Abstract
With advances in surgical procedures, neuropsychological assessment after congenital heart defects and pre, peri- and/or postoperative predictors of adverse outcome has become an important focus in research. We aim to summarize neuropsychological sequelae associated with different types of congenital heart defects, critically review the methodology used in more than 20 empirical studies that were retrieved from biomedical electronic search engines, and identify possible directions for future research. Despite the lack of adequate control groups and long-term studies, there seem to be some cognitive deficits. The largest group of children with isolated congenital heart defects present with normal intellectual capacities. However, they tend to show language deficits and motor dysfunction. Although performances on memory tasks are good, unambiguous conclusions concerning their attentional and executive functioning are still lacking. Serious behavioral problems are not an issue. In addition to a detailed description of the (neuro) psychological consequences of pediatric cardiac surgery, an overview of the predictors of the cognitive defects is provided.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aldèn, B., Gilljam, T., & Gillberg, C. (1998). Long term psychological outcome of children after surgery for transposition of the great arteries. Acta Paediatrica, 87, 405–410.
Bellinger, D. C., Rappaport, L. A., Wypij, D., Wernovsky, G., & Newburger, J. W. (1997). Patterns of developmental dysfunction after surgery during infancy to correct transposition of the great arteries. Journal of Developmental and Behavioral Pediatrics, 18(2), 75–83.
Bellinger, D. C., Wernovsky, G., Rappaport, L. A., Mayer, J. E., Castaneda, A. R., Farrell, D. M., Wessel, D. L., Lang, P., Hickey, P. R., Jonas, R. A., & Newburger, J. W. (1991). Cognitive development of children following early repair of transposition of the great arteries using deep hypothermic circulatory arrest. Pediatrics, 87(5), 701–707.
Bellinger, D. C., Wypij, D., du Plessis, A. J., Rappaport, L. A., Riviello, J., Jonas, R. J., & Newburger, J. W. (2001). Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. Journal of Thoracic and Cardiovascular Surgery, 121(2), 374–383.
Bellinger, D. C., Wypij, D., Kuban, K. C. K., Rappaport, L. A., Hickey, P. R., Wernovsky, G., Jonas, R. A., & Newburger, J. W. (1999). Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation, 100(5), 526–532.
Bruns, L. A., Chrisant, M. K., Lamour, J. M., Shaddy, R. E., Pahl, E., Blume, E. D., Hallowell, S., Addonizio, L. J., & Canter, C. E. (2001). Carvedilol as therapy in pediatric heart failure: An initial multicenter experience. Journal of Pediatrics, 138(4), 505–511.
Colemann, K. (2002). Genetic counseling in congenital heart disease. Critical Care Nursing Quarterly, 25(3), 8–16.
Connolly, D., Rutkowski, M., Auslender, M., & Artman, M. (2001). The New York University Pediatric Heart Failure Index: A new method of quantifying chronic heart failure severity in children. Journal of Pediatrics, 138(5), 644–648.
Dickinson, D. F., & Sambrooks, J. E. (1979). Intellectual performance in children after circulatory arrest with profound hypothermia in infancy. Archives of Disease in Childhood, 54, 1–6.
Dittrich, H., Bührer, C., Grimmer, I., Dittrich, S., Abdul-Khaliq, H., & Lange, P. E. (2003). Neurodevelopment at 1 year of age in infants with congenital heart disease. Heart, 89(4), 436–441.
Ekroth, R., Thompson, R. J., Lincoln, C., Scallan, M., Rossi, R., & Tsang, V. (1989). Elective deep hypothermia with total circulatory arrest: Changes in plasma creatine kinease BB, blood glucose, and clinical variables. Journal of Thoracic and Cardiovascular Surgery, 97, 30–35.
Feldt, R. H., Ewart, J. C., Stickler, G. B., & Weidman, W. H. (1969). Children with congenital heart disease. American Journal of Diseases in Children, 117, 281–287.
Forbess, J. M., Visconti, K. J., Bellinger, D. C., Howe, R. J., & Jonas, R. A. (2002). Neurodevelopmental outcomes after biventricular repair of congenital heart defects. Journal of Thoracic and Cardiovascular Surgery, 123(4), 631–639.
Forbess, J. M., Visconti, K. J., Hancock-Friesen, C., Howe, R. C., Bellinger, D. C., & Jonas, R. A. (2002). Neurodevelopmental outcome after congenital heart surgery: Results from an institutional registry. Circulation, 106(13), I95–I102.
Gaynor, J. W., Gerdes, M., Zackai, E. H., Bernbaum, J., Wernovsky, G., Clancy, R. R., Newman, M. F., Saunders, A. M., Heagerty, P. J., D’Agostino, J. A., McDonald-McGinn, D., Nicolson, S. C., Spray, T. L., & Jarvik, G. P. (2003). Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 126, 1736–1745.
Hamrick, S. E. G., Gremmels, D. B., Keet, C. A., Leonard, C. H., Connell, J. K., Hawgood, S., & Piecuch, R. E. (2003). Neurodevelopmental outcome of infants supported with extracorporeal membrane oxygenation after cardiac surgery. Pediatrics, 111(6), E671–E675.
Haneda, K., Itoh, T., Togo, T., Ohmi, M., & Mohri, H (1996). Effects of cardiac surgery on intellectual function in infants and children. Cardiovascular Surgery, 4(3), 303–307.
Hoffman, J. I., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of American College of Cardiology, 39,1890–1900.
Hövels-Gürich, H. H., Seghaye, M. C., Däbritz, S., Messmer, B. J., & von Bernuth, G. (1997). Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. Journal of Thoracic and Cardiovascular Surgery, 114(4), 578–585.
Hövels-Gürich, H. H., Seghaye, M. C., Schnitker, R., Wiesner, M., Huber, W., Minkenberg, R., Kotlarek, F., Messmer, B. J., & von Bernuth, G. (2002). Long-term neurodevelopmental outcomes in school-aged children after neonatal arterial switch operation. Journal of Thoracic and Cardiovascular Surgery, 124(3), 448–458.
Hövels-Gürich, H. H., Seghaye, M. C., Sigler, M., Kotlarek, F., Bartl, A., Neuser, J., Minkenberg, R., Messmer, B. J., & von Bernuth, G. (2001). Neurodevelopmental outcome related to cerebral risk factors in children after neonatal arterial switch operation. Annals of Thoracic Surgery, 71(3), 881–888.
Jonas, R. A., Wypij, D., Roth, S. J., Bellinger, D. C., Visconti, K. J., du Plessis, A. J. Goodkin, H., Laussen, P. C., Farrell, D. M., Bartlett, J., McGrath, E., Rappaport, L. J., Bacha, E. A., Forbess, J. M., & del Nido, P. (2003). The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. Journal of Thoracic and Cardiovascular Surgery, 126, 1764–1774.
Kern, J. H., Hinton, V. J., Nereo, N. E., Hayes, C. J., & Gersony, W. M. (1998) Early developmental outcome after the Norwood procedure for hypoplastic left heart syndrome. Pediatrics, 102(5), 1148–1152.
Kirkham, F. J. (1998). Recognition and prevention of neurological complications in pediatric cardiac surgery. Pediatric Cardiology, 19, 331–345.
Lewis, F. J., & Taufic, M. (1953). Closure of atrial septal defects with the aid of hypothermia: Experimental accomplishments and the report of one successful case. Surgery, 32, 52–59.
Limperopoulos, C., Majnemer, A., Shevell, M. I., Rohlicek, C., Rosenblatt, B., Tchervenkov, C., & Darwish, H. Z. (2002). Predictors of developmental disabilities after open-heart surgery in young children with congenital heart defects. Journal of Pediatrics, 141(5), 51–58.
Limperopoulos, C., Majnemer, A., Shevell, M. I., Rosenblatt, B., Rohlicek, C., & Tchervenkov, C. (1999). Neurologic status of newborns with congenital heart defects before open-heart surgery. Pediatrics, 103(2), 402–408.
Linde, L. M., Rasof, B., & Dunn, O. (1967). Mental development in congenital heart disease. Journal of Pediatrics, 71, 198–203.
Mahle, W. T., Clancy, R. R., Moss, E. M., Gerdes, M., Jobes, D. R., & Wernovsky, G. (2000). Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics, 105(5), 1082–1089.
Mahle, W. T., Spray, T. L., Wernovsky, G., Gaynor, J. W., & Clark, B. J. (2000). Survival after reconstructive surgery for hypoplastic left heart syndrome: a 15-year experience from a single institution. Circulation, 102, III136—III141.
Mahle, W. T., Tavani, F., Zimmerman, R. A., Nicolson, S. C., Galli, K. K., Gaynor, W., Clancy, R. R., Montenegro, L. M., Spray, T. L., Chiavacci, R. M., Wernovsky, G., & Kurth, C. D. (2002). An MRI study of neurological injury before and after congenital heart surgery. Circulation, 106(suppl I), I109–I114.
May, L. E. (2001). Pediatric Heart Surgery: A ready reference for professionals. 2nd edn. Milwaukee, Wis: Maxishare.
McConnell, J. R., Fleming, W. H., Chu, W. K., Hahn, F. J., Sarafan, L. B., Hofschire, P. J., & Kugler, J. D. (1990). Magnetic resonance imaging of the brain in infants and children before and after cardiac surgery. A prospective study. American Journal of Diseases in Children, 144(3), 374–378.
Miller, G., & Vogel, H. (1999). Structural evidence of injury or malformations in the brains of children with congenital heart disease. Seminars in Pediatric Neurology, 6, 20–26.
Miller, G., Tesman, J. R., Ramer, J. C., Baylen, B. G., & Myers, J. L. (1996). Outcome after open-heart surgery in infants and children. Journal of Child Neurology, 11, 49–53.
Newburger, J. W., Jonas, R. A., Wernovsky, G., Wypij, D., Hickey, P. R., Kuban, K. C. K., Farrell, D. M., Holmes, G. L., Helmers, S. L., Constantinou, J., Carrazana, E., Barlow, J. K., Walsh, A. Z., Lucius, K. C., Share, J. C., Wessel, D. L., Hanley, F. L., Mayer, J. E., Castaneda, A. R., & Ware, J. H. (1993). A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart-surgery. New England Journal of Medicine, 329(15), 1057–1064.
Newburger, J. W., Wypij, D., Bellinger, D. C., du Plessis, A. J., Kuban, K. C. K., Rappaport, L. A., Almirall, D., Wessel, D. L., Jonas, R. A., & Wernovsky, G. (2003). Length of stay after infant heart surgery is related to cognitive outcome at age 8 years. Journal of Pediatrics, 143, 67–73.
Nuutinen, M., Koivu, M., & Rantakallio, P. (1989). Long-term outcome for children with congenital heart defects. Arctic Medical Research, 48, 175–184.
O’Dougherty, M., Wright, F. S., Garmezy, N., Lowenson, R. B., & Torres, F. (1983). Later competence and adaptation in infants who survive severe heart defects. Child Development, 54, 1129–1142.
O’Dougherty, M., Wright, F. S., Loewenson, R. B., & Torres, F. (1985). Cerebral dysfunction after chronic hypoxia in children. Neurology, 35, 42–46.
Oates, R. K., Simpson, J. M., Cartmill, T. B., & Turnbull, J. A. B. (1995a). Intellectual function and age of repair in cyanotic congenital heart disease. Archives of Disease in Childhood, 72(4), 298–301.
Oates, R. K., Simpson, J. M., Turnbull, J. A. B., & Cartmill, T. B. (1995 b) The relationship between intelligence and duration of circulatory arrest with deep hypothermia. Journal of Thoracic and Cardiovascular Surgery, 110(3), 786–792.
Rappaport, L. A., Wypij, D., Bellinger, D. C., Helmers, S. L., Holmes, G. L., Barnes, P. D., Wernovsky, G., Kuban, K. C. K., Jonas, R. A. & Newburger, J. W. (1998). Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Circulation, 97, 773–779.
Rasof, B., Linde, L. M., & Dunn, O. (1967). Intellectual development in children with congenital heart disease. Child Development, 38, 1043–1053.
Rogers, B. T., Msall, M. E., Buck, G. M., Lyon, N. R., Norris, M. K., Roland, J. M. A., Gingell, R. L., Cleveland, D. C., & Pieroni, D. R. (1995). Neurodevelopmental outcome of infants with hypoplastic left heart syndrome. Journal of Pediatrics, 126(3), 496–498.
Rosenthal, A. (1967). Visual simple reaction time in cyanotic heart disease. American Journal of Diseases in Children, 114, 139–143.
Rossi, R., Ekroth, R., Lincoln, C., Jackson, A. P., Thompson, R. J., Scallan, M., & Tsang, V. (1986). Detection of cerebral injury after total circulatory arrest and profound hypothermia by estimation of specific creatine kinase isoenzyme levels using monoclonal antibody techniques. American Journal of Cardiology, 58(13), 1236–1241.
Rossi, R., vander Linden, J., Ekroth, R., Scallan, M., Thompson, R. J., & Lincoln, C. (1989). No flow or flow: a study of ischemic marker creatine kinase BB after deep hypothermic procedures. Journal of Thoracic and Cardiovascular Surgery, 98, 193–199.
Scallan, M. J. H. (2003). Brain injury in children with congenital heart disease. Paediatric Anesthesia, 13, 284–293.
Sharma, R., Choudhary, S. K., Mohan, M. R., Padma, M. V., Jain, S., Bhardwaj, M., Bhan, A., Kiran, U., Saxena, N., & Venugopal, P. (2000). Neurological evaluation and intelligence testing in the child with operated congenital heart disease. Annals of Thoracic Surgery, 70, 575–581.
Silbert, A., Wolff, P. H., Mayer, A., Rosenthal, A., & Nada, A. S. (1969). Cyanotic heart disease and psychological development. Pediatrics, 43(2), 192–200.
Treasure, T., Naftel, D. C., Conger, K. A., Garcia, J. H., Kirklin, J. W., & Blackstone, E. H. (1983). The effect of hypothermic circulatory arrest time on cerebral function, morphology and biochemistry. Journal of Thoracic and Cardiovascular Surgery, 86, 761–770.
Uzark, K., Lincoln, A., Lamberti, J. J., Mainwaring, R. D., Spicer, R. L., & Moore, J. W. (1998). Neurodevelopmental outcomes in children with Fontan repair of functional single ventricle. Pediatrics, 101(4), 630–633.
Van Hoecke, E., & Dhont, M. (2004). Aangeboren hartaandoening: verwerking door het kind en zijn ouders [Congenital heart disease: coping mechanisms of the child and its parents]. Tijdschrift voor Geneeskunde, 60(21),1548–1554.
Visconti, K. J., Bichell, D. P., Jonas, R. A., Newburger, J. W., & Bellinger, D. C. (1999) Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation, 100(19), 145–150.
Wells, F. C., Coghill, S., Caplan, H. L., Lincoln, C., & Kirklin, J. W. (1983). Duration of cardiopulmonary arrest does influence the psychological development of children after cardiac operation in early life. Journal of Thoracic and Cardiovascular Surgery, 86, 823–831.
Wernovsky, G., Stiles, K. M., Gauvreau, K., Gentles, T. L., duPlessis, A. J., Bellinger, D. C., Walsh, A. Z., Burnett, J., Jonas, R. A., Mayer, J. E., & Newburger, J. W. (2000) Cognitive development after the Fontan operation. Circulation, 102(8), 883–889.
Wray, J., & Sensky, T. (1999). Controlled study of preschool development after surgery for congenital heart disease. Archives of Disease in Childhood, 80, 511–516.
Wray, J., & Sensky, T. (2001). Congenital heart disease and cardiac surgery in childhood: effects on cognitive function and academic ability. Heart, 85(6), 687–691.
Wright, M., & Nolan, T. (1994). Impact of cyanotic heart disease on school performance. Archives of Disease in Childhood, 71, 64–70.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Miatton, M., De Wolf, D., François, K. et al. Neurocognitive Consequences of Surgically Corrected Congenital Heart Defects: A Review. Neuropsychol Rev 16, 65–85 (2006). https://doi.org/10.1007/s11065-006-9005-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11065-006-9005-7