Neuropsychology Review

, Volume 17, Issue 1, pp 39–59 | Cite as

Etiologic Subtypes of Attention-Deficit/Hyperactivity Disorder: Brain Imaging, Molecular Genetic and Environmental Factors and the Dopamine Hypothesis

  • James M. SwansonEmail author
  • Marcel Kinsbourne
  • Joel Nigg
  • Bruce Lanphear
  • Gerry A. Stefanatos
  • Nora Volkow
  • Eric Taylor
  • B. J. Casey
  • F. Xavier Castellanos
  • Pathik D. Wadhwa
Original Paper


Multiple theories of Attention-Deficit/Hyper- activity Disorder (ADHD) have been proposed, but one that has stood the test of time is the dopamine deficit theory. We review the narrow literature from recent brain imaging and molecular genetic studies that has improved our understanding of the role of dopamine in manifestation of symptoms of ADHD, performance deficits on neuropsychological tasks, and response to stimulant medication that constitutes the most common treatment of this disorder. First, we consider evidence of the presence of dopamine deficits based on the recent literature that (1) confirms abnormalities in dopamine-modulated frontal-striatal circuits, reflected by size (smaller-than-average components) and function (hypoactivation); (2) clarifies the agonist effects of stimulant medication on dopaminergic mechanisms at the synaptic and circuit level of analysis; and (3) challenges the most-widely accepted ADHD-related neural abnormality in the dopamine system (higher-than-normal dopamine transporter [DAT] density). Second, we discuss possible genetic etiologies of dopamine deficits based on recent molecular genetic literature, including (1) multiple replications that confirm the association of ADHD with candidate genes related to the dopamine receptor D4 (DRD4) and the DAT; (2) replication of differences in performance of neuropsychological tasks as a function of the DRD4 genotype; and (3) multiple genome-wide linkage scans that demonstrate the limitations of this method when applied to complex disorders but implicate additional genes that may contribute to the genetic basis of ADHD. Third, we review possible environmental etiologies of dopamine deficits based on recent studies of (1) toxic substances that may affect the dopamine system in early development and contribute substantially to the etiology of ADHD; (2) fetal adaptations in dopamine systems in response to stress that may alter early development with lasting effects, as proposed by the developmental origins of health and disease hypothesis; and (3) gene-environment interactions that may moderate selective damage or adaptation of dopamine neurons. Based on these reviews, we identify critical issues about etiologic subtypes of ADHD that may involve dopamine, discuss methods that could be used to address these issues, and review old and new theories that may direct research in this area in the future.


ADHD (or Attention-Deficit/Hyperactivity Disorder) Dopamine Molecular genetics Brain imaging Environmental risk Minimal brain dysfunction 


  1. Amsel, A. (1990). Arousal, suppression, and persistence: Frustration theory, attention, and its disorders. Cognition and Emotion, 239–268.Google Scholar
  2. Altman, J. (1986). An animal model of minimal brain dysfunction. In M. Lewis (Ed.), Learning disabilities and prenatal risk. Urbana, Illinois: University of Illinois Press.Google Scholar
  3. Altman, J. (1987). Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model. Environmental Health Perspectives, 74, 153–168.PubMedGoogle Scholar
  4. Arcos-Burgos, M., Castellanos, F. X., Pineda, D., Lopera, F., Palacio, J. D., Palacio, L. G., Rapoport, J. L., Berg, K., Bailey-Wilson, J. E., & Muenke, M. (2004). Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11g22, and 17p11. American Journal of Hum Genetics, 75, 998–1014.Google Scholar
  5. Arnsten, A. F. (2006). Fundamentals of attention-deficit/hyperactivity disorder: Circuits and pathways. Journal of Clinical Psychiatry, 67(Suppl 8), 7–12.PubMedGoogle Scholar
  6. Arnsten, A. F. T. (2006). Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology, 31, 2376–2383.PubMedGoogle Scholar
  7. Bakker, S. C., Van Der Meulen, E. M., Buitelaar, J. K., Sandkuijl, L. A., Pauls, D. L., & Monsuur, A. J. (2003). A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. American Journal of Human Genetics, 72, 1251–1260.PubMedGoogle Scholar
  8. Barker, D. J. O., Osmond, C., Winter, P. D., Margetts, B., & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 2, 577–580.PubMedGoogle Scholar
  9. Bauermeister, J. J., Canno, G., Bravo, M., Rameriz, R, Jensen, P. S., Chavez, L., Martinez-Taboas, A., Ribera, J., Alegria, M., & Garcia, P. (2003). Stimulant and psychosocial treatment of ADHD in Latino/Hispanic children. Journal of the American Academy of Child and Adolescent Psychiatry, 42, 851–855.PubMedGoogle Scholar
  10. Bax, M., & McKeith, R. M. (Eds.). (1962). Minimal cerebral dysfunctions. Clinics in developmental medicine. Lavenham, Suffolk: The Lavenham Press LTD.Google Scholar
  11. Bellgrove, M. A., Hawi, Z., Lowe, N., Kirley, A., Robertson, I. H., & Gill, H. (2005). DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): effects of associated alleles at the VNTR and -521 SNP. American Journal of Medican Genetics B Neuropsychiatry Genetics, 136, 81–86.Google Scholar
  12. Benveniste, H. (1991). The excitotoxin hypothesis in relation to cerebral ischemia. Cerebrovascular and Brain Metabolism Reviews, 3(3), 213–245.PubMedGoogle Scholar
  13. Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. Journal of the American Medical Association, 288, 728–737.PubMedGoogle Scholar
  14. Bjornsson, H. T., Fallin, M. D., & Feinberg, A. P. (2004). An integrated epigenetic and genetic approach to common human disease. Trends in Genetics, 8, 350–358.Google Scholar
  15. Bradley, C. (1937). The behavior of children receiving Benzedrine. American Journal of Psychiatry, 94, 577–585.Google Scholar
  16. Bradley, C. (1950). Benzedrine and dexedrine in the treatment of children’s behavior disorders. Pediatric, 5, 24–37.Google Scholar
  17. Braun, J., Kahn, R. S., Froehlich, T., Aulnger, P., & Lanphear, B. P. (2006). Exposures to environmental toxicants and attention deficit hyperactivity disorder in US children. Environmental Health Perspectives, 114, 1904–1909.PubMedGoogle Scholar
  18. Brookes, K., Xu, X., Chen, W., Zhou, K., Neale, B., Lowe, N., Aneey, R., Franke, B., Gill, M., Ebstein, R., Buitelaar, J., Sham, P., Campbell, D., Knight, J., Andreou, P., Altink, A., Amold, R., Boer, F., & Buschgens, et al. (2006). The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Molecular Psychiatry, 11, 934–953.PubMedGoogle Scholar
  19. Brookes, K. J., Mill, J., Guindalini, C., Curran, S., Xu, X, Knight, J., Chen, C. K., Huang, Y. S., Sethna, V., Taylor, E., Chen, W., Breen, G., & Asherson, P. (2006). A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Archives of General Psychiatry, 63, 74–81.PubMedGoogle Scholar
  20. Callinan, P. A., & Feinberg, A. P. (2006). The emerging science of epigenomics. Human Molecular Genetics, 15, R95–R101.PubMedGoogle Scholar
  21. Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., et al. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child Adolescent Psychiatry, 36, 374–383.Google Scholar
  22. Casey, B. J., & Durston, S. (2006). From behavior to cognition to the brain and back: What have we learned from functional imaging studies of attention deficit hyperactivity disorder? American Journal of Psychiatry, 163, 957–960.PubMedGoogle Scholar
  23. Casey, B. J., Amso, D., & Davidson, M. C. (2006). Learning about learning and development with neuroimaging. In M. Johnsons & Y. Munakata (Eds.), Attention and performance XXI: Processes of change in brain and cognitive development. Cambridge, MA: MIT.Google Scholar
  24. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., Puolton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–853.PubMedGoogle Scholar
  25. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.PubMedGoogle Scholar
  26. Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., Taylor, A., Arseneault, L., Williams, B., Braithwaite, A., Poulton, R., Craig, I. W. (2004). Moderation of the effect of adolescent-onset cannabis on adult psychosis by a functional polymorphism in the catechol-o-methyltransferase gene: longitudinal evidence of a gene x environment interaction. Biological Psychiatry, 57, 1117–1127.Google Scholar
  27. Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583–590.PubMedGoogle Scholar
  28. Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention -deficit/hyperactivity disorder. Journal of the American Medical Association, 288, 1740–1748.PubMedGoogle Scholar
  29. Castellanos, F. X. (1997). Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clinical Pediatrics. 36, 381–393.PubMedGoogle Scholar
  30. Clark, A. G., Boerwinkle, E., Hixson, & Sing, C. F. (2005) Determinants of the success of whole-genome association testing. Genome Research, 15, 1463–1467.PubMedGoogle Scholar
  31. Collier, D. A., Curran, S., & Asherson, P. (2000). Mission: Not impossible? Candidate studies in child psychiatric disorders. Molecular Psychiatry, 5, 457–460.PubMedGoogle Scholar
  32. Cook, E. H., Jr., Stein, M. A., Krasowski, M. D., Cox, N. J., Olkon, D. M., Kieffer, J. E., et al. (1995). Association of attention deficit disorder and the dopamine transporter gene. American Journal of Human Genetics, 56, 993–998.PubMedGoogle Scholar
  33. Coyle, J. & Snyder, S. (1969). Catecholamine uptake by synaptomsomes in homogenates of rat brains: stereospecificity in different areas. Journal of Pharmacolofy and Experimental Therapeutics, 170, 221–231.Google Scholar
  34. Crowe, R. R. (1993). Candidate genes in psychiatry: An epidemiological perspective. American Journal of Medical Genetics, 48, 74–77.PubMedGoogle Scholar
  35. Deutsch, C. K., Mattyhsse, S., Swanson, J. M., & Farkas, L. G. (1990). Genetic latent structure analysis of dysmorphology in attention deficit disorder. Journal of American Academy of Child Adolescent Psychiatry, 29, 189–194.Google Scholar
  36. Dolinoy, D. C., Weidman, J. R., Waterland, R. A., & Jirtle, R. L. (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environmental Health Perspectives, 114, 597–572.CrossRefGoogle Scholar
  37. Dougherty, D. D., Bonab, A. A., Spencer, T. J., Rauch, S. L., Madras, B. K., & Fischman, A. J. (1999). Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet, 354, 2132–2133.PubMedGoogle Scholar
  38. Durston, S., Fossella, J. A., Casey, B. J., Hulshoff Pol, H. E., Galvan, A., Schnack, H. G., Steenhuis, M. P., Minderaa, R. B., Buitelaar, J. K., Kahn, R. S., & van Engeland, H. (2005). Differential effects of DRD4 and DAT1 genotypes on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Molecular Psychiatry, 10, 678–685.PubMedGoogle Scholar
  39. Durston, S., Mulder, M., Casey, B. J., Ziermans, T., & van Engeland, H. (2006). Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biological Psychiatry, 60, 1062–1070.PubMedGoogle Scholar
  40. Faraone, S. V., Bierderman, J., Chen, W. J., Krifcher, B., Keenen, K., Moore, C., et al. (1992). Segregation analysis of attention deficit hyperactivity disorder. Psychiatric Genetics, 2, 257–275.Google Scholar
  41. Faraone, S. V., Doyle, A. E., Mick, E., & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158, 1052–1057.PubMedGoogle Scholar
  42. Ferris, R. M., Tang, F. L. M., & Maxwell, R. A. (1972). A comparison of the capacities of isomers of amphetamine, deoxypipradol and methylphenidate to inhibit the uptake of titrated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. Journal of Pharmacology and Experimental Therapeutics, 181, 407–416.PubMedGoogle Scholar
  43. Fisher, S. E., Francks, C., McCracken, J. T., McGough, J. J., Marlow, A. J., MacPhie, I. L., et al. (2002). A genome wide scan for loci involved in attention-deficit/hyperactivity disorder. American Journal of Human Genetics, 70, 1183–1196.PubMedGoogle Scholar
  44. Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Levin, E. D., Jaber, M., & Caron, M. G. (1999). Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science, 283, 397–401.PubMedGoogle Scholar
  45. Gillman, M. (2005). Developmental origins of health and disease. New England Journal of Medicine, 353, 1848–1850.PubMedGoogle Scholar
  46. Greenhill, L. L., Swanson, J. M., Steinhoff, K., Fried, J., Posner, K., Lerner, M., Wigal, S., Clausen, S. B., Zhang, Y., & Tulloch, S. (2003). A pharmacokinetic/pharmacodynamic study comparing a single morning dose of Adderall to twice-daily dosing in children with ADHD. Journal of American Academy of Child Adolescent Psychiatry, 42, 1234–1241.Google Scholar
  47. Gluckman, P. D., & Hanson, M. A. (2004). Living with the Past: Evolution, development, and patterns of disease. Science, 305, 1733–1736.PubMedGoogle Scholar
  48. Golding, J., Pembrey, M., Jones, R., & The ALSPAC study team. (2001). ALSPAC – The Avon longitudinal study of parents and children. I. study methodology. Paediatric Perinatal Epidemiology, 15, 74–87.Google Scholar
  49. Greenhill, L. L., Swanson, J. M., Steinhoff, K., Fried, J., Posner, K., Lerner, M., Wigal, S., Clausen, S. B., Zhang, Y., & Tulloch, S. (2003). A pharmacokinetic/pharmacodynamic study comparing a single morning dose of Adderall to twice-daily dosing in children with ADHD. Journal of American Academy of Child Adolescent Psychiatry, 42, 1234–1241.Google Scholar
  50. Hesse, S., Ballaschkle, O., Barthel, H., von Cramon, D., & Sabri, O. (2006). The striatal dopamine transporter availability is reduced in adults with attention-deficit/hyperactivity disorder. Journal of Nuclear Medicine, 47, 142.Google Scholar
  51. Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., & Eliopulos, D. (1990). Brain morphology in development dyslexia and attention deficit disorder/hyperactivity. Archive of Neurology, 47, 919–926.Google Scholar
  52. Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S., Eliopulos, D., & Lyytinen, H. (1991). Corpus callosum morphology in attention deficit hyperactivity disorder: morphometric analysis of MRI. Journal of Learning Disabilities, 24, 141– 146.PubMedGoogle Scholar
  53. Hynd, G. W., Hern, K. L., Novey, E. S., et al. (1993). Attention-deficit hyperactivity disorder and asymmetry of the caudate nucleus. Journal of Child Neurology, 8, 339–347.PubMedCrossRefGoogle Scholar
  54. Inskip, H. M., Godfrey, K. M., Robinson, S. M., Law, C. M., Barker, D. J. P., Cooper, C., & The SWS Study Group. (2006). Cohort profile: The Southampton women’s survey. International Journal of Epidemiology, 35, 42–48.PubMedGoogle Scholar
  55. Jaakkola, J. J. K., Jaakkola, N., & Zahisen, K. (2001). Fetal growth and length of gestation in relation to exposure to environmental tobacco smoke assessed by hair nicotine concentration. Environmental Health Perspectives, 109, 557–561.PubMedGoogle Scholar
  56. Jacobson, S. W., Carr, L. G., Croxford, J., Sokol, R. J., Li, T.-K., & Jabobson, J. L. (2006). Protective effect of the alcohol dehydrogenase-ADH1B allele in children exposed to alcohol during pregnancy. Journal of Pediatrics, 148, 30–37.Google Scholar
  57. Javaid, M. K., Crozier, S. R., Harvey, N. C., et al. (2005). Maternal and seasonal predictors of change in calcaneal quantitative ultrasound during pregnancy. Journal of Clinical Endocrinology and Metabolism, 90, 5182–5187.PubMedGoogle Scholar
  58. Jin, Z., Zang, Y. F., Zeng, Y. W., Zhang, L., & YF Wang. (2001). Striatial neuronal loss or dysfunction and choline rise in children with attention-deficit hyperactivity disorder: A 1H-magnetic resonance spectroscopy study. Neuroscience Letters, 315, 45–48.PubMedGoogle Scholar
  59. Jensen, P. S., Mrazek, D., Knapp, P. K., Steinberg, L., Pfeffer, C., Schowalter, J., & Shapiro, T. (1997). Evolution and revolution in child psychiatry: ADHD as a disorder of adaptation. Journal of American Academy of Child Adolescent Psychiatry, 36, 1672–1679.Google Scholar
  60. Jensen, P. S., Kettle, L., Roper, M. T., Sloan, M. T., Dulcan, M. K., Hoven, C., Bird, H. R., Bauermiester, J. J., & Payne, J. (1999). Are stimulants overprescribed? Treatment of ADHD in four US communities. Journal of American Academy of Child Adolescent Psychiatry, 38, 797–804.Google Scholar
  61. Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biological Psychiatry, 57, 229–238.PubMedGoogle Scholar
  62. Kahn, R. S., Khoury, J., Nichols, W. C., & Lanphear, B. P. (2003). Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive-impulsive, inattentive, and oppositional behaviors. Journal of Pediatrics, 143, 104–110.PubMedGoogle Scholar
  63. Knopik, V. S., Health, A. C., Jacob, T., Slutske, W. S., Bucholz, K. K., Madden, P. A. F., Walron, M., & Martin, N. G. (2006). Maternal alcohol use disorder and offspring ADHD: Disentangling genetic and environmental effects using a children-of-twins design. Psychological Medicine, 36, 1461–1471.PubMedGoogle Scholar
  64. Konrad, K., Gauggel, S., & Schurek, J. (2003). Catecholamine functioning in children with traumatic brain injuries and children with attention-deficit/hyperactivity disorder. Cognitive Brain Research, 16, 425–433.PubMedGoogle Scholar
  65. Krageloh-Mann, I., Toft, P. B., Lunding, J., Andresen, J., Pryds, O., & Lou, H. C. (1999). Brain lesions in preterms: origin, consequences and compensation. Acta Paediatrica, 88, 897– 908.PubMedGoogle Scholar
  66. LaHoste, G. J., Swanson, J. M., Wigal, S. B., Glabe, C., Wigal, T., King, N., & Kennedy, J. L. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Molecular Psychiatry, 1, 121–124.PubMedGoogle Scholar
  67. Lahti, J., Raikkonen, K., Kajantie, E., Heinonen, K., Pesonen, A. K., Jarvenpaa, A. L., et al. (2006). Small body size at birth and behavioural symptoms of ADHD in children aged five to six years. Journal of Child Psychology and Psychiatry, 47, 1167– 1174.PubMedGoogle Scholar
  68. Langley, K., Marshall, L., Van Den Bree, M., Thomas, H., Owen, M., O’Donovan, M., et al. (2004). Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. American Journal of Psychiatry, 161, 133–138.PubMedGoogle Scholar
  69. Langhoff-Roos, J., Kesmodel, U., Jacobson, B., & Voget, I. (2006). Spontaneous preterm delivery in primiparous women at low risk in Denmark: A population based study. British Medical Association, 332, 937–939.Google Scholar
  70. Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield, R. L., Dietrich, K. N., Bornschein, R., Greene, T., Rothenberg, S. J., Needleman, H. L., Schnaas, L., Wasserman, G., Graziano, J., & Roberts, R. (2006). Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environtal Health Perspective, 113, 894–899.CrossRefGoogle Scholar
  71. Lanphear, B. P., & Bearer, C. F. (2006) Biomarkers in paediatric research and practice. Sdc bmjjouranls, 594–600.Google Scholar
  72. Lee, J. S., Kim, B. N., Kang, E., Lee, D. S., Kim, Y. K., Chung, J. K., Lee, M. C., & Cho, S. C. (2005). Regional cerebral blood flow in children with attention deficit hyperactivity disorder: comparison before and after methylphenidate treatment. Human Brain Mapping, 24, 157–164.PubMedGoogle Scholar
  73. Levy, F. (1991). The dopamine theory of attention deficit hyperactivity disorder (ADHD). Australian and New Zealand Journal of Psychiatry, 25, 277–283.PubMedGoogle Scholar
  74. Linett, K., Dalsgaard, S., Obel, C., Wisbord, K., Henriksen, T. B., Rodriguez, A., Kotimaa, A., Moilanen, I., Thomsen, P. H., Olsen, J., & Jarvelin, M. (2005). Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: Review of the current evidence. American Journal of Psychiatry, 160, 1026–1040.Google Scholar
  75. Linett, K. M., Wisborg, K., Agerbo, E., Sechor, N. J., Thomsen, P. H., & Henriksen, T. B. (2006). Gestational age, birth weight, and the risk of hyperkinetic disorder. Archive of Disease Childhood, 91, 655–660.Google Scholar
  76. Lou, H. C., Henriksen, L., & Bruhn, P. (1990). Focal cerebral dysfunction in developmental learning disabilities. Lancet, 335, 8–11.PubMedGoogle Scholar
  77. Lou, H. C. (1996). Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): Significance of prematurity and perinatal hypoxis-haemodynamic encephalophy. Acta Paediatrics, 85, 1266–1271.Google Scholar
  78. Lucas, J. S., Inskip, H. M., Godfrey, G. M., et al. (2004). Small size at birth and greater postnatal weight gain: relations to diminished infant lung function. American Journal of Respiratory and Critical Care Medicine, 170, 534–540.PubMedGoogle Scholar
  79. Madras, B. K., Fischman, A. J., & Meltzer, P. C. (2006). Methods for diagnosing and monitoring treatment ADHD by assessing the dopamine transporter level. US Patent Office, #7,081,238.Google Scholar
  80. Mallard, E. C., Waldvogel, H. J., Willaims, C. E., Faull, R. L. M., & Cluckman, P. D. (1995). Repeated asphyxia causes loss of striatal projection neurons in the fetal sheep brain. Neuroscience, 65, 827–836.PubMedGoogle Scholar
  81. Manor, I., Tyano, S., Eisenberg, J., Bachner-Melman, R., Kotler, M., & Ebstein, R. P. (2002). The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Molecular Psychiatry, 7, 790–794.PubMedGoogle Scholar
  82. Martel, M. M., Breslau, N., & Nigg, J. T. (2006). Sex differences in the pathway from low birth weight to inattention/hyperactivity. Journal of Abnormal Child Psychology, (in press).Google Scholar
  83. Max, J. E., Fox, P. T., Lancaster, J. L., Kochunov, P., Mathews, K., Manes, F. F., et al. (2002). Putamen lesions and the development of attention-deficit/hyperactivity symptomatology. Journal of American Academic and Child Adolescent Psychiatry, 41, 563–571.Google Scholar
  84. Max, J. E., Koele, S. L., Smith, W. L. J., Sato, Y., Lindgren, S. D., Robin, D. A., et al. (1998). Psychiatric disorders in children and adolescents after severe traumatic brain injury: a controlled study. Journal of American Academic and Child Adolescent Psychiatry, 37, 832–840.Google Scholar
  85. McCracken, J., Biederman, J., Greenhill, L., Swanson, J., McGough, J., Spencer, T., et al. (2003). Analog classroom assessment of a once-daily mixed amphetamine formulation, SLI381 (Adderall XR), in children with ADHD. Journal of American Academic and Child Adolescent Psychiatry, 42, 673–683.Google Scholar
  86. Mill, J., Caspi, A., Williams, B. S., Craig, I., Taylor, A., Polo-Tomas, M., Berridge, C. W., Poulton, R., & Moffitt, T. E. (2006). Prediction of heterogeneity in intelligence and adult prognosis by genetic polymorphisms in the dopamine system among children with attention-deficit/hyperactivity disorder. Archive of General Psychiatry, 63, 462–469.Google Scholar
  87. Millberger, S., Biederman, J., Faraone, S. V., Chen, L., & Jones, L. (1996). Is maternal smoking during pregnancy a risk factor for attention deficit hyperactivity disorder in children? American Journal of Psychiatry. 153, 1138–1142.Google Scholar
  88. MTA Cooperative Group. (1999). Multimodal treatment study of children with ADHD. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Archive of General Psychiatry, 56, 1073–1086.Google Scholar
  89. Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neuroscience, 28, 456–463.Google Scholar
  90. Mick, E., Biederman, J., Faraone, S. V., Sayer, J., & Kleinman, S. (2002). Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug-use during pregnancy. Journal of American Academic and Child Adolescent Psychiatry, 41, 378–385.Google Scholar
  91. MMWR. (2005). Mental health in the United States: Prevalence of diagnosis and medication treatment for attention-deficit/hyperactivity disorder. 54, 842–847.Google Scholar
  92. MTA Cooperative Group. (1999). Multimodal treatment study of children with ADHD. A 140 month randomized clinical trail of treatment strategies for attention deficit/hyperactivity disorder. Archive of General Psychiatry, 56, 1073–1086.Google Scholar
  93. Neto, P., Lou, H., Cumming, P., Pryds, O., & Gjedde, A. (2002). Methylphenidate-evoked potentiation of extracellular dopamine in the brain of adolescents with premature birth. Annales of NY Academic Science, 965, 434–439.CrossRefGoogle Scholar
  94. Nigg, J. (2005). Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: The state of the field and salient challenges for the coming decade. Biological Psychiatry, 57, 1424–1435.PubMedGoogle Scholar
  95. Nigg, J. T. (2006). What causes ADHD? Toward a multi-path model for understanding what goes wrong and why. New York: Guilford Press.Google Scholar
  96. Nigg, J. T., & Casey, B. J. (2005). An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Development and Psychopathology, 17, 785–806.PubMedGoogle Scholar
  97. Ogdie, M., Macphie, I. L., Minassian, S. L., Yang, M., Fisher, S. E., Francis, C. F., Cantor, R. M., MacCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P., & Smalley, S. L. (2003). A genome wide scan for attention-deficit/hyperactivity disorder: Suggestive linkage on 17p11. American Journal of Human Genetic, 72, 1268–1279.Google Scholar
  98. Pavese, A., Heidrich, A., Sohlberg, M. M., Laughlin, K. A., & Posner, M. I. (2004). Pathologies of attentional networks following traumatic brain injury. Unpublished Manuscript.Google Scholar
  99. Pelham, W. E., Gnagy, E. M., Chronis, A. M., et al. (1999). A comparison of morning-only and morning/late afternoon Adderall to morning-only, twice-daily, and three times-daily methylphenidate in children with attention-deficit/hyperactivity disorder. Pediatrics, 104, 1300–1311.PubMedGoogle Scholar
  100. Pliszka, S. R., Glahn, D. C., Semrud-Clikeman, M., Franklin, C., Perez, R., Xiong, J., & Liotti, M. (2006). Neuroimaging of inhibitory control areas in children with attention deficit hyperactivity disorder who were treatment naïve or in long-term treatment. American Journal of Psychiatry, 163, 1052–1060.PubMedGoogle Scholar
  101. Plizska, S. R., McCracken, J. T., & Maas, J. W. (1996). Catecholamines in attention-deficit hyperactivity disorder: current perspectives. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 264–272.CrossRefGoogle Scholar
  102. Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York: Scientific American Library.Google Scholar
  103. Purcell, S. (2004). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554–571.Google Scholar
  104. Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–1517.PubMedGoogle Scholar
  105. Robinson, S. M., Crozier, S. R., Borland, S. E., Hammond, J., Barker, D. J. P., & Inskip, H. M. (2004). Impact of educational attainment on the quality of young women’s diets. European Journal of Clinical Nutrition, 58, 1174–1180.PubMedGoogle Scholar
  106. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., Simmons, A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. American Journal of Psychiatry, 156, 891–896.PubMedGoogle Scholar
  107. Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene-environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology Psychiatry, 47, 226–261.Google Scholar
  108. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.PubMedGoogle Scholar
  109. Seeman, P., & Madras, B. K. (1998). Anti-hyperactivity medication: Methylphenidate and amphetamine. Molecular Psychiatry, 3, 370–372.Google Scholar
  110. Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., Giedd, J., Castellanos, F. X., & Rapoport, J. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archive of General Psychiatry, 63, 540–549.Google Scholar
  111. Sing, C. F., Stengård, J. H., & Kardia, S. L. R. (2003) Genes, environment, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1190–1196.PubMedGoogle Scholar
  112. Smith, A., Taylor, E., Brammer, M., Toone, B., & Rubia, K. (2006). Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naïve children and adolescents with attention deficit hyperactivity disorder. American Journal of Psychiatry, 163, 1044–10451.PubMedGoogle Scholar
  113. Solanto, M. V. (1998). Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit/hyperactivity disorder: a review and integration. Behavioral and Brain Research, 94, 127–152.Google Scholar
  114. Sonuga-Barke, E. J. S. (2003). The dual pathway model of AD/HD: An elaboration of neuron-developmental characteristics. Neuroscience and Behavioral Reviews, 27, 593–604.Google Scholar
  115. Spencer, T. J., Biederman, J., Ciccone, P. E., Madras, B. K., Dougherty, D. D., Bonab, A. A., Livni, E., Parasrampuria, D. A., & Fischman, A. J. (2006). PET study examining pharmacokinetics, detection, and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. American Journal of Psychiatry, 163, 387–195.PubMedGoogle Scholar
  116. Spencer, T. J., Biederman, J., Madras, B. K., Faraone, S. V., Dougherty, D. D., Bonab, A. A., & Fischman, A. J. (2005). In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: A focus on the dopamine transporter. Biological Psychiatry, 57, 1293– 1300.PubMedGoogle Scholar
  117. Stefanatos, G. A., & Joe, W. (2007). Autistic disorder. In J. E. Morgan & J. H. Richer (Eds.), Textbook of Clinical Neuropsychology. Netherlands: Swets and Zeilinger.Google Scholar
  118. Stevenson, J. (1992). Evidence for a genetic etiology in hyperactivity in children. Behavior Genetics, 22, 337–344.PubMedGoogle Scholar
  119. Swanson, J. M., Castellanos, X. F., Murias, M., & Kennedy, J. (1998). Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Current Opinion in Neurobiology, 8, 263–271.PubMedGoogle Scholar
  120. Swanson, J. M., Wigal, S. B., Greenhill, L., Browne, R., Waslik, B., Lerner, M., Williams, L., Flynn, D., Agler, D., Crowley, K., Fineberg, E., Baren, M., & Cantwell, D. (1998). Analog classroom assessment of Adderall in children with ADHD. Journal of American Academy of Child Adolescent and Psychiatry, 37(5), 519–526.Google Scholar
  121. Swanson, J. M., Sunohara, G. A., Kennedy, J. L., Regino, R., Fineberg, E., Wigal, T., Lerner, M., Williams, L., LaHoste, G. J., & Wigal, S. (1998). Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Molecular Psychiatry, 3(1), 38–41.PubMedGoogle Scholar
  122. Swanson, J. M., Gupta, S., Guinta, D., Flynn, D., Agler, D., Lerner, M., Williams, L., Shoulson, I., & Wigal, S. (1999). Acute tolerance to methylphenidate in the treatment of attention deficit hyperactivity disorder in children. Clinical Pharmacology and Therapeutics, 66, 295–305.PubMedCrossRefGoogle Scholar
  123. Swanson, J., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., Murias, M., Moriarty, J., Barr, C., Smith, M., & Posner, M. (2000). Dopamine genes and ADHD. Neuroscience and Biobehavioral Reviews, 24, 21–25.PubMedGoogle Scholar
  124. Swanson, J., Moyzis, R., Fossella, J., Fan, J., & Posner, M. (2002). Adaptationism and molecular biology: An example based on ADHD. Behavioral and Brain Sciences, 25(4 August), 530–531.Google Scholar
  125. Swanson, J., Gupta, S., Lam, A., Shoulson, I., Lerner, M., Modi, N., Lindemulder, E., & Wigal, S. (2003). Development of a new once-a-day formulation of methylphenidate for the treatment of ADHD: Proof-of-concept and proof-of-product studies. Archive of General Psychiatry, 60, 204–211.Google Scholar
  126. Swanson, J. M., Casey, B. J., Nigg, J., Castellanos, F. X., Volkow, N. D., & Taylor, E. (2004). Clinical and cognitive definitions of attention deficits in children with attention-deficit/hyperactivity disorder. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 430–445). New York, NY: Guilford.Google Scholar
  127. Swanson, J. M., Hinshaw, S. P., Arnold, L. E., Gibbons, R., Marcus, S., Hur, K., Jensen, P. S., Vitiello, B., Abikoff, H., Greenhill, L. L., Hechtman, L., Pelham, W., Wells, K., Conners, C. K., Elliott, G., Epstein, J., Hoagwood, K., Hoza, B., Molina, B., Newcorn, J. H., Severe, S., Odbert, C., Wigal, T., & The MTA Cooperative Group. (2007). Secondary evaluations of MTA 36-month outcomes: Propensity score and growth mixture model analyses. Journal of American Academy of Child Adolescent and Psychiatry, (in press).Google Scholar
  128. Tamm, L., Menon, V., & Reiss, A. L. (2006). Parietal attentional system aberrations during target detection in adolescents with attention deficit hyperactivity disorder: event-related fMRI evidence. Amrican Journal of Psychiatry, 163, 957–60.Google Scholar
  129. Taylor, E., & Rogers, J. W. (2005). Practitioner review: early adversity and developmental disorders. Journal of Child Psychology and Psychiatry, 46, 451–467.PubMedGoogle Scholar
  130. Valera, E., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2006). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biology Psychiatry, (Epub, 2006).Google Scholar
  131. Van Dyck, C. H., Mallison, R. T., Jacobson, L. K., et al. (2002). Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 Gene. Journal of Nuclear Medicine, 48, 745–751.Google Scholar
  132. Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance imaging study. Proceedings of National Academic Science U S A, 95, 14494–14499.Google Scholar
  133. Volkow, N. D., Ding, Y. S., Fowler, J. S., Wang, G. J., Logan, J., Gatley, J. S., et al. (1995) Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in human brain. Archive of General Psychiatry, 52, 456–463.Google Scholar
  134. Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., et al. (2001). Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. Journal of Neuroscience, 21(2), U1–U5.Google Scholar
  135. Volkow, N. D., Fowler, J. S., Wang, G. J., Dewey, S. L., Schlyer, D., MacGregor, R., et al. (1993). Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain [published erratum appears in]. Journal of Nuclear Medicine, 34, 609–613.PubMedGoogle Scholar
  136. Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Franceschi, D., Maynard, L. et al. (2002). Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: Therapeutic implications. Synapse, 43, 181–187.PubMedGoogle Scholar
  137. Volkow, N. D., Wang, G. J., Ma, Y., Fowler, J. S., Zhu, W., Maynard, L., et al. (2003). Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. Journal of Neuroscience, 23, 11461–11468.PubMedGoogle Scholar
  138. Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, J. S., Logan, J., Ding, Y. S., Hitzemann, R., & Pappas, N. (1998). Dopamine transporter occupancies in the human brain induced by therapeutic does of oral methylphenidate. American Journal of Psychiatry, 155, 1325–1331.PubMedGoogle Scholar
  139. Volkow, N. D., & Swanson, J. M. (2003). Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. American Journal of Psychiatry, 160(11), 1909– 1918.PubMedGoogle Scholar
  140. Volkow, N. D., & Swanson, J. M. (2006) Neurochemistry and basic psychopharmacology. Rutter’s Child and Adolescent Psychiatry (5th Edition).Google Scholar
  141. Volpe, J. J. (1997). Brain injury in the premature infant—from pathogenesis to prevention. Brain & Development, 19, 519–534.Google Scholar
  142. Wadhwa, P. D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychneuroendocrinology, 30, 724–743.Google Scholar
  143. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407.PubMedGoogle Scholar
  144. Wallace, D. C. (2005). The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement. Gene, 354, 169–180.PubMedGoogle Scholar
  145. Waterland, R. A., & Jirtle, R. L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhances susceptibility to adult chronic diseases. Nutrition, 20, 63–68.PubMedGoogle Scholar
  146. Weaver, I. C. G., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S., Meaney, M. J., & Szyf, M. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 25, 11045–11054.PubMedGoogle Scholar
  147. Wender, P. (1971). Minimal brain dysfunction in children. New York: Wiley-Liss.Google Scholar
  148. Wiles, N. J., Peters, T. J., Heron, J., Gunnell, D., Amond, A., & Lewis, G. (2006). Fetal growth and childhood behavioral problems: Results from the ALSPAC cohort. American Journal of Epidemiology, 163, 829–837.PubMedGoogle Scholar
  149. Zametkin, A. J., Nordahl, T. E., Gross, M., King, A. C., Semple, W. E., Rumsey, J., Hamburger, S., & Cohen, R. M. (1990). Cerebral glucose metabolism in adults with hyperactivity of childhood onset. New England Journal of Medicine, 323, 1361–1366.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • James M. Swanson
    • 1
    Email author
  • Marcel Kinsbourne
    • 2
  • Joel Nigg
    • 3
  • Bruce Lanphear
    • 4
  • Gerry A. Stefanatos
    • 5
  • Nora Volkow
    • 6
  • Eric Taylor
    • 7
  • B. J. Casey
    • 8
  • F. Xavier Castellanos
    • 9
  • Pathik D. Wadhwa
    • 10
  1. 1.Department of PediatricsUniversity of CaliforniaIrvineUSA
  2. 2.Department of PsychologyNew School of Social ResearchNew YorkUSA
  3. 3.Department of PsychologyMichigan State UniversityEast LansingUSA
  4. 4.Department of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Cognitive Neuropysiology LaoratoryAlbert Einstein Medical CenterPhiladelphiaUSA
  6. 6.National Institute of Drug Abuse and Brookhaven National LaboratoryRockvilleUSA
  7. 7.Department of Child PsychiatryInstitute for PsychiatryLondonUK
  8. 8.Weill College of Medicine at Cornell UniversitySackler InstituteNew YorkUSA
  9. 9.Department of Child Psychiatry & AdolescentNew York UniversityNew YorkUSA
  10. 10.Department of Psychiatry and OB/GYNUniversity of CaliforniaIrvineUSA

Personalised recommendations