Skip to main content

Advertisement

Log in

Contribution of Callosal Connections to the Interhemispheric Integration of Visuomotor and Cognitive Processes

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

In recent years, cognitive neuroscience has been concerned with the role of the corpus callosum and interhemispheric communication for lower-level processes and higher-order cognitive functions. There is empirical evidence that not only callosal disconnection but also subtle degradation of the corpus callosum can influence the transfer of information and integration between the hemispheres. The reviewed studies on patients with callosal degradation with and without disconnection indicate a dissociation of callosal functions: while anterior callosal regions were associated with interhemispheric inhibition in situations of semantic (Stroop) and visuospatial (hierarchical letters) competition, posterior callosal areas were associated with interhemispheric facilitation from redundant information at visuomotor and cognitive levels. Together, the reviewed research on selective cognitive functions provides evidence that the corpus callosum contributes to the integration of perception and action within a subcortico-cortical network promoting a unified experience of the way we perceive the visual world and prepare our actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Individual differences in brain asymmetries and fiber composition in the human corpus callosum. Brain Research, 598, 154–161.

    CAS  PubMed  Google Scholar 

  • Aglioti, S., Smania, N., Manfredi, M., & Berlucchi, G. (1996). Disownership of left hand and objects related to it in a patient with right brain damage. Neuroreport, 20, 293–296.

    Google Scholar 

  • Aralasmak, A., Ulmer, J. L., Kocak, M., Salvan, C. V., Hillis, A. E., & Yousem, D. M. (2006). Association, commissural, and projection pathways and their functional deficit reported in literature. Journal of Computer Assisted Tomography, 30, 695–715.

    PubMed  Google Scholar 

  • Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. Journal of Neuroscience, 26, 2964–2970.

    CAS  PubMed  Google Scholar 

  • Baird, A. E., & Warach, S. (1998). Magnetic resonance imaging of acute stroke. Journal of Cerebral Blood Flow & Metabolism, 18, 583–609.

    CAS  Google Scholar 

  • Banich, M. T. (1995). Interhemispheric processing: Theoretical and empirical considerations. In R. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 427–450). Cambridge: MIT.

    Google Scholar 

  • Banich, M. T. (1998). The missing link: the role of interhemispheric interaction in attentional processing. Brain and Cognition, 36, 128–157.

    CAS  PubMed  Google Scholar 

  • Banich, M. T., & Belger, A. (1990). Interhemispheric interaction: how do the hemispheres divide and conquer a task? Cortex, 26, 77–94.

    CAS  PubMed  Google Scholar 

  • Banich, M. T., & Shenker, J. (1994). Investigations of interhemispheric processing: methodological considerations. Neuropsychology, 8, 263–277.

    Google Scholar 

  • Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., et al. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12, 988–1000.

    CAS  PubMed  Google Scholar 

  • Barnett, K. J., & Corballis, M. C. (2005). Speeded right-to-left information transfer: the result of speeded transmission in right-hemisphere axons? Neuroscience Letters, 380, 88–92.

    CAS  PubMed  Google Scholar 

  • Bartzokis, G., Sultzer, D., Lu, P. H., Nuechterlein, K. H., Mintz, J., & Cummings, J. L. (2004). Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiology of Aging, 25, 843–851.

    CAS  PubMed  Google Scholar 

  • Bartzokis, G., Lu, P. H., Tingus, K., Mendez, M. F., Richard, A., Peters, D. G., et al. (2008). Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiology of Aging. In press.

  • Bashore, T. R. (1981). Vocal and manual reaction time estimates of interhemispheric transmission time. Psychology Bulletin, 89, 352–368.

    CAS  Google Scholar 

  • Battelli, L., Cavanagh, P., Martini, P., & Barton, J. J. (2003). Bilateral deficits of transient visual attention in right parietal patients. Brain, 126, 2164–2174.

    PubMed  Google Scholar 

  • Bauer, R. M. (1982). Visual hypoemotionality as a symptom of visual-limbic disconnection in man. Archives of Neurology, 39, 702–708.

    CAS  PubMed  Google Scholar 

  • Bayard, S., Gosselin, N., Robert, M., & Lassonde, M. (2004). Inter-and intra-hemispheric processing of visual event-related potentials in the absence of the corpus callosum. Journal of Cognitive Neuroscience, 16, 401–414.

    PubMed  Google Scholar 

  • Berlucchi, G., Heron, W., Hyman, R., Rizzolatti, G., & Umilta, C. (1971). Simple reaction times of ipsilateral and contralateral hand to lateralized visual stimuli. Brain, 94, 419–430.

    CAS  PubMed  Google Scholar 

  • Berlucchi, G., Aglioti, S., Marzi, C. A., & Tassinari, G. (1995). Corpus callosum and simple visuomotor integration. Neuropsychologia, 33, 923–936.

    CAS  PubMed  Google Scholar 

  • Blanca, M. J., Zalabardo, C., Garcia-Criado, F., & Siles, R. (1994). Hemispheric differences in global and local processing dependent on exposure duration. Neuropsychologia, 32, 1343–1351.

    CAS  PubMed  Google Scholar 

  • Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychology Review, 15, 59–71.

    PubMed  Google Scholar 

  • Blumstein, S., & Cooper, W. E. (1974). Hemispheric processing of intonation contours. Cortex, 10, 146–158.

    CAS  PubMed  Google Scholar 

  • Braun, C. M., Daigneault, S., Dufresne, A., Miljours, S., & Collin, I. (1995). Does so-called interhemispheric transfer time depend on attention? American Journal of Psychology, 108, 527–546.

    CAS  PubMed  Google Scholar 

  • Broadbent, D. E. (1977). The hidden preattentive process. American Psychologist, 32, 109–118.

    CAS  PubMed  Google Scholar 

  • Bucur, B., Madden, D. J., & Allen, P. A. (2005). Age-related differences in the processing of redundant visual dimensions. Psychology and Aging, 20, 435–446.

    PubMed  Google Scholar 

  • Caminiti, R., Ghaziri, H., Galuske, R., Hof, P. R., & Innocenti, G. M. (2009). Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proceedings of the National Academy of Sciences of the United States of America, 106, 19551–19556.

    CAS  PubMed  Google Scholar 

  • Carter, C. S., MacDonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., et al. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 1944–1948.

    CAS  PubMed  Google Scholar 

  • Catani, M., & ffytche, D. H. (2005). The rises and falls of disconnection syndromes. Brain, 128, 2224–2239.

    PubMed  Google Scholar 

  • Chiarello, C., & Maxfield, L. (1996). Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain and Cognition, 30, 81–108.

    CAS  PubMed  Google Scholar 

  • Christman, S. D. (2001). Individual differences in stroop and local-global processing: a possible role of interhemispheric interaction. Brain and Cognition, 45, 97–118.

    CAS  PubMed  Google Scholar 

  • Clarke, J. M., & Zaidel, E. (1989). Simple reaction times to lateralized light flashes. Varieties of interhemispheric communication routes. Brain, 112, 849–870.

    PubMed  Google Scholar 

  • Clarke, J. M., & Zaidel, E. (1994). Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behavioural Brain Research, 64, 185–202.

    CAS  PubMed  Google Scholar 

  • Cook, N. D. (1984). Callosal inhibition: the key to the brain code. Behavioral Science, 29, 98–110.

    CAS  PubMed  Google Scholar 

  • Corballis, M. C. (1998). Interhemispheric neural summation in the absence of the corpus callosum. Brain, 121, 1795–1807.

    PubMed  Google Scholar 

  • Corballis, M. C. (2002). Hemispheric interactions in simple reaction time. Neuropsychologia, 40, 423–434.

    PubMed  Google Scholar 

  • Corballis, M. C., Hamm, J. P., Barnett, K. J., & Corballis, P. M. (2002). Paradoxical interhemispheric summation in the split brain. Journal of Cognitive Neuroscience, 14, 1151–1157.

    PubMed  Google Scholar 

  • Corballis, M. C., Corballis, P. M., & Fabri, M. (2003). Redundancy gain in simple reaction time following partial and complete callosotomy. Neuropsychologia, 42, 71–81.

    Google Scholar 

  • Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270, 802–805.

    CAS  PubMed  Google Scholar 

  • Corbetta, M., Tansy, A. P., Stanley, C. M., Astafiev, S. V., Snyder, A. Z., & Shulman, G. L. (2005). A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia, 43, 2041–2056.

    PubMed  Google Scholar 

  • Creem-Regehr, S. H. (2009). Sensory-motor and cognitive functions of the human posterior parietal cortex involved in manual actions. Neurobiology of Learning and Memory, 91, 166–171.

    PubMed  Google Scholar 

  • Damasio, A. R., & Damasio, H. (1993). Brain and language, In “Mind and Brain”, a Scientific American Book. New York: Freeman.

    Google Scholar 

  • Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., & Bartolomeo, P. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex, 44, 983–995.

    PubMed  Google Scholar 

  • Dean, P., Redgrave, P., & Westby, G. W. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends in Neurosciences, 12, 137–147.

    CAS  PubMed  Google Scholar 

  • Delis, D. C., Robertson, L. C., & Efron, R. (1986). Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia, 24, 205–214.

    CAS  PubMed  Google Scholar 

  • Delis, D. C., Kiefner, M., & Fridlund, A. J. (1988). Visuospatial dysfunction following unilateral brain damage: dissociations in hierarchical and hemispatial analysis. Journal of Clinical and Experimental Neuropsychology, 10, 421–431.

    CAS  PubMed  Google Scholar 

  • Diederich, A., & Colonius, H. (1987). Intersensory facilitation in the motor component? A reaction time analysis. Psychological Research, 49, 23–29.

    Google Scholar 

  • Doricchi, F., & Tomaiuolo, F. (2003). The anatomy of neglect without hemianopia: a key role for parietal-frontal disconnection? Neuroreport, 14, 2239–2243.

    PubMed  Google Scholar 

  • Doron, K. W., & Gazzaniga, M. S. (2008). Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication. Cortex, 44, 1023–1029.

    PubMed  Google Scholar 

  • Duffau, H., Capelle, L., Sichez, N., Denvil, D., Lopes, M., Sichez, J. P., et al. (2002). Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain, 125, 199–214.

    PubMed  Google Scholar 

  • Duara, R., Kushch, A., Gross-Glenn, K., Barker, W. W., Jallad, B., Pascal, S., et al. (1991). Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Archives of Neurology, 48, 410–416.

    CAS  PubMed  Google Scholar 

  • Evans, M. A., Shedden, J. M., Hevenor, S. J., & Hahn, M. C. (2000). The effect of variability of unattended information on global and local processing: evidence for lateralization at early stages of processing. Neuropsychologia, 38, 225–239.

    CAS  PubMed  Google Scholar 

  • Evert, D. L., & Kmen, M. (2003). Hemispheric asymmetries for global and local processing as a function of stimulus exposure duration. Brain and Cognition, 51, 115–142.

    PubMed  Google Scholar 

  • Fabri, M., Polonara, G., Del Pesce, M., Quattrini, A., Salvolini, U., & Manzoni, T. (2001). Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. Journal of Cognitive Neuroscience, 13, 1071–1079.

    CAS  PubMed  Google Scholar 

  • Felleman, D. J., Burkhalter, A., & Van Essen, D. C. (1997). Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. The Journal of Comparative Neurology, 379, 21–47.

    CAS  PubMed  Google Scholar 

  • Fendrich, R., Hutsler, J. J., & Gazzaniga, M. S. (2004). Visual and tactile interhemispheric transfer compared with the method of Poffenberger. Experimental Brain Research, 158, 67–74.

    Google Scholar 

  • Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382, 626–628.

    CAS  PubMed  Google Scholar 

  • Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1997). Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain, 120, 1779–1791.

    PubMed  Google Scholar 

  • Fink, G. R., Marshall, J. C., Halligan, P. W., & Dolan, R. J. (1999). Hemispheric asymmetries in global/local processing are modulated by perceptual salience. Neuropsychologia, 37, 31–40.

    CAS  PubMed  Google Scholar 

  • Forster, B., & Corballis, M. C. (1998). Interhemispheric transmission times in the presence and absence of the forebrain commissures: effects of luminance and equiluminance. Neuropsychologia, 36, 925–934.

    CAS  PubMed  Google Scholar 

  • Forster, B., & Corballis, M. C. (2000). Interhemispheric transfer of colour and shape information in the presence and absence of the corpus callosum. Neuropsychologia, 38, 32–45.

    CAS  PubMed  Google Scholar 

  • Galaburda, A. M., & Geschwind, N. (1980). The human language areas and cerebral asymmetries. Revue Medicale de la Suisse Romande, 100, 119–128.

    CAS  PubMed  Google Scholar 

  • Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain, 123, 1293–1326.

    PubMed  Google Scholar 

  • Gazzaniga, M. S. (2005). Forty-five years of split-brain research and still going strong. Nature Reviews Neuroscience, 6, 653–659.

    CAS  PubMed  Google Scholar 

  • Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain, 88, 237–294.

    CAS  PubMed  Google Scholar 

  • Giray, M., & Ulrich, R. (1993). Motor coactivation revealed by response force in divided and focused attention. Journal of Experimental Psychology: Human Perception and Performance, 19, 1278–1291.

    CAS  PubMed  Google Scholar 

  • Gur, R. C., Packer, I. K., Hungerbuhler, J. P., Reivich, M., Obrist, W. D., Amarnek, W. S., et al. (1980). Differences in the distribution of gray and white matter in human cerebral hemispheres. Science, 207, 1226–1228.

    CAS  PubMed  Google Scholar 

  • Habib, M. (1986). Visual hypoemotionality and prosopagnosia associated with right temporal lobe isolation. Neuropsychologia, 24, 577–582.

    CAS  PubMed  Google Scholar 

  • Hagmann, P., Thiran, J. P., Jonasson, L., Vandergheynst, P., Clarke, S., Maeder, P., et al. (2003). DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. Neuroimage, 19, 545–554.

    CAS  PubMed  Google Scholar 

  • Han, S., He, X., Yund, E. W., & Woods, D. L. (2001). Attentional selection in the processing of hierarchical patterns: an ERP study. Biological Psychology, 5, 31–48.

    Google Scholar 

  • Han, S., Weaver, J. A., Murray, S. O., Kang, X., Yund, E. W., & Woods, D. L. (2002). Hemispheric asymmetry in global/local processing: effects of stimulus position and spatial frequency. Neuroimage, 17, 1290–1299.

    PubMed  Google Scholar 

  • Han, S., Yund, E. W., & Woods, D. L. (2003). An ERP study of the global precedence effect: the role of spatial frequency. Clinical Neurophysiology, 114, 1850–1865.

    PubMed  Google Scholar 

  • Hanajima, R., Ugawa, Y., Machii, K., Mochizuki, H., Terao, Y., Enomoto, H., et al. (2001). Interhemispheric facilitation of the hand motor area in humans. Journal of Physiology, 531, 849–859.

    CAS  PubMed  Google Scholar 

  • Harper, C. G., & Kril, J. J. (1988). Corpus callosal thickness in alcoholics. British Journal of Addiction, 83, 577–580.

    CAS  PubMed  Google Scholar 

  • Harper, C. G., & Kril, J. J. (1990). Neuropathology of alcoholism. Alcohol and Alcoholism, 25, 207–216.

    CAS  PubMed  Google Scholar 

  • Harper, C., & Matsumoto, I. (2005). Ethanol and brain damage. Current Opinion in Pharmacology, 5, 73–78.

    CAS  PubMed  Google Scholar 

  • Hartje, W., Willmes, K., & Weniger, D. (1985). Is there parallel and independent hemispheric processing of intonational and phonetic components of dichotic speech stimuli? Brain and Language, 24, 83–99.

    CAS  PubMed  Google Scholar 

  • Heinze, H. J., & Münte, T. F. (1993). Electrophysiological correlates of hierarchical stimulus processing: dissociation between onset and later stages of global and local target processing. Neuropsychologia, 31, 841–852.

    CAS  PubMed  Google Scholar 

  • Heinze, H. J., Hinrichs, H., Scholz, M., Burchert, W., & Mangun, G. R. (1998). Neural mechanisms of global and local processing. A combined PET and ERP study. Journal of Cognitive Neuroscience, 10, 485–498.

    CAS  PubMed  Google Scholar 

  • Hiatt, K. D., & Newman, J. P. (2007). Behavioral evidence of prolonged interhemispheric transfer time among psychopathic offenders. Neuropsychology, 21, 313–318.

    PubMed  Google Scholar 

  • Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32, 989–994.

    PubMed  Google Scholar 

  • Hopkins, W. D., & Rilling, J. K. (2000). A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: implication for the evolution of functional asymmetries. Behavioral Neuroscience, 114, 739–748.

    CAS  PubMed  Google Scholar 

  • Hübner, R. (1997). The effect of spatial frequency on global precedence and hemispheric differences. Perception & Psychophysics, 59, 187–201.

    Google Scholar 

  • Hugdahl, K., & Davidson, R. J. (2003). The asymmetrical brain (pp. 259–302). Cambridge: MIT.

    Google Scholar 

  • Hutner, N., & Oscar-Berman, M. (1996). Visual laterality patterns for the perception of emotional words in alcoholic and aging individuals. Journal of Studies on Alcohol, 57, 144–154.

    CAS  PubMed  Google Scholar 

  • Iacoboni, M., & Zaidel, E. (1995). Channels of the corpus callosum. Evidence from simple reaction times to lateralized flashes in the normal and the split brain. Brain, 118, 779–788.

    PubMed  Google Scholar 

  • Iacoboni, M., & Zaidel, E. (2003). Interhemispheric visuo-motor integration in humans: the effect of redundant targets. European Journal of Neuroscience, 17, 1981–1986.

    PubMed  Google Scholar 

  • Iacoboni, M., & Zaidel, E. (2004). Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia, 42, 419–425.

    PubMed  Google Scholar 

  • Iacoboni, M., Ptito, A., Weekes, N. Y., & Zaidel, E. (2000). Parallel visuomotor processing in the split brain: cortico-subcortical interactions. Brain, 123, 759–769.

    PubMed  Google Scholar 

  • Ignashchenkova, A., Dicke, P. W., Haarmeier, T., & Their, P. (2004). Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature Neuroscience, 7, 56–64.

    CAS  PubMed  Google Scholar 

  • Innocenti, G. M. (1986). Postnatal development of corticocortical connections. Italian Journal of Neurological Sciences, Suppl, 5, 25–28.

    Google Scholar 

  • Innocenti, G. M. (1995). Exuberant development of connections, and its possible permissive role in cortical evolution. Trends in Neurosciences, 18, 397–402.

    CAS  PubMed  Google Scholar 

  • Iwabuchi, S. J., & Kirk, I. J. (2009). Atypical interhemispheric communication in left-handed individuals. Neuroreport, 20, 166–169.

    PubMed  Google Scholar 

  • Jancke, L., & Steinmetz, H. (1994). Interhemispheric transfer time and corpus callosum size. Neuroreport, 5, 2385–2388.

    Article  CAS  PubMed  Google Scholar 

  • Jeeves, M. A., & Moes, P. (1996). Interhemispheric transfer time differences related to aging and gender. Neuropsychologia, 34, 627–636.

    CAS  PubMed  Google Scholar 

  • Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M. S., et al. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39, 834–841.

    PubMed  Google Scholar 

  • Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 47, 916–927.

    PubMed  Google Scholar 

  • Kimchi, R. (1992). Primacy of wholistic processing and global/local paradigm: a critical review. Psychological Bulletin, 112, 24–38.

    CAS  PubMed  Google Scholar 

  • Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. Journal of Experimental Psychology: Human Perception and Performance, 8, 521–535.

    CAS  PubMed  Google Scholar 

  • Kinchla, R. A., & Wolfe, J. M. (1979). The order of visual processing: “Top–down,” “bottom–up”, or “middle–out”. Perception & Psychophysics, 25, 225–231.

    CAS  Google Scholar 

  • Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. Advances in Neurology, 18, 41–49.

    CAS  PubMed  Google Scholar 

  • Kinsbourne, M. (2003). The corpus callosum equilibrates hemispheric activation. In E. Zaidel & M. Iacoboni (Eds.), The parallel brain: The cognitive neuroscience of the corpus callosum (pp. 271–281). Cambridge: MIT.

    Google Scholar 

  • Kinsbourne, M., & Hicks, R. B. (1978). Functional cerebral space: A model for overflow, transfer and interference effects in human performance: A tutorial review. In J. Requin (Ed.), Attention and performance VII. Hillsdale: Erlbaum.

    Google Scholar 

  • Kinsbourne, M. (1993). Orientational bias model of unilateral neglect: Evidence from attentional gradients within hemispace. In I. H. Robertson & J. C. Marshall (Eds.), Unilateral neglect: Clinical and experimental studies (pp. 63–86). Hillsdale, NJ: Erlbaum.

  • Kinsbourne, M., & Bruce, R. (1987). Shift in visual laterality within blocks of trials. ACTA Psychologica (Amsterdam), 66, 139–155.

    CAS  Google Scholar 

  • Klier, E. M., Wang, H., & Crawford, J. D. (2003). Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. Journal of Neurophysiology, 89, 2839–2853.

    PubMed  Google Scholar 

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130, 2508–2519.

    PubMed  Google Scholar 

  • Kubicki, M., Westin, C. F., Nestor, P. G., Wible, C. G., Frumin, M., Maier, S. E., et al. (2003). Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54, 1171–1180.

    PubMed  Google Scholar 

  • Lamb, M. R., & Robertson, L. C. (1987). Do response time advantage and interference reflect the order of processing of global-and local-level information? Perception & Psychophysics, 46, 254–258.

    Google Scholar 

  • Lamb, M. R., & Robertson, L. C. (1988). The processing of hierarchical stimuli: effects of retinal locus, locational uncertainty, and stimulus identity. Perception & Psychophysics, 44, 172–181.

    CAS  Google Scholar 

  • Lamb, M. R., & Yund, E. W. (2000). The role of spatial frequency in cued shifts of attention between global and local forms. Perception & Psychophysics, 62, 753–761.

    CAS  Google Scholar 

  • Lamb, M. R., Robertson, L. C., & Knight, R. T. (1989). Attention and interference in the processing of global and local information: effects of unilateral temporal–parietal junction lesions. Neuropsychologia, 27, 471–483.

    CAS  PubMed  Google Scholar 

  • Lansberg, M. G., Thijs, V. N., O’Brien, M. W., Ali, J. O., de Crespigny, A. J., Tong, D. C., et al. (2001). Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. American Journal of Neuroradiology, 22, 637–644.

    CAS  PubMed  Google Scholar 

  • Lassonde, M., & Ouimet, C. (2010). The split-brain. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 191–202.

    Google Scholar 

  • Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4, 469–480.

    PubMed  Google Scholar 

  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13, 534–546.

    PubMed  Google Scholar 

  • Liederman, J., & Meehan, P. (1986). When is between-hemisphere division of labor advantageous? Neuropsychologia, 24, 863–874.

    CAS  PubMed  Google Scholar 

  • Lim, K. O., & Helpern, J. A. (2002). Neuropsychiatric applications of DTI—a review. NMR in Biomedicine, 15, 587–593.

    CAS  PubMed  Google Scholar 

  • Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 3416–3468.

    CAS  PubMed  Google Scholar 

  • Luders, E., Rex, D. E., Narr, K. L., Woods, R. P., Jancke, L., Thompson, P. M., et al. (2003). Relationships between sulcal asymmetries and corpus callosum size: gender and handedness effects. Cerebral Cortex, 13, 1084–1093.

    CAS  PubMed  Google Scholar 

  • Luo, Y. J., Hu, S., Weng, X. C., & Wei, J. H. (1999). Effects of semantic discrimination of Chinese words on N400 component of event-related potentials. Perceptual and Motor Skills, 89, 185–193.

    CAS  PubMed  Google Scholar 

  • Lux, S., Thimm, M., Marshall, J. C., & Fink, G. R. (2006). Directed and divided attention during hierarchical processing in patients with visuo-spatial neglect and matched healthy volunteers. Neuropsychologia, 44, 436–444.

    PubMed  Google Scholar 

  • MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    CAS  PubMed  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109, 163–203.

    CAS  PubMed  Google Scholar 

  • Madden, D. J., Spaniol, J., Costello, M. C., Bucur, B., White, L. E., Cabeza, R., et al. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. Journal of Cognitive Neuroscience, 21, 289–302.

    PubMed  Google Scholar 

  • Magat, M., & Brown, C. (2009). Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society. Biological sciences, 276, 4155–4162.

    PubMed  Google Scholar 

  • Malinowski, P., Hubner, R., Keil, A., & Gruber, T. (2002). The influence of response competition on cerebral asymmetries for processing hierarchical stimuli revealed by ERP recordings. Experimental Brain Research, 144, 136–139.

    Google Scholar 

  • Marchant, L. F., & McGrew, W. C. (1996). Laterality of limb function in wild chimpanzees of Gombe National Park: comprehensive study of spontaneous activities. Journal of Human Evolution, 30, 427–443.

    Google Scholar 

  • Marks, N. L., & Hellige, J. B. (2003). Interhemispheric interaction in bilateral redundancy gain: effects of stimulus format. Neuropsychology, 17, 578–593.

    PubMed  Google Scholar 

  • Marzi, C. A., Bisiacchi, P., & Nicoletti, R. (1991). Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia, 29, 1163–1177.

    CAS  PubMed  Google Scholar 

  • Marzi, C. A., Smania, N., Martini, M. C., Gambina, G., Tomelleri, G., Palamara, A., et al. (1996). Implicit redundant-targets effect in visual extinction. Neuropsychologia, 34, 9–22.

    CAS  PubMed  Google Scholar 

  • Marzi, C. A., Fanini, A., Girelli, M., Ipata, A. E., Miniussi, C., Smania, N., et al. (1997). Is extinction following parietal damage an interhemispheric disconnection phenomenon? In P. Their & H. O. Karnath (Eds.), Parietal lobe contribution to orientation in 3D space. Heidelberg: Springer.

    Google Scholar 

  • McCulloch, W. S., & Garol, H. W. (1941). Cortical origin and distribution of corpus callosum and anterior commissure in the monkey (Macaca mulatta). Journal of Neurophysiology, 4, 555–563.

    Google Scholar 

  • Meister, I. G., Wienemann, M., Buelte, D., Grunewald, C., Sparing, R., Dambeck, N., et al. (2006). Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction. Neuroscience, 142, 119–123.

    CAS  PubMed  Google Scholar 

  • Miller, J. (1982). Divided attention: evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279.

    CAS  PubMed  Google Scholar 

  • Miller, J. (1986). Timecourse of coactivation in bimodal divided attention. Perception & Psychophysics, 40, 331–343.

    CAS  Google Scholar 

  • Miller, J. (1991). Channel interaction and the redundant-targets effect in bimodal divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17, 160–169.

    CAS  PubMed  Google Scholar 

  • Miller, J. O. (2004). Exaggerated redundancy gain in the split brain: A hemispheric coactivation account. Cognitive Psychology, 49, 118–154.

    PubMed  Google Scholar 

  • Miller, J., & Ulrich, R. (2003). Simple reaction time and statistical facilitation: a parallel grains model. Cognitive Psychology, 46, 101–151.

    PubMed  Google Scholar 

  • Miniussi, C., Girelli, M., & Marzi, C. A. (1998). Neural site of the redundant target effect electrophysiological evidence. Journal of Cognitive Neuroscience, 10, 216–230.

    CAS  PubMed  Google Scholar 

  • Moes, P. E., Brown, W. S., & Minnema, M. T. (2007). Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials. Neuropsychologia, 45, 2626–2630.

    PubMed  Google Scholar 

  • Mooshagian, E., Kaplan, J., Zaidel, E., & Iacoboni, M. (2008). Fast visuomotor processing of redundant targets: the role of the right temporo-parietal junction. PLoS One, 3, e2348.

    PubMed  Google Scholar 

  • Mooshagian, E., Iacoboni, M., & Zaidel, E. (2009). Spatial attention and interhemispheric visuomotor integration in the absence of the corpus callosum. Neuropsychologia, 47, 933–937.

    PubMed  Google Scholar 

  • Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17, 520–538.

    CAS  PubMed  Google Scholar 

  • Mordkoff, J. T., & Yantis, S. (1993). Dividing attention between color and shape: evidence of coactivation. Perception & Psychophysics, 53, 357–366.

    CAS  Google Scholar 

  • Mori, S., Kaufmann, W. E., Davatzikos, C., Stieltjes, B., Amodei, L., Fredericksen, K., et al. (2002). Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magnetic Resonance in Medicine, 47, 215–223.

    PubMed  Google Scholar 

  • Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., et al. (2003). The anatomy of visual neglect. Brain, 126, 1986–1997.

    Google Scholar 

  • Moseley, M. E., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H. S., Wendland, M. F., et al. (1990). Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 176, 439–445.

    CAS  PubMed  Google Scholar 

  • Muetzel, R. L., Collins, P. F., Mueller, B. A. M., Schissel, A., Lim, K. O., & Luciana, M. (2008). The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. Neuroimage, 39, 1918–1925.

    PubMed  Google Scholar 

  • Müller-Oehring, E. M., Schulte, T., Raassi, C., Pfefferbaum, A., & Sullivan, E. V. (2007). Local-global interference is modulated by age, sex and anterior corpus callosum size. Brain Research, 1142, 189–205.

    PubMed  Google Scholar 

  • Müller-Oehring, E. M., Schulte, T., Kasten, E., Poggel, D. A., Müller, I., Wüstenberg, T., et al. (2009a). Parallel interhemispheric processing in hemineglect: relation to visual field defects. Neuropsychologia, 47, 2397–2408.

    Google Scholar 

  • Müller-Oehring, E. M., Schulte, T., Fama, R., Pfefferbaum, A., & Sullivan, E. V. (2009b). Global-local interference is related to callosal compromise in alcoholism: a behavior-DTI association study. Alcoholism: Clinical and Experimental Research, 33, 477–489.

    Google Scholar 

  • Müller-Oehring, E. M., Schulte, T., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2010). Callosal degradation in HIV-1 infection predicts hierarchical perception: A DTI study. Neuropsychologia, 48, 1133–1143.

    Google Scholar 

  • Murray, M. M., Foxe, J. J., Higgins, B. A., Javitt, D. C., & Schroeder, C. E. (2001). Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia, 39, 828–844.

    CAS  PubMed  Google Scholar 

  • Nassi, J. J., & Callaway, E. M. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10, 360–372.

    CAS  PubMed  Google Scholar 

  • Navon, D. (1977). Forest before trees: the precedence of global features in visual perception. Cognitive Psychology, 9, 353–383.

    Google Scholar 

  • Neumann-Haefelin, T., Moseley, M. E., & Albers, G. W. (2000). New magnetic resonance imaging methods for cerebrovascular disease: emerging clinical applications. Annals of Neurology, 47, 559–570.

    CAS  PubMed  Google Scholar 

  • Nowicka, A., Grabowska, A., & Fersten, E. (1996). Interhemispheric transmission of information and functional asymmetry of the human brain. Neuropsychologia, 34, 147–151.

    CAS  PubMed  Google Scholar 

  • Ouimet, C., Jolicoeur, P., Miller, J., Ptito, A., Paggi, A., Foschi, N., et al. (2009). Sensory and motor involvement in the enhanced redundant target effect: a study comparing anterior-and totally split-brain individuals. Neuropsychologia, 47, 684–692.

    PubMed  Google Scholar 

  • Pandya, D. N., & Sanides, F. (1973). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift fur Anatomie und Entwicklungsgeschichte, 139, 127–161.

    CAS  PubMed  Google Scholar 

  • Park, H. J., Kim, J. J., Lee, S. K., Seok, J. H., Chun, J., Kim, D. I., et al. (2008). Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Human Brain Mapping, 29, 503–516.

    PubMed  Google Scholar 

  • Paul, L. K., Brown, W. S., Adolphs, R., Tyszka, J. M., Richards, L. J., Mukherjee, P., et al. (2007). Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nature Reviews Neuroscience, 8, 287–299.

    CAS  PubMed  Google Scholar 

  • Pfefferbaum, A., & Sullivan, E. V. (2002). Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage, 15, 708–718.

    PubMed  Google Scholar 

  • Pfefferbaum, A., & Sullivan, E. V. (2003). Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magnetic Resonance in Medicine, 49, 953–961.

    PubMed  Google Scholar 

  • Pfefferbaum, A., & Sullivan, E. V. (2005). Disruption of brain white matter microstructure by excessive intracellular and extracellular fluid in alcoholism: evidence from diffusion tensor imaging. Neuropsychopharmacology, 30, 423–432.

    CAS  PubMed  Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2003). Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. Journal of Magnetic Resonance Imaging, 18, 427–433.

    PubMed  Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2006). Dysmorphology and microstructural degradation of the corpus callosum: interaction of age and alcoholism. Neurobiology of Aging, 27, 994–1009.

    CAS  PubMed  Google Scholar 

  • Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36, 893–906.

    CAS  PubMed  Google Scholar 

  • Poffenberger, A. T. (1912). Reaction time to retinal stimulation with special reference to time lost in conduction through nerves center. Archiv fur die gesamte Psychologie, 23, 1–173.

    Google Scholar 

  • Pollmann, S., & Zaidel, E. (1998). The role of the corpus callosum in visual orienting: importance of interhemispheric visual transfer. Neuropsychologia, 36, 763–774.

    CAS  PubMed  Google Scholar 

  • Pomerantz, J. R. (1983). Global and local precedence: selective attention in form and motion perception. Journal of Experimental Psychology: General, 112, 516–540.

    CAS  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    CAS  PubMed  Google Scholar 

  • Poupon, C., Mangin, J., Clark, C. A., Frouin, V., Régis, J., Le Bihan, D., et al. (2001). Towards inference of human brain connectivity from MR diffusion tensor data. Medical Image Analysis, 5, 1–15.

    CAS  PubMed  Google Scholar 

  • Pujol, J., López-Sala, A., Deus, J., Cardoner, N., Sebastián-Gallés, N., Conesa, G., et al. (2002). The lateral asymmetry of the human brain studied by volumetric magnetic resonance imaging. Neuroimage, 17, 670–679.

    PubMed  Google Scholar 

  • Putnam, M. C., Wig, G. S., Grafton, S. T., Kelley, W. M., & Gazzaniga, M. S. (2008). Structural organization of the corpus callosum predicts the extent and impact of cortical activity in the nondominant hemisphere. Journal of Neuroscience, 28, 2912–2918.

    CAS  PubMed  Google Scholar 

  • Putnam, M. C., Steven, M. S., Doron, K. W., Riggall, A. C., & Gazzaniga, M. S. (2009). Cortical projection topography of the human splenium: Hemispheric asymmetry and individual differences. Journal of Cognitive Neuroscience. In press.

  • Raab, D. H. (1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24, 574–590.

    CAS  PubMed  Google Scholar 

  • Rakic, P., & Yakovlev, P. I. (1968). Development of the corpus callosum and cavum septi in man. Journal of Comparative Neurology, 132, 45–72.

    CAS  PubMed  Google Scholar 

  • Reinholz, J., & Pollmann, S. (2007). Neural basis of redundancy effects in visual object categorization. Neuroscience Letters, 412, 123–128.

    CAS  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., & Stanczak, L. (2000). Differential effects of aging on the functions of the corpus callosum. Developmental Neuropsychology, 18, 113–137.

    CAS  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., Kinsbourne, M., & Moscovitch, M. (1990). Hemispheric control of spatial attention. Brain and Cognition, 12, 240–266.

    CAS  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., Nozawa, G., Gazzaniga, M. S., & Hughes, H. C. (1995). Fate of neglected targets: a chronometric analysis of redundant target effects in the bisected brain. Journal of Experimental Psychology. Human Perception and Performance, 21, 211–230.

    CAS  PubMed  Google Scholar 

  • Ringo, J. L., Doty, R. W., Demeter, S., & Simard, P. Y. (1994). Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cerebral Cortex, 4, 331–343.

    CAS  PubMed  Google Scholar 

  • Rizzo, M., & Vecera, S. P. (2002). Psychoanatomical substrates of Bálint’s syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 162–178.

    CAS  PubMed  Google Scholar 

  • Robertson, L. C., Lamb, M. R., & Knight, R. T. (1988). Effects of lesions of temporal–parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience, 8, 3757–3769.

    CAS  PubMed  Google Scholar 

  • Robertson, L. C., Lamb, M. R., & Knight, R. T. (1991). Normal global-local analysis in patients with dorsolateral frontal lobe lesions. Neuropsychologia, 29, 959–967.

    CAS  PubMed  Google Scholar 

  • Robertson, L. C., Lamb, M. R., & Zaidel, E. (1993). Callosal transfer and hemisphere laterality in response to hierarchical patterns: evidence from normal and commissurotomized subjects. Neuropsychology, 7, 325–342.

    Google Scholar 

  • Rohlfing, T., Zahr, N. M., Sullivan, E. V., & Pfefferbaum, A. (2010). The SRI24 multichannel atlas of normal adult human brain structure. Human Brain Mapping. In press.

  • Roser, M., & Corballis, M. C. (2002). Interhemispheric neural summation in the split brain with symmetrical and asymmetrical displays. Neuropsychologia, 40, 1300–1312.

    PubMed  Google Scholar 

  • Roser, M., & Corballis, M. C. (2003). Interhemispheric neural summation in the split brain: effects of stimulus colour and task. Neuropsychologia, 41, 830–846.

    PubMed  Google Scholar 

  • Rugg, M. D., & Beaumont, J. G. (1978). Interhemispheric asymmetries in the visual evoked response: effects of stimulus lateralisation and task. Biological Psychology, 6, 283–292.

    CAS  PubMed  Google Scholar 

  • Ryberg, C., Rostrup, E., Stegmann, M. B., Barkhof, F., Scheltens, P., van Straaten, E. C., et al. (2007). Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiology of Aging, 28, 955–963.

    CAS  PubMed  Google Scholar 

  • Salvan, C. V., Ulmer, J. L., DeYoe, E. A., Wascher, T., Mathews, V. P., Lewis, J. W., et al. (2004). Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization. Journal of Computer Assisted Tomography, 28, 63–67.

    PubMed  Google Scholar 

  • Saron, C. D., & Davidson, R. J. (1989). Visual evoked potential measures of interhemispheric transfer time in humans. Behavioral Neuroscience, 103, 1115–1138.

    CAS  PubMed  Google Scholar 

  • Savazzi, S., & Marzi, C. A. (2002). Speeding up reaction time with invisible stimuli. Current Biology, 12, 403–407.

    CAS  PubMed  Google Scholar 

  • Savazzi, S., & Marzi, C. A. (2004). The superior colliculus subserves interhemispheric neural summation in both normals and patients with a total section or agenesis of the corpus callosum. Neuropsychologia, 42, 1608–1618.

    PubMed  Google Scholar 

  • Schatz, J., & Erlandson, F. (2003). Level-repetition effects in hierarchical stimulus processing: timing and location of cortical activity. International Journal of Psychophysiology, 47, 255–269.

    Google Scholar 

  • Schendel, K. L., & Robertson, L. C. (2002). Using reaction time to assess patients with unilateral neglect and extinction. Journal of Clinical and Experimental Neuropsychology, 24, 941–950.

    PubMed  Google Scholar 

  • Schiefer, U., Strasburger, H., Becker, S. T., Vonthein, R., Schiller, J., Dietrich, T. J., et al. (2001). Reaction time in automated kinetic perimetry: effects of stimulus luminance, eccentricity, and movement direction. Vision Research, 41, 2157–2164.

    CAS  PubMed  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (2006). Corpus callosum. In J. D. Schmahmann & D. N. Pandya (Eds.), Fiber pathways of the brain (pp. 485–496). New York: Oxford.

    Google Scholar 

  • Schrift, M. J., Bandla, H., Shah, P., & Taylor, M. A. (1986). Interhemispheric transfer in major psychoses. Journal of Nervous and Mental Disease, 174, 203–207.

    CAS  PubMed  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Strasburger, H., Warzel, H., & Sabel, B. A. (2001). Acute effects of alcohol on divided and covert attention in men. Psychopharmacology, 154, 61–69.

    CAS  PubMed  Google Scholar 

  • Schulte, T., Pfefferbaum, A., & Sullivan, E. V. (2004). Parallel interhemispheric processing in aging and alcoholism: relation to corpus callosum size. Neuropsychologia, 42, 257–271.

    CAS  PubMed  Google Scholar 

  • Schulte, T., Sullivan, E. V., Muller-Oehring, E. M., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cerebral Cortex, 15, 1384–1392.

    CAS  PubMed  Google Scholar 

  • Schulte, T., Chen, S. H. A., Müller-Oehring, E. M., Adalsteinsson, E., Pfefferbaum, A., & Sullivan, E. V. (2006a). fMRI Evidence for frontal modulation of the extrastriate—dependent redundant targets effect. Neuroimage, 30, 973–982.

    CAS  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Pfefferbaum, A., & Sullivan, E. V. (2006b). Callosal involvement in a lateralized Stroop task in alcoholic and healthy subjects. Neuropsychology, 20, 727–736.

    CAS  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Pfefferbaum, A., & Sullivan, E. V. (2008). Callosal compromise differentially affects conflict processing and attentional allocation in alcoholism, HIV-infection, and their comorbidity. Brain Imaging and Behavior, 2, 27–38.

    PubMed  Google Scholar 

  • Schulte, T., Müller-Oehring, E. M., Vinco, S., Hoeft, F., Pfefferbaum, A., & Sullivan, E. V. (2009). Double dissociation between action-driven and perception-driven conflict resolution invoking anterior versus posterior brain systems. Neuroimage, 48, 381–390.

    PubMed  Google Scholar 

  • Silvanto, J., Walsh, V., & Cowey, A. (2009). Abnormal functional connectivity between ipsilesional V5/MT + and contralesional striate cortex (V1) in blindsight. Experimental Brain Research, 193, 645–650.

    Google Scholar 

  • Shirani, P., Thorn, J., Davis, C., Heidler-Gary, J., Newhart, M., Gottesman, R. F., et al. (2009). Severity of hypoperfusion in distinct brain regions predicts severity of hemispatial neglect in different reference frames. Stroke, 40, 3563–3566.

    Google Scholar 

  • Skiba, M., Diekamp, B., Prior, H., & Güntürkün, O. (2000). Lateralized interhemispheric transfer of color cues: evidence for dynamic coding principles of visual lateralization in pigeons. Brain and Language, 73, 254–273.

    CAS  PubMed  Google Scholar 

  • Stephan, K. E., Marshall, J. C., Friston, K. J., Rowe, J. B., Ritzl, A., Zilles, K., et al. (2003). Lateralized cognitive processes and lateralized task control in the human brain. Science, 301, 384–386.

    CAS  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 12, 643–662.

    Google Scholar 

  • Sullivan, E. V., & Pfefferbaum, A. (2003). Diffusion tensor imaging in normal aging and neuropsychiatric disorders. European Journal of Radiology, 45, 244–255.

    PubMed  Google Scholar 

  • Sullivan, E. V., Adalsteinsson, E., Hedehus, M., Ju, C., Moseley, M., Lim, K. O., et al. (2001). Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport, 12, 99–104.

    CAS  PubMed  Google Scholar 

  • Sullivan, E. V., Pfefferbaum, A., Adalsteinsson, E., Swan, G. E., & Carmelli, D. (2002). Differential rates of regional brain change in callosal and ventricular size: a 4-year longitudinal MRI study of elderly men. Cerebral Cortex, 12, 438–445.

    CAS  PubMed  Google Scholar 

  • Sullivan, E. V., Adalsteinsson, E., & Pfefferbaum, A. (2006). Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cerebral Cortex, 16, 1030–1039.

    PubMed  Google Scholar 

  • Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2010). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiology of Aging, 31, 464–481.

    PubMed  Google Scholar 

  • Tanabe, H., Sawada, T., Inoue, N., Ogawa, M., Kuriyama, Y., & Shiraishi, J. (1987). Conduction aphasia and arcuate fasciculus. Acta Neurologica Scandinavica, 76, 422–427.

    CAS  PubMed  Google Scholar 

  • Tardif, E., & Clarke, S. (2002). Commissural connections of human superior colliculus. Neuroscience, 111, 363–372.

    CAS  PubMed  Google Scholar 

  • Tarnowska-Dziduszko, E., Bertrand, E., & Szpak, G. M. (1995). Morphological changes in the corpus callosum in chronic alcoholism. Folia Neuropathologica, 33, 25–29.

    CAS  PubMed  Google Scholar 

  • Tettamanti, M., Paulesu, E., Scifo, P., Maravita, A., Fazio, F., Perani, D., et al. (2002). Interhemispheric transmission of visuomotor information in humans: fMRI evidence. Journal of Neurophysiology, 88, 1051–1058.

    CAS  PubMed  Google Scholar 

  • Turatto, M., Mazza, V., Savazzi, S., & Marzi, C. A. (2004). The role of the magnocellular and parvocellular systems in the redundant target effect. Experimental Brain Research, 158, 141–150.

    Google Scholar 

  • Virta, A., Barnett, A., & Pierpaoli, C. (1999). Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magnetic Resonance Imaging, 17, 1121–1133.

    CAS  PubMed  Google Scholar 

  • Volberg, G., & Hübner, R. (2004). On the role of response conflicts and stimulus position for hemispheric differences in global/local processing: an ERP study. Neuropsychologia, 42, 1805–1813.

    PubMed  Google Scholar 

  • Wahl, M., Lauterbach-Soon, B., Hattingen, E., Jung, P., Singer, O., Volz, S., et al. (2007). Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. Journal of Neuroscience, 27, 12132–12138.

    CAS  PubMed  Google Scholar 

  • Warlop, N. P., Achten, E., Debruyne, J., & Vingerhoets, G. (2008). Diffusion weighted callosal integrity reflects interhemispheric communication efficiency in multiple sclerosis. Neuropsychologia, 46, 2258–2264.

    PubMed  Google Scholar 

  • Weber, B., Schwarz, U., Kneifel, S., Treyer, V., & Buck, A. (2000). Hierarchical visual processing is dependent on the oculomotor system. NeuroReport, 11, 241–247.

    CAS  PubMed  Google Scholar 

  • Weber, B., Treyer, V., Oberholzer, N., Jaermann, T., Boesiger, P., Brugger, P., et al. (2005). Attention and interhemispheric transfer: a behavioral and fMRI study. Journal of Cognitive Neuroscience, 17, 113–123.

    CAS  PubMed  Google Scholar 

  • Weekes, N. Y., & Zaidel, E. (1996). The effects of procedural variations on lateralized Stroop effects. Brain and Cognition, 31, 308–330.

    CAS  PubMed  Google Scholar 

  • Weekes, N. Y., Carusi, D., & Zaidel, E. (1997). Interhemispheric relations in hierarchical perception: a second look. Neuropsychologia, 35, 37–44.

    CAS  PubMed  Google Scholar 

  • Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15, 229–237.

    CAS  PubMed  Google Scholar 

  • Westerhausen, R., Kreuder, F., Woerner, W., Huster, R. J., Smit, C. M., Schweiger, E., et al. (2006). Interhemispheric transfer time and structural properties of the corpus callosum. Neuroscience Letters, 409, 140–145.

    CAS  PubMed  Google Scholar 

  • Westerhausen, R., Grüner, R., Specht, K., & Hugdahl, K. (2009). Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cerebral Cortex, 19, 1322–1329.

    PubMed  Google Scholar 

  • Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain, 112, 799–835.

    PubMed  Google Scholar 

  • Woodruff, P. W., Phillips, M. L., Rushe, T., Wright, I. C., Murray, R. M., & David, A. S. (1997). Corpus callosum size and inter-hemispheric function in schizophrenia. Schizophrenia Research, 23, 189–196.

    CAS  PubMed  Google Scholar 

  • Yamaguchi, S., Yamagata, S., & Kobayashi, S. (2000). Cerebral asymmetry of the “top-down” allocation of attention to global and local features. Journal of Neuroscience, 20, RC72.

    CAS  PubMed  Google Scholar 

  • Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Dong, Y., Konishi, J., et al. (1997). Atrophy of the corpus callosum, cognitive impairment, and cortical hypometabolism in progressive supranuclear palsy. Annals of Neurology, 41, 606–614.

    CAS  PubMed  Google Scholar 

  • Yovel, G., Levy, J., & Yovel, I. (2001). Hemispheric asymmetries for global and local visual perception: effects of stimulus and task factors. Journal of Experimental Psychology: Human Perception and Performance, 27, 1369–1385.

    CAS  PubMed  Google Scholar 

  • Zahr, N. M., Rohlfing, T., Pfefferbaum, A., & Sullivan, E. V. (2009). Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage, 44, 1050–1062.

    PubMed  Google Scholar 

  • Zaidel, E., & Iacoboni, M. (2003). Poffenberger’s simple reaction time paradigm for measuring interhemispheric transfer time. In E. Zaidel & M. Iacoboni (Eds.), The parallel brain (pp. 1–8). Cambridge: MIT.

    Google Scholar 

Download references

Acknowledgments

We thank Margaret J. Rosenbloom for comments on the manuscript. Preparation of this article was supported by National Institutes of Health research grants: AA018022, AA010723, AA005965, AA012388, AA017168, AA017432

Disclosures

The authors declare that no conflicts of interest are associated with the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Schulte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, T., Müller-Oehring, E.M. Contribution of Callosal Connections to the Interhemispheric Integration of Visuomotor and Cognitive Processes. Neuropsychol Rev 20, 174–190 (2010). https://doi.org/10.1007/s11065-010-9130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-010-9130-1

Keywords

Navigation