Neuropsychology Review

, Volume 17, Issue 3, pp 299–315 | Cite as

Neuropsychological Consequences of Opiate Use

  • Staci A. Gruber
  • Marisa M. Silveri
  • Deborah A. Yurgelun-ToddEmail author


Approximately 3.7 million individuals have used heroin and other opiate substances in their lifetime. Despite increasing knowledge of the effects of heroin, it remains the most abused opiate and use among adults has recently increased. The empirical literature examining the neurocognitive effects of acute and chronic opioid use remains limited; however, findings to date suggest that the use of opiates has both acute and long-term effects on cognitive performance. Neuropsychological data indicate deficits in attention, concentration, recall, visuospatial skills and psychomotor speed with both acute and chronic opioid use. The long-term effects of opiate use appear to have the greatest impact on executive functions, including the ability to shift cognitive set and inhibit inappropriate response tendencies. Factors that contribute to addiction and recovery are also discussed, as it is difficult to disentangle the effects of opiate use on cognitive performance from other factors that may affect neurobehavioral measures.


Opiates Neuropsychology Heroin 



This work was funded by NIH grants DA12483 (DYT), DA 021422 (DYT, SAG, MMS) and AA014651 (MMS). The authors wish to thank Ms. Alexandria McCaffrey for her valuable assistance in preparing this manuscript.


  1. Amass, L., Nardin, R., Mendelson, J. H., Teoh, S. K., & Woods, B. T. (1992). Quantitative magnetic resonance imaging in heroin- and cocaine-dependent men: a preliminary study. Psychiatry Research, 45(1), 15–23.PubMedCrossRefGoogle Scholar
  2. American Psychiatric Association, C. o. N. a. S. (1994). Diagnostic and statistical manual of mental disorders (4th ed). Washington DC: American Psychiatric Association.Google Scholar
  3. Appel, P. W., & Gordon, N. B. (1976). Digit-symbol performance in methadone-treated ex-heroin addicts. American Journal of Psychiatry, 133(11), 1337–1340.PubMedGoogle Scholar
  4. Bickel, W. K., Odum, A. L., & Madden, G. J. (1999). Impulsivity and cigarette smoking: Delay discounting in current, never, and ex-smokers. Psychopharmacology (Berl), 146(4), 447–454.CrossRefGoogle Scholar
  5. Brooner, R. K., King, V. L., Kidorf, M., Schmidt, C. W., Jr., & Bigelow, G. E. (1997). Psychiatric and substance use comorbidity among treatment-seeking opioid abusers. Archives of General Psychiatry, 54(1), 71–80.PubMedGoogle Scholar
  6. Bruhn, P., & Maage, N. (1975). Intellectual and neuropsychological functions in young men with heavy and long-term patterns of drug abuse. American Journal of Psychiatry, 132(4), 397–401.PubMedGoogle Scholar
  7. Carlin, A. S. (1986). Neuropsychological consequences of drug abuse. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorders (pp. 486–503). New York: Oxford University Press.Google Scholar
  8. Christensen, O., Christensen, P., Sonnenschein, C., Nielsen, P. R., & Jacobsen, S. (1996). Analgesic effect of intraarticular morphine. A controlled, randomised and double-blind study. Acta Anaesthesiologica Scandinavica, 40(7), 842–846.PubMedGoogle Scholar
  9. Cleeland, C. S., Nakamura, Y., Howland, E. W., Morgan, N. R., Edwards, K. R., & Backonja, M. (1996). Effects of oral morphine on cold pressor tolerance time and neuropsychological performance. Neuropsychopharmacology, 15(3), 252–262.PubMedCrossRefGoogle Scholar
  10. Correia, C. J., Walsh, S. L., Bigelow, G. E., & Strain, E. C. (2006). Effects associated with double-blind omission of buprenorphine/naloxone over a 98-h period. Psychopharmacology (Berl), 189(3), 297–306.CrossRefGoogle Scholar
  11. Cruz, S. L., Villarreal, J. E., & Volkow, N. D. (1996). Further evidence that naloxone acts as an inverse opiate agonist: Implications for drug dependence and withdrawal. Life Science, 58(26), PL381–PL389.CrossRefGoogle Scholar
  12. Curran, H. V., Kleckham, J., Bearn, J., Strang, J., & Wanigaratne, S. (2001). Effects of methadone on cognition, mood and craving in detoxifying opiate addicts: A dose-response study. Psychopharmacology (Berl), 154(2), 153–160.CrossRefGoogle Scholar
  13. Daglish, M. R., Weinstein, A., Malizia, A. L., Wilson, S., Melichar, J. K., Lingford-Hughes, A., et al. (2003). Functional connectivity analysis of the neural circuits of opiate craving: “More” rather than “different”? Neuroimage, 20(4), 1964–1970.PubMedCrossRefGoogle Scholar
  14. Danos, P., Van Roos, D., Kasper, S., Bromel, T., Broich, K., Krappel, C., et al. (1998). Enlarged cerebrospinal fluid spaces in opiate-dependent male patients: A stereological CT study. Neuropsychobiology, 38(2), 80–83.PubMedCrossRefGoogle Scholar
  15. Darke, S., Sims, J., McDonald, S., & Wickes, W. (2000). Cognitive impairment among methadone maintenance patients. Addiction, 95(5), 687–695.PubMedCrossRefGoogle Scholar
  16. Davis, P. E., Liddiard, H., & McMillan, T. M. (2002). Neuropsychological deficits and opiate abuse. Drug and Alcohol Dependence, 67(1), 105–108.PubMedCrossRefGoogle Scholar
  17. Dole, V. P., & Nyswander, M. (1965). A medical treatment for diacetylmorphine (heroin) addiction. A clinical trial with methadone hydrochloride. Journal of the American Medical Association, 193, 646–650.PubMedGoogle Scholar
  18. Ersche, K. D., Clark, L., London, M., Robbins, T. W., & Sahakian, B. J. (2006). Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology, 31(5), 1036–1047.PubMedCrossRefGoogle Scholar
  19. Forman, S. D., Dougherty, G. G., Casey, B. J., Siegle, G. J., Braver, T. S., Barch, D. M., et al. (2004). Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 55(5), 531–537.PubMedCrossRefGoogle Scholar
  20. Franceschini, D., Lipartiti, M., & Giusti, P. (1999). Effect of acute and chronic tramadol on [3H]-norepinephrine-uptake in rat cortical synaptosomes. Progress in Neuro-psychopharmacology & Biological Psychiatry, 23(3), 485–496.CrossRefGoogle Scholar
  21. Gaertner, J., Radbruch, L., Giesecke, T., Gerbershagen, H., Petzke, F., Ostgathe, C., et al. (2006). Assessing cognition and psychomotor function under long-term treatment with controlled release oxycodone in non-cancer pain patients. Acta anaesthesiologica Scandinavica, 50(6), 664–672.PubMedCrossRefGoogle Scholar
  22. Galynker, I. I., Watras-Ganz, S., Miner, C., Rosenthal, R. N., Des Jarlais, D. C., Richman, B. L., et al. (2000). Cerebral metabolism in opiate-dependent subjects: Effects of methadone maintenance. Mount Sinai Journal of Medicine, 67(5–6), 381–387.PubMedGoogle Scholar
  23. Gobbi, M., & Mennini, T. (1999). Release studies with rat brain cortical synaptosomes indicate that tramadol is a 5-hydroxytryptamine uptake blocker and not a 5-hydroxytryptamine releaser. European Journal of Pharmacology, 370(1), 23–26.PubMedCrossRefGoogle Scholar
  24. Gross, A., Jacobs, E. A., Petry, N. M., Badger, G. J., & Bickel, W. K. (2001). Limits to buprenorphine dosing: A comparison between quintuple and sextuple the maintenance dose every 5 days. Drug and Alcohol Dependence, 64(1), 111–116.PubMedCrossRefGoogle Scholar
  25. Gruber, S. A., Tzilos, G. K., Silveri, M. M., Pollack, M., Renshaw, P. F., Kaufman, M. J., et al. (2006). Methadone maintenance improves cognitive performance after two months of treatment. Experimental and Clinical Psychopharmacology, 14(2), 157–164.PubMedCrossRefGoogle Scholar
  26. Guerra, D., Sole, A., Cami, J., & Tobena, A. (1987). Neuropsychological performance in opiate addicts after rapid detoxification. Drug and Alcohol Dependence, 20(3), 261–270.PubMedCrossRefGoogle Scholar
  27. Guo, M., Xu, N. J., Li, Y. T., Yang, J. Y., Wu, C. F., & Pei, G. (2005). Morphine modulates glutamate release in the hippocampal CA1 area in mice. Neuroscience Letters, 381(1–2), 12–15.PubMedCrossRefGoogle Scholar
  28. Hanks, G. W., O’Neill, W. M., Simpson, P., & Wesnes, K. (1995). The cognitive and psychomotor effects of opioid analgesics. II. A randomized controlled trial of single doses of morphine, lorazepam and placebo in healthy subjects. European Journal of Clinical Pharmacology, 48(6), 455–460.PubMedCrossRefGoogle Scholar
  29. Joseph, H., Stancliff, S., & Langrod, J. (2000). Methadone maintenance treatment (MMT): A review of historical and clinical issues. Mount Sinai Journal of Medicine, 67(5–6), 347–364.PubMedGoogle Scholar
  30. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry, 162(8), 1403–1413.PubMedCrossRefGoogle Scholar
  31. Kaufman, M. J., Pollack, M. H., Villafuerte, R. A., Kukes, T. J., Rose, S. L., Mendelson, J. H., et al. (1999). Cerebral phosphorus metabolite abnormalities in opiate-dependent polydrug abusers in methadone maintenance. Psychiatry Research, 90(3), 143–152.PubMedCrossRefGoogle Scholar
  32. Kerr, B., Hill, H., Coda, B., Calogero, M., Chapman, C. R., Hunt, E., et al. (1991). Concentration-related effects of morphine on cognition and motor control in human subjects. Neuropsychopharmacology, 5(3), 157–166.PubMedGoogle Scholar
  33. Koob, G. F. (1987). Neural substrates of opioid tolerance and dependence. NIDA Research Monograph, 76, 46–52.PubMedGoogle Scholar
  34. Koob, G. F. (2003). Neuroadaptive mechanisms of addiction: studies on the extended amygdala. European Neuropsychopharmacology, 13(6), 442–452.PubMedCrossRefGoogle Scholar
  35. Koob, G. F., Ahmed, S. H., Boutrel, B., Chen, S. A., Kenny, P. J., Markou, A., et al. (2004). Neurobiological mechanisms in the transition from drug use to drug dependence. Neuroscience and Biobehavioral Reviews, 27(8), 739–749.PubMedCrossRefGoogle Scholar
  36. Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24(2), 97–129.PubMedCrossRefGoogle Scholar
  37. Koob, G. F., Stinus, L., Le Moal, M., & Bloom, F. E. (1989). Opponent process theory of motivation: Neurobiological evidence from studies of opiate dependence. Neuroscience and Biobehavioral Reviews, 13(2–3), 135–140.PubMedCrossRefGoogle Scholar
  38. Kosten, T. R., Schottenfeld, R., Ziedonis, D., & Falcioni, J. (1993). Buprenorphine versus methadone maintenance for opioid dependence. Journal of Nervous and Mental Disease, 181(6), 358–364.PubMedCrossRefGoogle Scholar
  39. Kreek, M. J. (1997). Opiate and cocaine addictions: Challenge for pharmacotherapies. Pharmacology, Biochemistry and Behavior, 57(3), 551–569.CrossRefGoogle Scholar
  40. Krystal, J. H., Woods, S. W., Kosten, T. R., Rosen, M. I., Seibyl, J. P., van Dyck, C. C., et al. (1995). Opiate dependence and withdrawal: Preliminary assessment using single photon emission computerized tomography (SPECT). American Journal of Drug and Alcohol Abuse, 21(1), 47–63.PubMedGoogle Scholar
  41. Lalovic, B., Kharasch, E., Hoffer, C., Risler, L., Liu-Chen, L. Y., & Shen, D. D. (2006). Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: Role of circulating active metabolites. Clinical Pharmacology & Therapeutics, 79(5), 461–479.CrossRefGoogle Scholar
  42. Laviolette, S. R., Gallegos, R. A., Henriksen, S. J., & van der Kooy, D. (2004). Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nature Neuroscience, 7(2), 160–169.PubMedCrossRefGoogle Scholar
  43. Lee, C. R., McTavish, D., & Sorkin, E. M. (1993). Tramadol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs, 46(2), 313–340.PubMedGoogle Scholar
  44. Lee, T. M., & Pau, C. W. (2002). Impulse control differences between abstinent heroin users and matched controls. Brain Injury, 16(10), 885–889.PubMedCrossRefGoogle Scholar
  45. Lee, T. M., Zhou, W. H., Luo, X. J., Yuen, K. S., Ruan, X. Z., & Weng, X. C. (2005). Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neuroscience Letters, 382(3), 211–216.PubMedCrossRefGoogle Scholar
  46. Lenne, M. G., Dietze, P., Rumbold, G. R., Redman, J. R., & Triggs, T. J. (2003). The effects of the opioid pharmacotherapies methadone, LAAM and buprenorphine, alone and in combination with alcohol, on simulated driving. Drug and Alcohol Dependence, 72(3), 271–278.PubMedCrossRefGoogle Scholar
  47. Levin, J. M., Mendelson, J. H., Holman, B. L., Teoh, S. K., Garada, B., Schwartz, R. B., et al. (1995). Improved regional cerebral blood flow in chronic cocaine polydrug users treated with buprenorphine. Journal of Nuclear Medicine, 36(7), 1211–1215.PubMedGoogle Scholar
  48. Ling, W., Wesson, D. R., Charuvastra, C., & Klett, C. J. (1996). A controlled trial comparing buprenorphine and methadone maintenance in opioid dependence. Archives of General Psychiatry, 53(5), 401–407.PubMedGoogle Scholar
  49. London, E., Margolin, R. A., Wong, D. F., Links, J., La France, N. D., Cascella, N. G., et al. (1989). Cerebral glucose utilization in human heroine addicts: case reports from a position emission tomographic study. Research Communications in Substance Abuse, 10, 141–144.Google Scholar
  50. London, E. D., Broussolle, E. P., Links, J. M., Wong, D. F., Cascella, N. G., Dannals, R. F., et al. (1990). Morphine-induced metabolic changes in human brain. Studies with positron emission tomography and [fluorine 18]fluorodeoxyglucose. Archives of General Psychiatry, 47(1), 73–81.PubMedGoogle Scholar
  51. Lubman, D. I., Peters, L. A., Mogg, K., Bradley, B. P., & Deakin, J. F. (2000). Attentional bias for drug cues in opiate dependence. Psychological Medicine, 30(1), 169–175.PubMedCrossRefGoogle Scholar
  52. Lyoo, I. K., Pollack, M. H., Silveri, M. M., Ahn, K. H., Diaz, C. I., Hwang, J., et al. (2006). Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology (Berl), 184(2), 139–144.CrossRefGoogle Scholar
  53. McLellan, A. T., Luborsky, L., O’Brien, C. P., Barr, H. L., & Evans, F. (1986). Alcohol and drug abuse treatment in three different populations: Is there improvement and is it predictable? American Journal of Drug and Alcohol Abuse, 12(1–2), 101–120.PubMedGoogle Scholar
  54. McLellan, A. T., Luborsky, L., Woody, G. E., O’Brien, C. P., & Druley, K. A. (1983). Predicting response to alcohol and drug abuse treatments. Role of psychiatric severity. Archives of General Psychiatry, 40(6), 620–625.PubMedGoogle Scholar
  55. Mintzer, M. Z., Copersino, M. L., & Stitzer, M. L. (2005). Opioid abuse and cognitive performance. Drug and Alcohol Dependence, 78(2), 225–230.PubMedCrossRefGoogle Scholar
  56. Mintzer, M. Z., Correia, C. J., & Strain, E. C. (2004). A dose-effect study of repeated administration of buprenorphine/naloxone on performance in opioid-dependent volunteers. Drug and Alcohol Dependence, 74(2), 205–209.PubMedCrossRefGoogle Scholar
  57. Mintzer, M. Z., & Stitzer, M. L. (2002). Cognitive impairment in methadone maintenance patients. Drug and Alcohol Dependence, 67(1), 41–51.PubMedCrossRefGoogle Scholar
  58. Mitchell, S. H. (1999). Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology (Berl), 146(4), 455–464.CrossRefGoogle Scholar
  59. Nestler, E. J. (1993). Cellular responses to chronic treatment with drugs of abuse. Critical Reviews in Neurobiology, 7(1), 23–39.PubMedGoogle Scholar
  60. Ng, K. F., Yuen, T. S., & Ng, V. M. (2006). A comparison of postoperative cognitive function and pain relief with fentanyl or tramadol patient-controlled analgesia. Journal of Clinical Anesthesia, 18(3), 205–210.PubMedCrossRefGoogle Scholar
  61. Nye, H. E., & Nestler, E. J. (1996). Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Molecular Pharmacology, 49(4), 636–645.PubMedGoogle Scholar
  62. O’Brien, C. P., Volkow, N., & Li, T. K. (2006). What’s in a word? Addiction versus dependence in DSM-V. American Journal of Psychiatry, 163(5), 764–765.PubMedCrossRefGoogle Scholar
  63. Ornstein, T. J., Iddon, J. L., Baldacchino, A. M., Sahakian, B. J., London, M., Everitt, B. J., et al. (2000). Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology, 23(2), 113–126.PubMedCrossRefGoogle Scholar
  64. Pakesch, G., Loimer, N., Grunberger, J., Pfersmann, D., Linzmayer, L., & Mayerhofer, S. (1992). Neuropsychological findings and psychiatric symptoms in HIV-1 infected and noninfected drug users. Psychiatry Research, 41(2), 163–177.PubMedCrossRefGoogle Scholar
  65. Petry, N. M., Bickel, W. K., & Arnett, M. (1998). Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93(5), 729–738.PubMedCrossRefGoogle Scholar
  66. Pickens, R. W., Preston, K. L., Miles, D. R., Gupman, A. E., Johnson, E. O., Newlin, D. B., et al. (2001). Family history influence on drug abuse severity and treatment outcome. Drug and Alcohol Dependence, 61(3), 261–270.PubMedCrossRefGoogle Scholar
  67. Pirastu, R., Fais, R., Messina, M., Bini, V., Spiga, S., Falconieri, D., et al. (2006). Impaired decision-making in opiate-dependent subjects: Effect of pharmacological therapies. Drug and Alcohol Dependence, 83(2), 163–168.PubMedCrossRefGoogle Scholar
  68. Preston, K. L., Jasinski, D. R., & Testa, M. (1991). Abuse potential and pharmacological comparison of tramadol and morphine. Drug and Alcohol Dependence, 27(1), 7–17.PubMedCrossRefGoogle Scholar
  69. Rapeli, P., Kivisaari, R., Autti, T., Kahkonen, S., Puuskari, V., Jokela, O., et al. (2006). Cognitive function during early abstinence from opioid dependence: A comparison to age, gender, and verbal intelligence matched controls. BMC Psychiatry, 6, 9.PubMedCrossRefGoogle Scholar
  70. Reisine, T. (1995). Opiate receptors. Neuropharmacology, 34(5), 463–472.PubMedCrossRefGoogle Scholar
  71. Ridenour, T. A., Maldonado-Molina, M., Compton, W. M., Spitznagel, E. L., & Cottler, L. B. (2005). Factors associated with the transition from abuse to dependence among substance abusers: Implications for a measure of addictive liability. Drug and Alcohol Dependence, 80(1), 1–14.PubMedCrossRefGoogle Scholar
  72. Rodriguez-Llera, M. C., Domingo-Salvany, A., Brugal, M. T., Silva, T. C., Sanchez-Niubo, A., & Torrens, M. (2006). Psychiatric comorbidity in young heroin users. Drug and Alcohol Dependence, 84(1), 48–55.PubMedCrossRefGoogle Scholar
  73. Rose, J. S., Branchey, M., Buydens-Branchey, L., Stapleton, J. M., Chasten, K., Werrell, A., et al. (1996). Cerebral perfusion in early and late opiate withdrawal: A technetium-99m-HMPAO SPECT study. Psychiatry Research, 67(1), 39–47.PubMedCrossRefGoogle Scholar
  74. Rotheram-Fuller, E., Shoptaw, S., Berman, S. M., & London, E. D. (2004). Impaired performance in a test of decision-making by opiate-dependent tobacco smokers. Drug and Alcohol Dependence, 73(1), 79–86.PubMedCrossRefGoogle Scholar
  75. Rounsaville, B. J., Jones, C., Novelly, R. A., & Kleber, H. (1982). Neuropsychological functioning in opiate addicts. Journal of Nervous and Mental Disease, 170(4), 209–216.PubMedCrossRefGoogle Scholar
  76. Rounsaville, B. J., Kosten, T. R., Weissman, M. M., Prusoff, B., Pauls, D., Anton, S. F., et al. (1991). Psychiatric disorders in relatives of probands with opiate addiction. Archives of General Psychiatry, 48(1), 33–42.PubMedGoogle Scholar
  77. SAMHSA (2006). Results from the 2005 national survey on drug use and health: National findings. Rockville, MD.Google Scholar
  78. SAMHSA (2007). The DASIS report: Heroin—changes in how it is used: 1995–2005. Rockville, MD: SAMHSA.Google Scholar
  79. Schottenfeld, M. A. (1999). Open capsulorrhaphy with suture anchors for recurrent anterior dislocation of the shoulder. American Journal of Sports Medicine, 27(1), 122.PubMedGoogle Scholar
  80. Sedo, M. A. (2004a). [‘5 digit test’: a multilinguistic non-reading alternative to the Stroop test]. Revista de Neurologia, 38(9), 824–828.PubMedGoogle Scholar
  81. Sedo, M. A. (2004b). [SENTREP test: two lists of sentences of equal length to check the attention and the presence of linguistic maturity problems]. Revista de Neurologia, 38(10), 924–927.PubMedGoogle Scholar
  82. Sell, L. A., Morris, J., Bearn, J., Frackowiak, R. S., Friston, K. J., & Dolan, R. J. (1999). Activation of reward circuitry in human opiate addicts. European Journal of Neuroscience, 11(3), 1042–1048.PubMedCrossRefGoogle Scholar
  83. Silvasti, M., Svartling, N., Pitkanen, M., & Rosenberg, P. H. (2000). Comparison of intravenous patient-controlled analgesia with tramadol versus morphine after microvascular breast reconstruction. European Journal of Anaesthesiology, 17(7), 448–455.PubMedCrossRefGoogle Scholar
  84. Silveri, M. M., Pollack, M. H., Diaz, C. I., Nassar, L. E., Mendelson, J. H., Yurgelun-Todd, D. A., et al. (2004). Cerebral phosphorus metabolite and transverse relaxation time abnormalities in heroin-dependent subjects at onset of methadone maintenance treatment. Psychiatry Research, 131(3), 217–226.PubMedCrossRefGoogle Scholar
  85. Sklair-Tavron, L., Shi, W. X., Lane, S. B., Harris, H. W., Bunney, B. S., & Nestler, E. J. (1996). Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 11202–11207.Google Scholar
  86. Stapleton, J. M., Morgan, M. J., Phillips, R. L., Wong, D. F., Yung, B. C., Shaya, E. K., et al. (1995). Cerebral glucose utilization in polysubstance abuse. Neuropsychopharmacology, 13(1), 21–31.PubMedCrossRefGoogle Scholar
  87. Strain, E. C., Stitzer, M. L., Liebson, I. A., & Bigelow, G. E. (1994). Comparison of buprenorphine and methadone in the treatment of opioid dependence. American Journal of Psychiatry, 151(7), 1025–1030.PubMedGoogle Scholar
  88. Strain, E. C., Stoller, K., Walsh, S. L., & Bigelow, G. E. (2000). Effects of buprenorphine versus buprenorphine/naloxone tablets in non-dependent opioid abusers. Psychopharmacology (Berl), 148(4), 374–383.CrossRefGoogle Scholar
  89. Strang, J., & Gurling, H. (1989). Computerized tomography and neuropsychological assessment in long-term high-dose heroin addicts. British Journal of Addiction, 84(9), 1011–1019.PubMedCrossRefGoogle Scholar
  90. Tassain, V., Attal, N., Fletcher, D., Brasseur, L., Degieux, P., Chauvin, M., et al. (2003). Long term effects of oral sustained release morphine on neuropsychological performance in patients with chronic non-cancer pain. Pain, 104(1–2), 389–400.PubMedCrossRefGoogle Scholar
  91. Trujillo, K. A. (1995). Effects of noncompetitive N-methyl-D-aspartate receptor antagonists on opiate tolerance and physical dependence. Neuropsychopharmacology, 13(4), 301–307.PubMedCrossRefGoogle Scholar
  92. Trujillo, K. A. (2000). Are NMDA receptors involved in opiate-induced neural and behavioral plasticity? A review of preclinical studies. Psychopharmacology (Berl), 151(2–3), 121–141.CrossRefGoogle Scholar
  93. Verdejo, A., Toribio, I., Orozco, C., Puente, K. L., & Perez-Garcia, M. (2005). Neuropsychological functioning in methadone maintenance patients versus abstinent heroin abusers. Drug and Alcohol Dependence, 78(3), 283–288.PubMedCrossRefGoogle Scholar
  94. Volkow, N. D., Fowler, J. S., Wang, G. J., & Swanson, J. M. (2004). Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Molecular Psychiatry, 9(6), 557–569.PubMedCrossRefGoogle Scholar
  95. Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzemannn, R., Gatley, S. J., et al. (1996). Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology, 14(3), 159–168.PubMedCrossRefGoogle Scholar
  96. Warner, L. A., Kessler, R. C., Hughes, M., Anthony, J. C., & Nelson, C. B. (1995). Prevalence and correlates of drug use and dependence in the United States. Results from the National Comorbidity Survey. Archives of General Psychiatry, 52(3), 219–229.PubMedGoogle Scholar
  97. Wiesbeck, G. A., & Taeschner, K. L. (1991). A cerebral computed tomography study of patients with drug-induced psychoses. European Archives of Psychiatry and Clinical Neuroscience, 241(2), 88–90.PubMedCrossRefGoogle Scholar
  98. Wise, R. A. (1987). The role of reward pathways in the development of drug dependence. Pharmacology & Therapeutics, 35(1–2), 227–263.CrossRefGoogle Scholar
  99. Zacny, J. P. (2003). Characterizing the subjective, psychomotor, and physiological effects of a hydrocodone combination product (Hycodan) in non-drug-abusing volunteers. Psychopharmacology (Berl), 165(2), 146–156.Google Scholar
  100. Zacny, J. P. (2005). Profiling the subjective, psychomotor, and physiological effects of tramadol in recreational drug users. Drug and Alcohol Dependence, 80(2), 273–278.PubMedCrossRefGoogle Scholar
  101. Zacny, J. P., & Gutierrez, S. (2003). Characterizing the subjective, psychomotor, and physiological effects of oral oxycodone in non-drug-abusing volunteers. Psychopharmacology (Berl), 170(3), 242–254.CrossRefGoogle Scholar
  102. Zacny, J. P., Gutierrez, S., & Bolbolan, S. A. (2005). Profiling the subjective, psychomotor, and physiological effects of a hydrocodone/acetaminophen product in recreational drug users. Drug and Alcohol Dependence, 78(3), 243–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Staci A. Gruber
    • 1
  • Marisa M. Silveri
    • 1
  • Deborah A. Yurgelun-Todd
    • 1
    Email author
  1. 1.Cognitive Neuroimaging LaboratoryMcLean Hospital/Harvard Medical SchoolBelmontUSA

Personalised recommendations