(4), 433–471.

    CAS  PubMed  Article  Google Scholar 

  41. Desmond, J. E., & Fiez, J. A. (1998). Neuroimaging studies of the cerebellum: language, learning and memory. Trends in Cognitive Sciences, 2, 355–362.

    Article  Google Scholar 

  42. Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33(1), 127–138.

    PubMed  Article  Google Scholar 

  43. Dietrichs, E., & Haines, D. E. (1984). Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anatomy and Embryology (Berlin), 170(3), 313–318.

    CAS  Article  Google Scholar 

  44. Dimitrova, A., Zeljko, D., Schwarze, F., Maschke, M., Gerwig, M., Frings, M., et al. (2006). Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage, 30(1), 12–25.

    CAS  PubMed  Article  Google Scholar 

  45. Dow, R. S. (1974). Some novel concepts of cerebellar physiology. The Mount Sinai Journal of Medicine, 41(1), 103–119.

    CAS  Google Scholar 

  46. Dow, R. S., & Moruzzi, G. (1958). The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press.

    Google Scholar 

  47. Doyon, J., Penhune, V., Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262.

    PubMed  Article  Google Scholar 

  48. Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89(1), 634–639.

    PubMed  Article  Google Scholar 

  49. Duncan, G. W., Parker, S. W., & Fisher, C. M. (1975). Acute cerebellar infarction in the PICA territory. Archives of Neurology, 32(6), 364–368.

    CAS  PubMed  Google Scholar 

  50. Evarts, E. V., & Thach, W. T. (1969). Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annual Review of Physiology, 31, 451–498.

    CAS  PubMed  Article  Google Scholar 

  51. Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63(11), 2132–2135.

    PubMed  Google Scholar 

  52. Fiez, J. A., & Raichle, M. E. (1997). Linguistic processing. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 233–254. San Diego: Academic.

    Google Scholar 

  53. Flourens, P. (1824). Recherches experimentales sur les proprietes et les fonctions du systseme nerveux, dans les animaux vertebres. Paris: Crevot.

    Google Scholar 

  54. Fox, P. T., Raichle, M. E., & Thach, W. T. (1985). Functional mapping of the human cerebellum with positron emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 82(21), 7462–7466.

    CAS  PubMed  Article  Google Scholar 

  55. Fregni, F., Marcolin, M. A., Myczkowski, M., Amiaz, R., Hasey, G., Rumi, D. O., et al. (2006). Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. The International Journal of Neuropsychopharmacology, 9(6), 641–654.

    CAS  PubMed  Article  Google Scholar 

  56. Frick, R. B. (1982). The ego and the vestibulocerebellar system: some theoretical perspectives. The Psychoanalytic Quarterly, 51(1), 93–122.

    CAS  PubMed  Google Scholar 

  57. Fries, W. (1990). Pontine projection from striate and prestriate visual cortex in the macaque monkey: an anterograde study. Visual Neuroscience, 4(3), 205–216.

    CAS  PubMed  Article  Google Scholar 

  58. Gall, F. J., Vimont, J., & Broussais, J. V. (1838). On the functions of the cerebellum. English translation by George Combe. Edinburgh: Maclachlan & Stewart.

    Google Scholar 

  59. Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294.

    CAS  PubMed  Article  Google Scholar 

  60. Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585–644.

    CAS  PubMed  Article  Google Scholar 

  61. Glickstein, M., May, J. G., 3rd, & Mercier, B. E. (1985). Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. The Journal of Comparative Neurology, 235(3), 343–359.

    CAS  PubMed  Article  Google Scholar 

  62. Gomez Beldarrain, M., Garcia-Monco, J. C., Quintana, J. M., Llorens, V., & Rodeno, E. (1997). Diaschisis and neuropsychological performance after cerebellar stroke. European Neurology, 37(2), 82–89.

    CAS  PubMed  Article  Google Scholar 

  63. Granziera, C., Schmahmann, J. D., Hadjikhani, N., Heiko, M., Meuli, R., Wedeen, V. J., et al. (2009). Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE, 4(4), e5101. Epub 2009 Apr 2.

    PubMed  Article  CAS  Google Scholar 

  64. Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70(1–2), 119–136.

    CAS  PubMed  Article  Google Scholar 

  65. Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29(26), 8586–8594.

    CAS  PubMed  Article  Google Scholar 

  66. Haines, D. E., & Rubertone, J. A. (1977). Cerebellar corticonuclear fibers: evidence of zones in the primate anterior lobe. Neuroscience Letters, 6(2–3), 231–236.

    CAS  PubMed  Article  Google Scholar 

  67. Haines, D. E., & Dietrichs, E. (1984). An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). The Journal of Comparative Neurology, 229(4), 559–575.

    CAS  PubMed  Article  Google Scholar 

  68. Harlow, H. F., & Harlow, M. (1962). Social deprivation in monkeys. Scientific American, 207, 136–146.

    CAS  PubMed  Article  Google Scholar 

  69. Harper, J. W., & Heath, R. G. (1973). Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Experimental Neurology, 39(2), 285–292.

    CAS  PubMed  Article  Google Scholar 

  70. Hartmann-von Monakow, K., Akert, K., & Kunzle, H. (1981). Projection of precentral, premotor and prefrontal cortex to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis). Schweizer Archiv für Neurologie, Neurochirurgie und Psychiatrie, 129(2), 189–208.

    CAS  PubMed  Google Scholar 

  71. Heath, R. G. (1977). Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. The Journal of Nervous and Mental Disease, 165(5), 300–317.

    CAS  PubMed  Article  Google Scholar 

  72. Heath, R. G. (1997). Foreword. In J. D. Schmahmann (Ed.), The Cerebellum and Cognition. Int Rev Neurobiol, 41, xxiii–xxv. San Diego: Academic.

    Google Scholar 

  73. Heath, R. G., & Harper, J. W. (1974). Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Experimental Neurology, 45(2), 268–287.

    CAS  PubMed  Article  Google Scholar 

  74. Heath, R. G., Franklin, D. E., & Shraberg, D. (1979). Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. The Journal of Nervous and Mental Disease, 167(10), 585–592.

    CAS  PubMed  Article  Google Scholar 

  75. Heath, R. G., Llewellyn, R. C., & Rouchell, A. M. (1980). The cerebellar pacemaker for intractable behavioral disorders and epilepsy: follow-up report. Biological Psychiatry, 15(2), 243–256.

    CAS  PubMed  Google Scholar 

  76. Heilman, K. M., Bowers, D., Valenstein, E., & Watson, R. T. (1986). The right hemisphere: neuropsychological functions. Journal of Neurosurgery, 64(5), 693–704.

    CAS  PubMed  Article  Google Scholar 

  77. Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.

    CAS  PubMed  Google Scholar 

  78. Henneman, E., Cooke, P. M., & Snider, R. S. (1952). Cerebellar projections to the cerebral cortex. Research Publications—Association for Research in Nervous and Mental Disease, 30, 317–333.

    CAS  PubMed  Google Scholar 

  79. Hornyak, M., Rovit, R. L., Simon, A. S., & Couldwell, W. T. (2001). Irving S. Cooper and the early surgical management of movement disorders. Video history. Neurosurgical Focus, 11(2), E6.

    CAS  PubMed  Article  Google Scholar 

  80. Ito, M. (1984). The cerebellum and neural control. New York: Raven.

    Google Scholar 

  81. Ito, M. (1993). Movement and thought: identical control mechanisms by the cerebellum. Trends in Neurosciences, 16(11), 448–450. discussion 453–444.

    CAS  PubMed  Article  Google Scholar 

  82. Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152.

    Article  Google Scholar 

  83. Jansen, J., & Brodal, A. (1940). Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. The Journal of Comparative Neurology, 73, 267–321.

    Article  Google Scholar 

  84. Joseph, A. B., Anderson, W. H., & O’Leary, D. H. (1985). Brainstem and vermis atrophy in catatonia. The American Journal of Psychiatry, 142(3), 352–354.

    CAS  PubMed  Google Scholar 

  85. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23(23), 8432–8444.

    CAS  PubMed  Google Scholar 

  86. Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57(7), 645–652.

    CAS  PubMed  Article  Google Scholar 

  87. Kim, J. J., Mohamed, S., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Boles Ponto, L. L., et al. (2000). Regional neural dysfunctions in chronic schizophrenia studied with positron emission tomography. The American Journal of Psychiatry, 157(4), 542–548.

    CAS  PubMed  Article  Google Scholar 

  88. Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19(10), 2485–2497.

    PubMed  Article  Google Scholar 

  89. Kuypers, H. G., & Ugolini, G. (1990). Viruses as transneuronal tracers. Trends in Neurosciences, 13(2), 71–75.

    CAS  PubMed  Article  Google Scholar 

  90. Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. (2005). ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25(1), 155–164.

    PubMed  Article  Google Scholar 

  91. Lalonde, R., & Botez, M. I. (1986). Navigational deficits in weaver mutant mice. Brain Research, 398(1), 175–177.

    CAS  PubMed  Article  Google Scholar 

  92. Larsell, O., & Jansen, J. (1972). The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: The University of Minnesota Press.

    Google Scholar 

  93. Leaton, R. N., & Supple, W. F., Jr. (1986). Cerebellar vermis: essential for long-term habituation of the acoustic startle response. Science, 232(4749), 513–515.

    CAS  PubMed  Article  Google Scholar 

  94. Lee, H., Sohn, S. I., Cho, Y. W., Lee, S. R., Ahn, B. H., Park, B. R., et al. (2006). Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology, 67(7), 1178–1183.

    CAS  PubMed  Article  Google Scholar 

  95. Leggio, M. G., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., & Molinari, M. (2009). The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex, Sep 6. [Epub ahead of print]

  96. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454.

    CAS  PubMed  Article  Google Scholar 

  97. Levinson, H. N. (1988). The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: hypothesis and study. Perceptual and Motor Skills, 67(3), 983–1006.

    CAS  PubMed  Google Scholar 

  98. Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain, 123(Pt 5), 1041–1050.

    PubMed  Article  Google Scholar 

  99. Limperopoulos, C., Soul, J. S., Haidar, H., Huppi, P. S., Bassan, H., Warfield, S. K., et al. (2005). Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics, 116(4), 844–850.

    PubMed  Article  Google Scholar 

  100. Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R. L., Jr., Sullivan, N. R., Benson, C. B., et al. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584–593.

    PubMed  Article  Google Scholar 

  101. Locke, S. (1969). Modern neurology papers in tribute to Denny-Brown. Boston: Little Brown.

    Google Scholar 

  102. Maeshima, S., & Osawa, A. (2007). Stroke rehabilitation in a patient with cerebellar cognitive affective syndrome. Brain Injury, 21(8), 877–883.

    PubMed  Article  Google Scholar 

  103. Makris, N., Hodge, S. M., Haselgrove, C., Kennedy, D. N., Dale, A., Fischl, B., et al. (2003). Human cerebellum: surface-assisted cortical parcellation and volumetry with magnetic resonance imaging. Journal of Cognitive Neuroscience, 15(4), 584–599.

    PubMed  Article  Google Scholar 

  104. Makris, N., Schlerf, J. E., Hodge, S. M., Haselgrove, C., Albaugh, M. D., Seidman, L. J., et al. (2005). MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage, 25(4), 1146–1160.

    PubMed  Article  Google Scholar 

  105. Marr, D. (1969). A theory of cerebellar cortex. Journal de Physiologie, 202(2), 437–470.

    CAS  Google Scholar 

  106. Martner, J. (1975). Cerebellar influences on autonomic mechanisms. An experimental study in the cat with special reference to the fastigial nucleus. Acta Physiologica Scandinavica. Supplementum, 425, 1–42.

    CAS  PubMed  Google Scholar 

  107. Mason, W. A., & Berkson, G. (1975). Effects of maternal mobility on the development of rocking and other behaviors in rhesus monkeys: a study with artificial mothers. Developmental Psychobiology, 8(3), 197–211.

    CAS  PubMed  Article  Google Scholar 

  108. May, J. G., & Andersen, R. A. (1986). Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Experimental Brain Research, 63(2), 265–278.

    CAS  Article  Google Scholar 

  109. Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651–660.

    CAS  PubMed  Article  Google Scholar 

  110. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.

    CAS  PubMed  Article  Google Scholar 

  111. Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461.

    CAS  PubMed  Article  Google Scholar 

  112. Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., et al. (1997). Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain, 120(Pt 10), 1753–1762.

    PubMed  Article  Google Scholar 

  113. Molinari, M., Petrosini, L., Misciagna, S., & Leggio, M. G. (2004). Visuospatial abilities in cerebellar disorders. Journal of Neurology, Neurosurgery and Psychiatry, 75(2), 235–240.

    CAS  Google Scholar 

  114. Nadeau, S. E., & Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58(3), 355–402. discussion 418–423.

    CAS  PubMed  Article  Google Scholar 

  115. Neau, J. P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102(6), 363–370.

    CAS  PubMed  Article  Google Scholar 

  116. Neuburger, M. (1897/1981). Die historiche Entwicklung der experimentellen Gehirn-und Ruckenmarksphysiologie vor Flourens. Translated and edited, with additional material, by Edwin Clarke, as The Historical Development of Experimental Brain and Spinal Cord Physiology Before Flourens. Baltimore/London: Johns Hopkins University Press.

  117. Nicolson, R. I., & Fawcett, A. J. (2005). Developmental dyslexia, learning and the cerebellum. Journal of Neural Transmission. Supplementum (69), 19–36.

  118. Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: the cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508–511.

    CAS  PubMed  Article  Google Scholar 

  119. Nopoulos, P. C., Ceilley, J. W., Gailis, E. A., & Andreasen, N. C. (1999). MRI volumetry of the vermis and the cerebellar hemispheres in men with schizophrenia. Biological Psychiatry, 46, 703–711.

    CAS  PubMed  Article  Google Scholar 

  120. Nyby, O., & Jansen, J. (1951). An experimental investigation of the corticopontine projection in macaca mulatta. Skrifter utgitt av det Norske Vedenskapsakademie Oslo. Mat Naturv Klasse, 3, 1–47.

    Google Scholar 

  121. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953–965.

    PubMed  Article  Google Scholar 

  122. Oscarsson, O. (1965). Functional organization of the spino- and cuneocerebellar tracts. Physiological Reviews, 45, 495–522.

    CAS  PubMed  Google Scholar 

  123. Parvizi, J., Joseph, J. T., Press, D., & Schmahmann, J. D. (2007). Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Movement Disorders, 22, 798–803.

    PubMed  Article  Google Scholar 

  124. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.

    CAS  PubMed  Article  Google Scholar 

  125. Petrides, M., & Pandya, D. N. (1988). Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 273(1), 52–66.

    CAS  PubMed  Article  Google Scholar 

  126. Petrosini, L., Molinari, M., & Dell’Anna, M. E. (1996). Cerebellar contribution to spatial event processing: Morris water maze and T-maze. The European Journal of Neuroscience, 8(9), 1882–1896.

    CAS  PubMed  Article  Google Scholar 

  127. Pollack, I. F., Polinko, P., Albright, A. L., Towbin, R., & Fitz, C. (1995). Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery, 37(5), 885–893.

    CAS  PubMed  Article  Google Scholar 

  128. Prescott, J. W. (1971). Early somatosensory deprivation as ontogenic process in the abnormal development of the brain and behavior. In Moor-Jankowski EIGaJ (Ed.), Medical primatology 1970. Basel: Karger.

    Google Scholar 

  129. Rapoport, M., van Reekum, R., & Mayberg, H. (2000). The role of the cerebellum in cognition and behavior: a selective review. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 193–198.

    CAS  PubMed  Google Scholar 

  130. Rauch, S. L., Dougherty, D. D., Malone, D., Rezai, A., Friehs, G., Fischman, A. J., et al. (2006). A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. Journal of Neurosurgery, 104(4), 558–565.

    PubMed  Article  Google Scholar 

  131. Reynolds, D., & Nicolson, R. I. (2007). Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia, 13(2), 78–96.

    PubMed  Article  Google Scholar 

  132. Reynolds, D., Nicolson, R. I., & Hambly, H. (2003). Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia, 9(1), 48–71. discussion 46–47.

    PubMed  Article  Google Scholar 

  133. Richter, S., Aslan, B., Gerwig, M., Wilhelm, H., Kramer, S., Todica, O., et al. (2007). Patients with chronic focal cerebellar lesions show no cognitive abnormalities in a bedside test. Neurocase, 13(1), 25–36.

    PubMed  Article  Google Scholar 

  134. Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123(Pt 5), 1051–1061.

    PubMed  Article  Google Scholar 

  135. Sadeh, M., & Cohen, I. (2001). Transient loss of speech after removal of posterior fossa tumors—one aspect of a larger neuropsychological entity: the cerebellar cognitive affective syndrome. Pediatric Hematology and Oncology, 18(7), 423–426.

    CAS  PubMed  Article  Google Scholar 

  136. Sasaki, K., Oka, H., Matsuda, Y., Shimono, T., & Mizuno, N. (1975). Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Experimental Brain Research, 23, 91–102.

    CAS  Article  Google Scholar 

  137. Schmahmann, J. (1991). An emerging concept. The cerebellar contribution to higher function. Archives of Neurology, 48(11), 1178–1187.

    CAS  PubMed  Google Scholar 

  138. Schmahmann, J. D. (1994). The cerebellum in autism: Clinical and anatomic perspectives. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 195–226). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  139. Schmahmann, J. D. (1996). From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.

    CAS  PubMed  Article  Google Scholar 

  140. Schmahmann, J. D. (1997a). The cerebellum and cognition. Int Rev Neurobiol, vol 41. San Diego: Academic.

    Google Scholar 

  141. Schmahmann, J. D. (1997b). Therapeutic and research implications. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 637–647. San Diego: Academic.

    Google Scholar 

  142. Schmahmann, J. D. (1998). Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends in Cognitive Sciences, 2, 362–370.

    Article  Google Scholar 

  143. Schmahmann, J. D. (2000). The role of the cerebellum in affect and psychosis. Journal of Neurolinguistics, 13, 189–214.

    Article  Google Scholar 

  144. Schmahmann, J. D. (2001). The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. International Review of Psychiatry, 13, 313–322.

    Article  Google Scholar 

  145. Schmahmann, J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 367–378.

    PubMed  Google Scholar 

  146. Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 10(3 Pt 1), 233–260.

    CAS  PubMed  Article  Google Scholar 

  147. Schmahmann, J. D., Doyon, J., Toga, A., Evans, A., & Petrides, M. (2000). MRI atlas of the human cerebellum. San Diego: Academic.

    Google Scholar 

  148. Schmahmann, J. D., Gardner, R. C., MacMore, J., & Vangel, M. (2009b). Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Movement Disorders, 24, 1820–1828.

    Article  Google Scholar 

  149. Schmahmann, J. D., Hurwitz, A. S., Loeber, R. T., & Marjani, J. L. (1998a). A semi-flattened map of the human cerebellum. A new approach to visualizing the cerebellar cortex in 2-dimensional space. Society for Neuroscience Abstracts, 24, 1409.

    Google Scholar 

  150. Schmahmann, J. D., Loeber, R. T., Marjani, J., & Hurwitz, A. S. (1998b). Topographic organization of cognitive functions in the human cerebellum. A meta-analysis of functional imaging studies. Neuroimage, 7, S721.

    Google Scholar 

  151. Schmahmann, J. D., MacMore, J., & Vangel, M. (2009a). Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience, 162(3), 852–861.

    CAS  Article  Google Scholar 

  152. Schmahmann, J. D., & Pandya, D. N. (1987). Posterior parietal projections to the basis pontis in rhesus monkey. Possible anatomical substrate for the cerebellar modulation of complex behavior. Neurology, 37, 297.

    Google Scholar 

  153. Schmahmann, J. D., & Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. The Journal of Comparative Neurology, 289(1), 53–73.

    CAS  PubMed  Article  Google Scholar 

  154. Schmahmann, J. D., & Pandya, D. N. (1990). Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. The Journal of Comparative Neurology, 295(2), 299–326.

    CAS  PubMed  Article  Google Scholar 

  155. Schmahmann, J. D., & Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. The Journal of Comparative Neurology, 308(2), 224–248.

    CAS  PubMed  Article  Google Scholar 

  156. Schmahmann, J. D., & Pandya, D. N. (1992). Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey. The Journal of Comparative Neurology, 326(2), 159–179.

    CAS  PubMed  Article  Google Scholar 

  157. Schmahmann, J. D., & Pandya, D. N. (1993). Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 337(1), 94–112.

    CAS  PubMed  Article  Google Scholar 

  158. Schmahmann, J. D., & Pandya, D. N. (1995). Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neuroscience Letters, 199(3), 175–178.

    CAS  PubMed  Article  Google Scholar 

  159. Schmahmann, J. D., & Pandya, D. N. (1997a). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience, 17(1), 438–458.

    CAS  Google Scholar 

  160. Schmahmann, J. D., & Pandya, D. N. (1997b). The cerebrocerebellar system. In J. D. Schmahmann (Ed.), The cerebellum and cognition. Int Rev Neurobiol, 41, 31–60. San Diego: Academic.

    Google Scholar 

  161. Schmahmann, J. D., & Pandya, D. (2006). Fiber pathways of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  162. Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44(8), 1037–1066.

    PubMed  Article  Google Scholar 

  163. Schmahmann, J. D., & Sherman, J. C. (1997). Cerebellar cognitive affective syndrome. In J. D. Schmahmann (Ed.), The Cerebellum and Cognition. Int Rev Neurobiol, 41, 433–440. San Diego: Academic.

    Google Scholar 

  164. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579.

    PubMed  Article  Google Scholar 

  165. Schmahmann, J. D., Rosene, D. L., & Pandya, D. N. (2004). Motor projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 478(3), 248–268.

    PubMed  Article  Google Scholar 

  166. Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6(3), 254–267.

    PubMed  Article  Google Scholar 

  167. Schweizer, T. A., Levine, B., Rewilak, D., O’Connor, C., Turner, G., Alexander, M. P., et al. (2008). Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabilitation and Neural Repair, 22(1), 72–77.

    PubMed  Article  Google Scholar 

  168. Seltzer, B., & Pandya, D. N. (1984). Further observations on parieto-temporal connections in the rhesus monkey. Experimental Brain Research, 55, 301–312.

    CAS  Article  Google Scholar 

  169. Snider, R. S. (1950). Recent contributions to the anatomy and physiology of the cerebellum. Archives of Neurology and Psychiatry, 64(2), 196–219.

    CAS  PubMed  Google Scholar 

  170. Snider, R. S. (1952). Interrelations of cerebellum and brainstem. Research Publications—Association for Research in Nervous and Mental Disease, 30, 267–281.

    CAS  PubMed  Google Scholar 

  171. Snider, R. S., & Eldred, E. (1948). Cerebral projections to the tactile, auditory and visual areas of the cerebellum. The Anatomical Record, 100, 714.

    Google Scholar 

  172. Snider, R. S., & Maiti, A. (1976). Cerebellar contributions to the Papez circuit. Journal of Neuroscience Research, 2(2), 133–146.

    CAS  PubMed  Article  Google Scholar 

  173. Snider, R. S., & Stowell, A. (1944). Receiving areas of the tactile, auditory, and visual systems in the cerebellum. Journal of Neurophysiology, 7, 331–357.

    Google Scholar 

  174. Snider, S. R. (1982). Cerebellar pathology in schizophrenia—cause or consequence? Neuroscience and Biobehavioral Reviews, 6(1), 47–53.

    CAS  PubMed  Article  Google Scholar 

  175. Snowling, M. J., & Hulme, C. (2003). A critique of claims from Reynolds, Nicolson & Hambly (2003) that DDAT is an effective treatment for children with reading difficulties—‘lies, damned lies and (inappropriate) statistics’? Dyslexia, 9(2), 127–133. discussion 134–125.

    PubMed  Article  Google Scholar 

  176. Steinlin, M., Imfeld, S., Zulauf, P., Boltshauser, E., Lovblad, K. O., Ridolfi Luthy, A., et al. (2003). Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain, 126(Pt 9), 1998–2008.

    PubMed  Article  Google Scholar 

  177. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.

    PubMed  Article  Google Scholar 

  178. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844.

    PubMed  Article  Google Scholar 

  179. Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010a). An fMRI case study of functional topography in the human cerebellum. Behavioural Neurology, 23(1), 65–79.

    Google Scholar 

  180. Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2010b). Functional topography in the cerebellum for motor and cognitive tasks: An fMRI study. Society for Neuroscience, 2010. Online.

  181. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.

    CAS  PubMed  Article  Google Scholar 

  182. Sugihara, I., & Shinoda, Y. (2004). Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. The Journal of Neuroscience, 24(40), 8771–8785.

    CAS  PubMed  Article  Google Scholar 

  183. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging (Translated by Mark Rayport.). New York: Thieme.

    Google Scholar 

  184. Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., et al. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130(Pt 10), 2646–2660.

    PubMed  Article  Google Scholar 

  185. Thach, W. T. (1987). Cerebellar inputs to motor cortex. Ciba Foundation Symposium, 132, 201–220.

    CAS  PubMed  Google Scholar 

  186. Thompson, R. F. (1983). Neuronal substrate of simple associative learning. Classical conditioning. Trends in Neurosciences, 6, 270–275.

    Article  Google Scholar 

  187. Timmann, D., Brandauer, B., Hermsdorfer, J., Ilg, W., Konczak, J., Gerwig, M., et al. (2008). Lesion-symptom mapping of the human cerebellum. Cerebellum, 7(4), 602–606.

    CAS  PubMed  Article  Google Scholar 

  188. Timmann, D., Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., et al. (2010). The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex, 46(7), 845–857.

    CAS  PubMed  Article  Google Scholar 

  189. Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., et al. (1997). International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. Journal of the Neurological Sciences, 145(2), 205–211.

    CAS  PubMed  Article  Google Scholar 

  190. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16, 765–780.

    PubMed  Article  Google Scholar 

  191. Valenstein, E., Heilman, K. M., Watson, R. T., & Van Den Abell, T. (1982). Nonsensory neglect from parietotemporal lesions in monkeys. Neurology, 32(10), 1198–1201.

    CAS  PubMed  Google Scholar 

  192. Vilensky, J., & van Hoesen, G. V. (1981). Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Research, 205, 391–395.

    CAS  PubMed  Article  Google Scholar 

  193. Voogd, J. (2004). Cerebellum and precerebellar nuclei. In G. Paxinos & J. Mai (Eds.), The human nervous system (pp. 321–392). San Diego: Academic.

    Chapter  Google Scholar 

  194. Voogd, J., & Glickstein, M. (1998). The anatomy of the cerebellum. Trends in Neurosciences, 21(9), 370–375.

    CAS  PubMed  Article  Google Scholar 

  195. Watson, P. J. (1978). Nonmotor functions of the cerebellum. Psychological Bulletin, 85(5), 944–967.

    CAS  PubMed  Article  Google Scholar 

  196. Watson, R. T., Valenstein, E., & Heilman, K. M. (1981). Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Archives of Neurology, 38(8), 501–506.

    CAS  PubMed  Google Scholar 

  197. Weinberger, D. R., Kleinman, J. E., Luchins, D. J., Bigelow, L. B., & Wyatt, R. J. (1980). Cerebellar pathology in schizophrenia: a controlled postmortem study. The American Journal of Psychiatry, 137(3), 359–361.

    CAS  PubMed  Google Scholar 

  198. Whitney, E. R., Kemper, T. L., Rosene, D. L., Bauman, M. L., & Blatt, G. J. (2009). Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. Journal of Neuroscience Research, 87(10), 2245–2254.

    CAS  PubMed  Article  Google Scholar 

  199. Wiesendanger, R., Wiesendanger, M., & Ruegg, D. G. (1979). An anatomical investigation of the corticopontaine projection in the primate (Macaca fascicularis and Saimiri sciureus)-II. The projection from frontal and parental association areas. Neuroscience, 4(6), 747–765.

    CAS  PubMed  Article  Google Scholar 

  200. Wisoff, J. H., & Epstein, F. J. (1984). Pseudobulbar palsy after posterior fossa operation in children. Neurosurgery, 15(5), 707–709.

    CAS  PubMed  Article  Google Scholar 

  201. Wolf, J. K. (1971). The classical brainstem syndromes. Springfield: Charles C. Thomas.

    Google Scholar 

  202. Woolsey, C. N. (1952). Summary of the papers on the cerebellum. Research Publications—Association for Research in Nervous and Mental Disease, 30, 334–336.

    Google Scholar 

  203. Yeterian, E. H., & Van Hoesen, G. W. (1978). Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Research, 139(1), 43–63.

    CAS  PubMed  Article  Google Scholar 

  204. Zanchetti, A., & Zoccolini, A. (1954). Autonomic hypothalamic outbursts elicited by cerebellar stimulation. Journal of Neurophysiology, 17(5), 475–483.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by NIH R01 MH067980, the Sidney R. Baer Jr Foundation, the MINDlink Foundation, the Birmingham Foundation, and the Massachusetts General Hospital Executive Committee on Research. The assistance of Jinny Sagorin, Jason MacMore and Laura Horton is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Schmahmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmahmann, J.D. The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy. Neuropsychol Rev 20, 236–260 (2010). https://doi.org/10.1007/s11065-010-9142-x

Download citation

Keywords

  • Cerebrocerebellar system
  • Cerebellar cognitive affective syndrome
  • Ataxia
  • Behavior
  • Psychosis
  • Schizophrenia
  • Autism
  • History