Skip to main content

Advertisement

Log in

Aging and Spatial Navigation: What Do We Know and Where Do We Go?

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Spatial navigation is a complex cognitive skill that is necessary for everyday functioning in the environment. However, navigational skills are not typically measured in most test batteries assessing cognitive aging. The present paper reviews what we know about behavioral differences between older and younger adults in navigational skill and reviews the putative neural mechanisms that may underlie these behavioral differences. Empirical studies to date clearly identify navigation as an aspect of cognitive function that is vulnerable to the aging process. The few functional and structural neuroimaging studies that speak to neurological correlates of these age-related differences point to the hippocampus, parahippocampal gyrus, posterior cingulate gyrus (retrosplenial cortex), parietal lobes and pre-frontal cortex as structures critically involved in age effects on navigation. Outstanding issues in the field are addressed and productive avenues of future research are suggested. Among these outstanding issues include the necessity of performing longitudinal studies and differentiating between hippocampal and extra-hippocampal contributions to aging in navigation. The field may also be advanced by empirical assessment of navigational strategies and investigations into the multisensory nature of navigation including assessing the relative contributions of visual, vestibular, and proprioceptive function to age differences in navigational skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Allen, G. L., Kirasic, K. C., Rashotte, M. A., & Haun, D. B. (2004). Aging and path integration skill: kinesthetic and vestibular contributions to wayfinding. Perception & Psychophysics, 66(1), 170–179.

    Google Scholar 

  • Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143.

    Article  CAS  PubMed  Google Scholar 

  • Arthur, E. J., Hancock, P. A., & Chrysler, S. T. (1997). The perception of spatial layout in real and virtual worlds. Ergonomics, 40, 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behavioural Brain Research, 93(1–2), 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology, 93(1), 74–104.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, C. A., Nadel, L., & Honig, W. K. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology, 34(1), 29–39.

    CAS  PubMed  Google Scholar 

  • Barnes, C. A., McNaughton, B. L., & O’Keefe, J. (1983). Loss of place specificity in hippocampal complex spike cells of senescent rat. Neurobiology of Aging, 4(2), 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, C. A., Suster, M. S., Shen, J., & McNaughton, B. L. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388(6639), 272–275.

    Article  CAS  PubMed  Google Scholar 

  • Barrash, J. (1998). A historical review of topographical disorientation and its neuroanatomical correlates. Journal of Clinical and Experimental Neuropsychology, 20(6), 807–827.

    Article  CAS  PubMed  Google Scholar 

  • Begega, A., Cienfuegos, S., Rubio, S., Santin, J. L., Miranda, R., & Arias, J. L. (2001). Effects of ageing on allocentric and egocentric spatial strategies in the Wistar rat. Behav Processes, 53(1–2), 75–85.

    Article  PubMed  Google Scholar 

  • Berthoz, A., & Viaud-Delmon, I. (1999). Multisensory integration in spatial orientation. Current Opinion in Neurobiology, 9(6), 708–712.

    Article  CAS  PubMed  Google Scholar 

  • Burns, P. C. (1999). Navigation and mobility of older drivers. Journal of Gerontology: Social Sciences, 54B, S49–S55.

    Google Scholar 

  • Cushman, L. A., Stein, K., & Duffy, C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71(12), 888–895.

    Article  PubMed  Google Scholar 

  • de Bruin, J. P., Swinkels, W. A., & de Brabander, J. M. (1997). Response learning of rats in a Morris water maze: involvement of the medical prefrontal cortex. Behavioural Brain Research, 85(1), 47–55.

    Article  PubMed  Google Scholar 

  • de Bruin, J. P., Moita, M. P., de Brabander, H. M., & Joosten, R. N. (2001). Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions. Neurobiology of Learning and Memory, 75(2), 164–178.

    Article  PubMed  Google Scholar 

  • de Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H., et al. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10966–10971.

    Article  PubMed  Google Scholar 

  • Deshmukh, A., Rodrigue, K. M., Kennedy, K. M., Land, S., Jacobs, B. S., & Raz, N. (2009). Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation. Biological Psychology, 80(2), 240–245.

    Article  PubMed  Google Scholar 

  • Driscoll, I., Hamilton, D. A., Petropoulos, H., Yeo, R. A., Brooks, W. M., Baumgartner, R. N., et al. (2003). The aging hippocampus: cognitive, biochemical and structural findings. Cerebral Cortex, 13(12), 1344–1351.

    Article  PubMed  Google Scholar 

  • Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Hormones and Behavior, 47(3), 326–335.

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–188.

    Article  CAS  PubMed  Google Scholar 

  • Foreman, N., Stirk, J., Pohl, J., Mandelkow, L., Lehnung, M., Herzog, A., et al. (2000). Spatial information transfer from virtual to real versions of the Kiel locomotor maze. Behavioural Brain Research, 112(1–2), 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher, M., & Pelleymounter, M. A. (1988). Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiology of Aging, 9(5–6), 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–888.

    Article  CAS  PubMed  Google Scholar 

  • Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23(13), 5945–5952.

    CAS  PubMed  Google Scholar 

  • Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196(2), 187–191.

    Article  PubMed  Google Scholar 

  • Ingram, D. K. (1988). Complex maze learning in rodents as a model of age-related memory impairment. Neurobiology of Aging, 9(5–6), 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Isingrini, M., Perrotin, A., & Souchay, C. (2008). Aging, metamemory regulation and executive functioning. Progress in Brain Research, 169, 377–392.

    Article  PubMed  Google Scholar 

  • Jack, C. R., Jr., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786–794.

    PubMed  Google Scholar 

  • Jack, C. R., Jr., Petersen, R. C., Xu, Y., O’Brien, P. C., Smith, G. E., Ivnik, R. J., et al. (1998). Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology, 51(4), 993–999.

    PubMed  Google Scholar 

  • Kalova, E., Vlcek, K., Jarolimova, E., & Bures, J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behavioural Brain Research, 159(2), 175–186.

    Article  PubMed  Google Scholar 

  • Katayama, K., Takahashi, N., Ogawara, K., & Hattori, T. (1999). Pure topographical disorientation due to right posterior cingulate lesion. Cortex, 35(2), 279–282.

    Article  CAS  PubMed  Google Scholar 

  • Kirasic, K. C. (1991). Spatial cognition and behavior in young and elderly adults: implications for learning new environments. Psychology and Aging, 6(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Klein, D. A., Steinberg, M., Galik, E., Steele, C., Sheppard, J. M., Warren, A., et al. (1999). Wandering behaviour in community-residing persons with dementia. International Journal of Geriatric Psychiatry, 14(4), 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Lovden, M., Schellenbach, M., Grossman-Hutter, B., Kruger, A., & Lindenberger, U. (2005). Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychology and Aging, 20(4), 683–694.

    Article  PubMed  Google Scholar 

  • Lukoyanov, N. V., Andrade, J. P., Dulce Madeira, M., & Paula-Barbosa, M. M. (1999). Effects of age and sex on the water maze performance and hippocampal cholinergic fibers in rats. Neuroscience Letters, 269(3), 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O’Keefe, J. (1998). Knowing where and getting there: a human navigation network. Science, 280(5365), 921–924.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D. (2009). Age differences in visual path integration. Behav Brain Res, 205(1), 88–95.

    Google Scholar 

  • Mapstone, M., Dickerson, K., & Duffy, C. J. (2008). Distinct mechanisms of impairment in cognitive ageing and Alzheimer’s disease. Brain, 131(Pt 6), 1618–1629.

    Article  PubMed  Google Scholar 

  • McLay, R. N., Freeman, S. M., Harlan, R. E., Kastin, A. J., & Zadina, J. E. (1999). Tests used to assess the cognitive abilities of aged rats: their relation to each other and to hippocampal morphology and neurotrophin expression. Gerontology, 45(3), 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernandez, G. (2004). Age differences in neural correlates of route encoding and route recognition. NeuroImage, 22(4), 1503–1514.

    Article  PubMed  Google Scholar 

  • Minoshima, S., Foster, N. L., & Kuhl, D. E. (1994). Posterior cingulate cortex in Alzheimer’s disease. Lancet, 344(8926), 895.

    Article  CAS  PubMed  Google Scholar 

  • Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851–859.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87.

    Article  Google Scholar 

  • Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796.

    Article  CAS  PubMed  Google Scholar 

  • Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.

    Article  PubMed  Google Scholar 

  • Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.

    Article  CAS  PubMed  Google Scholar 

  • Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.

    Article  CAS  PubMed  Google Scholar 

  • Newman, M., & Kaszniak, A. (2000). Spatial memory and aging: performance on a human analog of the Morris water maze. Aging, Neuropsychology, and Cognition, 7(2), 86–93.

    Article  Google Scholar 

  • O’Brien, H. L., Tetewsky, S. J., Avery, L. M., Cushman, L. A.,Makous, W., & Duffy, C. J. (2001). Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb Cortex, 11(11), 1083–1092.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.

    Google Scholar 

  • Ohmi, M. (1996). Egocentric perception through interaction among many sensory systems. Brain Research. Cognitive Brain Research, 5(1–2), 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Osterrieth, P. A. (1944). Le test de copie d’une figure complexe: contribution a l’eacutetude de la perception et de la memoire. Archives de Psychologie, 30, 206–256.

    Google Scholar 

  • Park, D. C. (2000). Basic mechanisms accounting for age-related decline in cognitive functions. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer. Philadelphia: Psychology.

    Google Scholar 

  • Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition—II (pp. 1–90). Mahwah: Erlbaum.

    Google Scholar 

  • Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–1856.

    PubMed  Google Scholar 

  • Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: a study of a five-year change. Neurology, 62, 433–438.

    CAS  PubMed  Google Scholar 

  • Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3334–3339.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, E. S., Redish, A. D., McNaughton, B. L., & Barnes, C. A. (2003). Hippocampal map realignment and spatial learning. Nature Neuroscience, 6(6), 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in desk-top virtual environments: experimental investigations using extended navigational experience. Journal of Experimental Psychology, 3, 143–159.

    Google Scholar 

  • Save, E., & Poucet, B. (2000). Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behavioural Brain Research, 109(2), 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. Journal of Neuroscience, 17(17), 6769–6782.

    CAS  PubMed  Google Scholar 

  • Silverman, D. H. (2004). Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. Journal of Nuclear Medicine, 45(4), 594–607.

    PubMed  Google Scholar 

  • Sjolinder, M., Hook, K., Nilsson, L. G., & Andersson, G. (2005). Age differences and the acquisition of spatial knowledge in a three-dimensional environment: Evaluating the use of an overview map as a navigation aid International. Journal of Human Computer Studies, 63, 537–564.

    Article  Google Scholar 

  • Small, G. W., Ercoli, L. M., Silverman, D. H., Huang, S. C., Komo, S., Bookheimer, S. Y., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6037–6042.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, E. V., Pfefferbaum, A., Swan, G. E., & Carmelli, D. (2001). Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment. Hippocampus, 11(6), 754–762.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, E. V., Marsh, L., & Pfefferbaum, A. (2005). Preservation of hippocampal volume throughout adulthood in healthy men and women. Neurobiology of Aging, 26(7), 1093–1098.

    Article  PubMed  Google Scholar 

  • Tanila, H., Shapiro, M., Gallagher, M., & Eichenbaum, H. (1997). Brain aging: changes in the nature of information coding by the hippocampus. Journal of Neuroscience, 17(13), 5155–5166.

    CAS  PubMed  Google Scholar 

  • Tetewsky, S. J., & Duffy, C. J. (1999). Visual loss and getting lost in Alzheimer’s disease. Neurology, 52(5), 958–965.

    CAS  PubMed  Google Scholar 

  • Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43(3), 427–435.

    Article  CAS  PubMed  Google Scholar 

  • West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1995). Differential neuronal loss in the hippocampus in normal aging and in patients with Alzheimer disease. Ugeskrift for Laeger, 157(22), 3190–3193.

    CAS  PubMed  Google Scholar 

  • Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12(2), 372–375.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, I. A., Ikonen, S., McMahan, R. W., Gallagher, M., Eichenbaum, H., & Tanila, H. (2003). Place cell rigidity correlates with impaired spatial learning in aged rats. Neurobiology of Aging, 24(2), 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Witmer, B. G., Bailey, J. H., & Knerr, B. W. (1996). Virtual spaces and real world places: transfer of route knowledge. International Journal of Human Computer Studies, 45, 413–428.

    Article  Google Scholar 

  • Zakzanis, K. K., Quintin, G., Graham, S. J., & Mraz, R. (2009). Age and dementia related differences in spatial navigation within an immersive virtual environment. Medical Science Monitor, 15(4), CR140–CR150.

    PubMed  Google Scholar 

Download references

Acknowledgements

The manuscript was supported in part by NIH grant R01 AG028466.

Disclosures

The author declares that no conflicts of interest are associated with the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Moffat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffat, S.D. Aging and Spatial Navigation: What Do We Know and Where Do We Go?. Neuropsychol Rev 19, 478–489 (2009). https://doi.org/10.1007/s11065-009-9120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-009-9120-3

Keywords

Navigation