Executive Function and the Frontal Lobes: A Meta-Analytic Review

Currently, there is debate among scholars regarding how to operationalize and measure executive functions. These functions generally are referred to as “supervisory” cognitive processes because they involve higher level organization and execution of complex thoughts and behavior. Although conceptualizations vary regarding what mental processes actually constitute the “executive function” construct, there has been a historical linkage of these “higher-level” processes with the frontal lobes. In fact, many investigators have used the term “frontal functions” synonymously with “executive functions” despite evidence that contradicts this synonymous usage. The current review provides a critical analysis of lesion and neuroimaging studies using three popular executive function measures (Wisconsin Card Sorting Test, Phonemic Verbal Fluency, and Stroop Color Word Interference Test) in order to examine the validity of the executive function construct in terms of its relation to activation and damage to the frontal lobes. Empirical lesion data are examined via meta-analysis procedures along with formula derivatives. Results reveal mixed evidence that does not support a one-to-one relationship between executive functions and frontal lobe activity. The paper concludes with a discussion of the implications of construing the validity of these neuropsychological tests in anatomical, rather than cognitive and behavioral, terms.

This is a preview of subscription content, log in to check access.

Fig. 1.

REFERENCES

  1. Ahola, K., Vilkki, J., and Servo, A. (1996). Frontal tests do not detect frontal infarctions after ruptured intracranial aneurysm. Brain and Cognition 31: 116.

    PubMed  CAS  Google Scholar 

  2. Anderson, S. W., Damasio, H., Jones, R. D., and Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. J. Clinical and Experimental Neuropsychology 13: 909922.

    CAS  Google Scholar 

  3. Axelrod, B. N., Goldman, R. S., Heaton, R. K., Curtiss, G., Thompson, L. T., Chelune, G. J., and Kay, G. G. (1996). Discriminability of the Wisconsin Card Sorting Test using the standardization sample. J. Clin. Exp. Neuropsyc. 18: 338342.

    CAS  Google Scholar 

  4. Axelrod, B. N., and Henry, R. R. (1992). Age-related performance on the Wisconsin Card Sorting, Similarities, and Controlled Oral Word Association Tests. Clinical Neuropsychologist 6: 1626.

    Google Scholar 

  5. Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology 49A: 5–28.

    Google Scholar 

  6. Baldo, J. V., Shimamura, A. P., Delis, D. C., Kramer, J., and Kaplan, E. (2001). Verbal and design fluency in patients with frontal lobe lesions. Journal of the International Neuropsychological Society 7: 586596.

    CAS  Google Scholar 

  7. Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z., Barad, V., Gullett, D., Shah, C., and Brown, C. (2000). Prefrontal regions play a predominant role in imposing an attentional ‘set’: Evidence from fMRI. Cognitive Brain Research 10: 19.

    CAS  Google Scholar 

  8. Barcelo, F. (2001). Does the Wisconsin Card Sorting Test measure prefrontal function? Spanish Journal of Psychology 4: 79100.

    CAS  Google Scholar 

  9. Barcelo, F., and Knight, R. T. (2002). Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia 40: 349356.

    PubMed  Google Scholar 

  10. Barcelo, F., Munoz-Cespedes, J. M., Pozo, M. A., and Rubia, F. J. (2000). Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia 38: 13421355.

    PubMed  CAS  Google Scholar 

  11. Barcelo, F., and Rubia, F. J. (1998). Non-frontal P3b-like activity evoked by the Wisconsin Card Sorting Test. Neuroreport 9: 747751.

    PubMed  CAS  Article  Google Scholar 

  12. Barkley, R. A. (1996). Linkages between attention and executive functions. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 307–325). Baltimore, MD, US: Paul H. Brookes Publishing Co.

    Google Scholar 

  13. Bayless, J. D., Varney, N. R., and Roberts, R. J. (1989). Tinker Toy Test performance and vocational outcome in patients with closed-head injuries. J. Clin. Exp. Neuropsyc. 11: 913917.

    CAS  Google Scholar 

  14. Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50: 715.

    PubMed  CAS  Google Scholar 

  15. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., and Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31: 907922.

    PubMed  CAS  Google Scholar 

  16. Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease. Neuropsychologia 6: 5360.

    Google Scholar 

  17. Benton, A. L., and Hamsher, K. (1976). Multilingual aphasia examination. Iowa City: University of Iowa Press.

    Google Scholar 

  18. Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology 39: 1522.

    CAS  Article  Google Scholar 

  19. Berman, K. F., Ostrem, J. L., Randolph, C., Gold, J., Goldberg, T. E., Coppola, R., Carson, R. E., Herscovitch, P., and Weinberger, D. R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia 33: 10271046.

    PubMed  CAS  Google Scholar 

  20. Bigler, E. D. (1988). Frontal lobe damage and neuropsychological assessment. Archives of Clinical Neuropsychology 3: 279297.

    CAS  Google Scholar 

  21. Blenner, J. L. (1993). The discriminant capacity of the Stroop test in tumor neurosurgical patients and its relationship to the visual evoked potential measure. Personality and Individual Differences 15: 99102.

    Google Scholar 

  22. Blumer, D., and Benson, D. F. (1975). Personality changes with frontal and temporal lobe lesions. In: Benson, D. F. and Blumer, D. (Eds.), Psychiatric aspects of neurologic disease (pp. 151–170). New York: Grune and Stratton.

    Google Scholar 

  23. Bornstein, R. A. (1986). Contribution of various neuropsychological measures to detection of frontal lobe impairment. International Journal of Clinical Neuropsychology 8: 1822.

    Google Scholar 

  24. Bowden, S. C., Fowler, K. S., Bell, R. C., Whelan, G., Clifford, C. C., Ritter, A. J., and Long, C. M. (1998). The reliability and internal validity of the Wisconsin Card Sorting Test. Neuropsychological Rehabilitation 8: 243254.

    Google Scholar 

  25. Brown, G. G., Kindermann, S. S., Siegle, G. J., Granholm, E., Wong, E. C., and Buxton, R. B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society 5: 308319.

    CAS  Google Scholar 

  26. Bryan, J., and Luszcz, M. A. (2000). Measurement of executive function: Consideration for detecting adult age differences. J. Clin. Exp. Neuropsyc. 22: 4055.

    CAS  Article  Google Scholar 

  27. Burgess, P. W. (1997). Theory and methodology in executive function research. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 81–116). Hove, UK: Psychology Press.

    Google Scholar 

  28. Burgess, P. W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research 63: 279288.

    CAS  Google Scholar 

  29. Burgess, P. W., Alderman, N., Ernslie, H., Evans, J., and Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society 4: 547558.

    CAS  Google Scholar 

  30. Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., and Rauch, S. L. (1998). The Counting Stroop: An interference task specialized for functional neuroimaging: Validation study with functional MRI. Human Brain Mapping 6: 270282.

    Google Scholar 

  31. Butler, M., Retzlaff, P. D., and Vanderploeg, R. (1991). Neuropsychological test usage. Professional Psychology: Research and Practice 22: 510512.

    Google Scholar 

  32. Butler, R. W., Rorsman, I., Hill, J. M., and Tuma, R. (1993). The effects of frontal brain impairment on fluency: Simple and complex paradigms. Neuropsychology 7: 519529.

    Google Scholar 

  33. Cabeza, R., and Nyberg, L. (2000). Imaging cognition: An empirical review of PET studies with normal subjects. Journal of Cognitive Neuroscience 12: 147.

    PubMed  CAS  Google Scholar 

  34. Carlin, D., Bonerba, J., Phipps, M., Alexander, G., Shapiro, M., and Grafman, J. (2000). Planning impairments in frontal lobe dementia and frontal lobe lesion patients. Neuropsychologia 38: 655665.

    PubMed  CAS  Google Scholar 

  35. Carter, C. S., Mintun, M., and Cohen, J. D. (1995). Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. Neuroimage 2: 26472.

    PubMed  CAS  Google Scholar 

  36. Catefau, A. M., Parellada, E., Lomena, F., Bernardo, M., Setoain, J., Catarineu, S., Pavia, J., and Herranz, R. (1998). Role of the cingulate gyrus during the Wisconsin Card Sorting Test: A single photon emission computed tomography study in normal volunteers. Psychiatry Research and Neuroimaging 83: 6774.

    Google Scholar 

  37. Cattell, J. M. (1886). The time it takes to see and name objects. Mind 11: 6365.

    Google Scholar 

  38. Çiçek, M., and Nalçaci, E. (2001). Interhemispheric asymmetry of EEG alpha activity at rest and during the Wisconsin Card Sorting Test: Relations with performance. Biological Psychology 58: 7588.

    PubMed  Google Scholar 

  39. Cockburn, J. (1995). Performance on the Tower of London test after severe head injury. Journal of the International Neuropsychological Society 1: 537544.

    CAS  Google Scholar 

  40. Cohen, J. (1992). A power primer. Psychological Bulletin 112: 155–159.

    CAS  PubMed  Google Scholar 

  41. Cohen, J. D., Dunbar, K., and McClelland, J. L. (1990). A parallel distributed processing model of the Stroop effect. Psychological Review 97: 332361.

    PubMed  CAS  Google Scholar 

  42. Cooper, H., and Hedges, L. V. (Eds.). (1994). The handbook of research synthesis. New York: Russell Sage Foundation.

    Google Scholar 

  43. Costa, L. (1988). Clinical neuropsychology: Prospects and problems. Clinical Neuropsychologist 2: 311.

    Google Scholar 

  44. Cripe, L. I. (1996). The ecological validity of executive function testing. In: Sbordone, R. J. and Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 171–202). Delray Beach, FL: GR/St Lucie Press, Inc.

  45. Crockett, D., Bilsker, D., Hurwitz, T., Kozak, J. (1986). Clinical utility of three measures of frontal lobe dysfunction in neuropsychiatric samples. International Journal of Neuroscience 30: 241248.

    PubMed  CAS  Article  Google Scholar 

  46. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology 50: 873880.

    PubMed  CAS  Google Scholar 

  47. Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In: Grafman, J., Holyoak, K. J. and Boller, F. (Eds.), Structure and functions of the human prefrontal cortex. Annals of the New York Academy of Sciences, 769, 1–13.

    Google Scholar 

  48. Dagher, A., Owen, A. M., Boecker, H., and Brooks, D. J. (2001). The role of the striatum and hippocampus in planning: A PET activation study in Parkinson's disease. Brain 124: 10201032.

    PubMed  CAS  Google Scholar 

  49. Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and human brain. New York: Grosset/Putnam.

    Google Scholar 

  50. de Oliveira-Souza, R., Moll, J., Tovar Moll, F., and de Oliveira, D. L. G. (2001). Executive amnesia in a patient with pre-frontal damage due to a gunshot wound. Neurocase 7: 383389.

    PubMed  CAS  Google Scholar 

  51. Dehaene, S. and Changeux, J. P. (1991). The Wisconsin Card Sorting Test: theoretical analysis and modeling in a neuronal network. Cerebral Cortex 1: 6279.

    PubMed  CAS  Google Scholar 

  52. Demakis, G. J. (2003). A meta-analytic review of the sensitivity of the Wisconsin Card Sorting Test to frontal and lateralized frontal brain damage. Neuropsychology 17: 255264.

    PubMed  Google Scholar 

  53. Denckla, M. B. (1994). Measurement of executive function. In: Lyon, G. R. (Ed.), Frames of reference for the assessment of learning disabilities: New views on measurement issues (pp. 117–142). Baltimore, MD, US: Paul H. Brookes Publishing Co.

    Google Scholar 

  54. Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 263–278). Baltimore, MD: Paul H. Brookes Publishing Company.

    Google Scholar 

  55. Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting Performance. Cortex 10: 159170.

    PubMed  CAS  Google Scholar 

  56. Duke, L. M., and Kaszniak, A. W. (2000). Executive functions in degenerative dementias: A comparative review. Neuropsychology Review 10: 7599.

    CAS  Google Scholar 

  57. Duffy, J. D., and Campbell, J. J. III. (2001). Regional prefrontal syndromes: A theoretical and clinical overview. In: Salloway, S. P., Malloy, P. F. and Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (pp. 113–123). Washington, DC, US: American Psychiatric Publishing, Inc.

    Google Scholar 

  58. Dunbar, K., and Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal subjects. In: Grafman, J., Holyoak, K. J. and Boller, F. (Eds.), Structure and functions of the human prefrontal cortex. Annals of the New York Academy of Sciences (Vol. 769, pp. 289–304). New York, NY: New York Academy of Sciences.

    Google Scholar 

  59. Duncan, J., Burgess, P., and Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia 33: 261268.

    PubMed  CAS  Google Scholar 

  60. Duncan, J., Johnson, R., Swales, M., and Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Neuropsychology 14: 713741.

    Google Scholar 

  61. Eslinger, P. J. (1996). Conceptualizing, describing, and measuring components of executive function: A summary. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 367–395). Baltimore, MD, US: Paul H. Brookes Publishing Co.

    Google Scholar 

  62. Eslinger, P. J., and Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology 35: 17311741.

    PubMed  CAS  Google Scholar 

  63. Eslinger, P. J., and Grattan, L. M. (1993). Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia 31: 1728.

    PubMed  CAS  Google Scholar 

  64. Espy, K. A., and Kaufmann, P. M. (2002). Individual differences in the development of executive function in children: Lessons from the delayed response and A-not-B tasks. In: Molfese, D. L. and Molfese, V. J. (Eds.), Developmental variations in learning: Applications to social, executive function, language, and reading skills (pp. 113–137). Mahwah, NJ, US: Lawrence Erlbaum Associates.

    Google Scholar 

  65. Ettlinger, G., Teuber, H., and Milner, B. (1975). The seventeenth International Symposium of Neuropsychology. Neuropsychologia 13: 125133.

    Google Scholar 

  66. Ferstl, E. C., Guthke, T., and von Cramon, D. Y. (2002). Text comprehension after brain injury: Left prefrontal lesions affect inference processes. Neuropsychology 16: 292308.

    PubMed  Google Scholar 

  67. Frith, C. D., Friston, K. J., Herold, S., Silbersweig, D., Fletcher, P., Cahill, C., Dolan, R. J., Frackowiak, R. S., and Liddle, P. F. (1995). Regional brain activity in chronic schizophrenia patients during the performance of a verbal fluency task. British Journal of Psychiatry 167: 343349.

    PubMed  CAS  Article  Google Scholar 

  68. Frith, C. D., Friston, K., Liddle, P. F., and Fracknowiak, R. S. J. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society of London 244: 241248.

    CAS  Google Scholar 

  69. Glass, G. V. (1976). Primary, secondary and meta-analysis of research. Educational Researcher 10: 38.

    Google Scholar 

  70. Goldstein, K., and Scheerer, M. (1941). Abstract reasoning and concrete behavior: An experimental study with special tests. Psychological Monographs 53: 1151.

    Google Scholar 

  71. Goodglass, H., and Kaplan, E. (1979). Assessment of cognitive deficit in the brain-injured patient. In: Gazzaniga, M. S. (Ed.), Handbook of behavioral neurology (Vol. 2, pp. 3–22). NY: Plenum Press.

    Google Scholar 

  72. Grafman, J., Jonas, B., and Salazar, A. (1990). Wisconsin Card Sorting Test performance based on location and size of neuroanatomical lesion in Vietnam veterans with penetrating head injury. Perceptual & Motor Skills 71: 11201122.

    CAS  Google Scholar 

  73. Grafman, J., and Litvan, I. (1999). Recognizing the importance of deficits in executive functions. Lancet 354: 19211923.

    PubMed  CAS  Google Scholar 

  74. Grafman, J., Vance, S. C., Weingartner, H., Salazar, A. M., and Amin, D. (1986). The effects of lateralized frontal lesions on mood regulation. Brain 109: 11271148.

    PubMed  Google Scholar 

  75. Grant, D. A., and Berg, E. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology 38: 404411.

    CAS  Google Scholar 

  76. Greve, K. W., Love, J. M., Sherwin, E., Mathias, C. W., Ramzinski, P., and Levy, J. (2002). Wisconsin Card Sorting Test in chronic severe traumatic brain injury: Factor structure and performance subgroups. Brain Injury 16: 2940.

    PubMed  Google Scholar 

  77. Haines, J., Hoffman, W., Hanada, J., Brown, P., Labs, S., Loberg, D., Walter, C. T. (1994). Further evaluation of prefrontal lobe function data in schizophrenic patients during Wisconsin Card Sorting Test. American Journal of Psychiatry 151: 18421843.

    PubMed  CAS  Google Scholar 

  78. Heaton, R. K. (1981). Wisconsin Card Sorting Test Manual. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  79. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., and Curtiss, G. (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  80. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  81. Heck, E. T., and Bryer, J. B. (1986). Superior sorting and categorizing ability in a case of bilateral frontal atrophy: An exception to the rule. Journal of Clinical & Experimental Neuropsychology 8: 313316.

    CAS  Google Scholar 

  82. Hedges, L. V. (1994). Fixed effects models. In: Cooper, H. and Hedges, L. V. (Eds.), The handbook of research synthesis (pp. 285–299). New York, NY: Russell Sage Foundation.

    Google Scholar 

  83. Hedges, L. V., and Olkin, I. (1985). Statistical methods for meta-analysis. San Diego: Academic Press.

    Google Scholar 

  84. Henry, J. D., and Crawford, J. R. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18: 284295.

    PubMed  Google Scholar 

  85. Holst, P., and Vilkki, J. (1988). Effect of frontomedial lesions on performance on the Stroop Test and word fluency tasks. J. Clin. Exp. Neuropsyc. 10: 7980.

    Google Scholar 

  86. Humes, G. E., Welsh, M. C., Retzlaff, P., and Cookson, N. (1997). Towers of Hanoi and London: Reliability of two executive function tasks. Assessment 4: 249257.

    Article  Google Scholar 

  87. James, W. (1890). The principles of psychology. New York: Holt.

    Google Scholar 

  88. Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., and Squire, L. R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience 103: 548560.

    CAS  Google Scholar 

  89. Johnson, B. T. (1989). DSTAT: Software for the meta-analytic review of research literatures (Version 1.00) [Computer software]. Lawrence Erlbaum Associates, Inc.

  90. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., and Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature 363: 623625.

    PubMed  CAS  Google Scholar 

  91. Kafer, K. L., and Hunter, M. (1997). On testing the face validity of planning/problem-solving tasks in a normal population. Journal of the International Neuropsychological Society 3: 108119.

    CAS  Google Scholar 

  92. Kawasaki, Y., Maeda, Y., Suzuki, M., Urata, K., Higashima, M., Kiba, K., Yamaguchi, N., Matsuda, H., and Hisada, K. (1993). SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophrenia Research 10: 109116.

    PubMed  CAS  Google Scholar 

  93. Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., and Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex 9: 745753.

    PubMed  CAS  Google Scholar 

  94. Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., and Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience 1: 8084.

    PubMed  CAS  Google Scholar 

  95. Leung, H., Skudlarski, P., Gatenby, J. C., Peterson, B. S., and Gore, J. C. (2000). An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex 10: 552560.

    PubMed  CAS  Google Scholar 

  96. Levin, H. S., Song, J., Scheibel, R. S., Fletcher, J. M., Harward, H., Lilly, M., and Goldstein, F. (1997). Concept formation and problem-solving following closed head injury in children. Journal of the International Neuropsychological Society 3: 598607.

    CAS  Google Scholar 

  97. Levine, D. S., and Prueitt, P. S. (1989). Modeling some effects of frontal lobe damage: Novelty and perseveration. Neural Networks 2: 103116.

    Google Scholar 

  98. Lezak, M. D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  99. Little, D. M., and Hartley, A. A. (2000). Further evidence that negative priming in the Stroop color-word task is equivalent in older and younger adults. Psychology and Aging 15: 917.

    PubMed  CAS  Google Scholar 

  100. Luria, A. R. (1966). Higher cortical functions in man. NY: Basic Books.

    Google Scholar 

  101. Lyon, G. R., and Krasnegor, N. A. (Eds.). (1996). Attention, memory, and executive function. Baltimore, MD, US: Paul H. Brookes Publishing Co.

    Google Scholar 

  102. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin 109: 163203.

    CAS  Google Scholar 

  103. Malloy, P. F., and Richardson, E. D. (2001). Assessment of frontal lobe functions. In: Salloway, S. P., Malloy, P. F., and Duffy, J. D. (Eds.), The frontal lobes and neuropsychiatric illness (pp. 125–137). Washington, DC, US: American Psychiatric Publishing, Inc.

    Google Scholar 

  104. Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., and Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain 125: 624639.

    PubMed  Google Scholar 

  105. Manly, T., and Robertson, I. H. (1997). Sustained attention and the frontal lobes. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 135–153). Hove, UK: Psychology Press.

    Google Scholar 

  106. Marenco, S., Coppola, R., Daniel, D. G., Zigun, J. R., and Weinberger, D. R. (1993). Regional cerebral blood flow during the Wisconsin Card Sorting Test in normal subjects studied by xenon-133 dynamic SPECT: Comparison of absolute values, percent distribution values, and covariance analysis. Psychiatry Research: Neuroimaging 50: 177192.

    CAS  Google Scholar 

  107. Mentzel, H. J., Gaser, C., Volz, H. P., Rzanny, R., Hager, F., Sauer, H., and Kaiser, W. A. (1998). Cognitive stimulation with the Wisconsin Card Sorting Tests: Functional MR imaging at 1.5 T. Radiology 207: 399404.

    PubMed  CAS  Google Scholar 

  108. Miceli, G., Caltagirone, C., Gainotti, G., Masullo, C., and Silveri, M. C. (1981). Neuropsychological correlates of localized cerebral lesions in non-aphasic brain-damaged patients. Journal of Clinical Neuropsychology 3: 5363.

    PubMed  CAS  Google Scholar 

  109. Miller, E. (1984). Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology. British Journal of Clinical Psychology 23: 5357.

    Google Scholar 

  110. Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology 9: 100110.

    Google Scholar 

  111. Milner, B. (1964). Some effects of frontal lobectomy in man. In: Warren, J. M. and Akert, K. (Eds.), The frontal granular cortex and behavior (pp. 313–335). New York: McGraw Hill.

    Google Scholar 

  112. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin 27: 272277.

    PubMed  CAS  Google Scholar 

  113. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology 41: 49100.

    PubMed  CAS  Google Scholar 

  114. Morgan, A. B., and Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychology Review 20: 113136.

    PubMed  CAS  Google Scholar 

  115. Mountain, M. A., and Snow, W. G. (1993). Wisconsin Card Sorting Test as a measure of frontal pathology: A review. Clinical Neuropsychologist 7: 108118.

    Google Scholar 

  116. Mullen, B. (1989). Advanced BASIC meta-analysis. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  117. Nagahama, Y., Fukuyama, H., Yamaguchi, H., Katsumi, Y., Magata, Y., Shibasaki, H., and Kimura, J. (1997). Age-related changes in cerebral blood flow activation during performance of a card sorting test. Experimental Brain Research 114: 571577.

    PubMed  CAS  Google Scholar 

  118. Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., and Kimura, J. (1996). Cerebral activation during performance of a card sorting test. Brain 119: 16671675.

    PubMed  Google Scholar 

  119. Nagahama, Y., Sadato, N., Yamauchi, H., Katsumi, Y., Hayashi, T., Fukuyama, H., Kimura, J., Shibasaki, H., and Yonekura, Y. (1998). Neural activity during attention shifts between object features. Neuroreport: an International Journal for the Rapid Communication of Research in Neuroscience 9: 26332638.

    CAS  Google Scholar 

  120. Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex 12: 313324.

    PubMed  CAS  Google Scholar 

  121. Nieuwenstein, M. R., Aleman, A., and de Haan, E. H. F. (2001). Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: A meta-analysis of WCST and CPT studies. Journal of Psychiatric Research 35: 119125.

    CAS  Google Scholar 

  122. Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics 8: 157159.

    Google Scholar 

  123. Owen, A. M., Sahakian, B. J., Hodges, J. R., Summers, B. A., Polkey, C. E., Robbins, T. W. (1995). Dopamine-dependent frontostriatal planning deficits in early Parkinson's disease. Neuropsychology 9: 126140.

    Google Scholar 

  124. Pardo, J. V., Pardo, P. J., Janer, K. W., and Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences 87: 256259.

    CAS  Google Scholar 

  125. Parellada, E., Catafau, A. M., Bernardo, M., Lomena, F., Catarineu, S., and Gonzalez-Monclus, E. (1998). The resting and activation issue of hypofrontality: A single photon emission computed tomography study in neuroleptic-naive and neuroleptic-free schizophrenic female patients. Biological Psychiatry 44: 787790.

    PubMed  CAS  Google Scholar 

  126. Parks, R. W., Levine, D. S., Long, D. L., Crockett, D. J., Dalton, I. E., Weingartner, H., Fedio, P., Coburn, K. L., Siler, G., Matthews, J. R., and Becker, R. E. (1992). Parallel distributed processing and neuropsychology: A neural network model of Wisconsin Card Sorting and verbal fluency. Neuropsychology Review 3: 213233.

    PubMed  CAS  Google Scholar 

  127. Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. A., and Duara, R. (1988). Cerebral metabolic effects of a verbal fluency test: A PET scan study. Journal of Clinical & Experimental Neuropsychology 10: 565575.

    PubMed  CAS  Google Scholar 

  128. Paulesu, E., Goldacre, B., Scifo, P., Cappa, S. F., Gilardi, M. C., Castiglioni, I., Perani, D., and Fazio, F. (1997). Functional heterogeneity of the left inferior frontal cortex as revealed by fMRI. Neuroreport 8: 20112017.

    PubMed  CAS  Google Scholar 

  129. Pendleton, M. G., Heaton, R. K., Lehman, R. A., and Hulihan, D. M. (1982). Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations. Journal of Clinical Neuropsychology 4: 307317.

    PubMed  CAS  Google Scholar 

  130. Pennington, B. F., Bennetto, L., McAleer, O., and Roberts, R. J. (1996). Executive functions and working memory: Theoretical and measurement issues. In: Lyon, G. R. and Krasnegor, N. A. (Eds.), Attention, memory, and executive function (pp. 327–348). Baltimore, MD: Paul H. Brookes Publishing Company.

    Google Scholar 

  131. Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior. Neuropsychologia 12: 323330.

    PubMed  CAS  Google Scholar 

  132. Perry, W., Potterat, E. G., and Braff, D. L. (2001). Self-monitoring enhances Wisconsin Card Sorting Test performance in patients with schizophrenia: Performance is improved by simply asking patients to verbalize their sorting strategy. Journal of the International Neuropsychological Society 7: 344352.

    CAS  Google Scholar 

  133. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., and Gore, J. C. (1999). An fMRI study of Stroop Word-Color Interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry 45: 12371258.

    PubMed  CAS  Google Scholar 

  134. Phelps, E. A., Hyder, F., Blamire, A. M., and Shulman, R. G. (1997). FMRI of the prefrontal cortex during overt verbal fluency. Neuroreport 8: 561565.

    PubMed  CAS  Google Scholar 

  135. Phillips, L. H. (1997). Do “frontal tests” measure executive function? Issues of assessment and evidence from fluency tests. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 191–213). Hove, UK: Psychology Press.

    Google Scholar 

  136. Podell, K., Lovell, M., Zimmerman, M., and Goldberg, E. (1995). The cognitive bias task and lateralized frontal lobe functions in males. Journal of Neuropsychiatry and Clinical Neurosciences 7: 491501.

    PubMed  CAS  Google Scholar 

  137. Posner, M. I., and Dehaene, S. (1994). Attentional networks. Trends in Neuroscience 17: 7579.

    CAS  Google Scholar 

  138. Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience 13: 2542.

    PubMed  CAS  Google Scholar 

  139. Posner, M. I., and Snyder, C. R. R. (1975). Attention and cognitive control. In: Solso, R. L. (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–85). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  140. Quantz, J. O. (1897). Problems in the psychology of reading. Psychological Review Monographs 2: (No. 5).

  141. Rabbitt, P. (1997). Introduction: Methodologies and models in the study of executive function. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 1–38). Hove, UK: Psychology Press.

    Google Scholar 

  142. Ragland, J. D., Gur, R. C., Glahn, D. C., Censits, D. M., Smith, R. J., Lazarev, M. G., Alavi, A., and Gur, R. E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology 12: 399413.

    CAS  Google Scholar 

  143. Ramier, A. M., and Hécaen, H. (1970). Rôle respectif des atteintes frontales et de la latéralisation lésionnelle dans les déficits de la “fluence verbale.” Revue Neurologique 123: 1722.

    PubMed  CAS  Google Scholar 

  144. Ready, R. E., Stierman, L., and Paulsen, J. S. (2001). Ecological validity of neuropsychological and personality measures of executive functions. Clinical Neuropsychologist 15: 314323.

    PubMed  CAS  Google Scholar 

  145. Reitan, R. M., and Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes. Neuropsychology Review 4: 161197.

    PubMed  CAS  Google Scholar 

  146. Rezai, K., Andreasen, N. C., Alliger, R., Cohen, G., Swayze, V., and O’Leary, D. S. (1993). The neuropsychology of the prefrontal cortex. Archives of Neurology 50: 636642.

    CAS  Google Scholar 

  147. Rhodes, M. G. (2004). Age-related differences in performance on the Wisconsin Card Sorting Test: A meta-analytic review. Psychology and Aging 19: 482494.

    PubMed  Google Scholar 

  148. Riehemann, S., Volz, H., Stuetzer, P., Smesny, S., Gaser, C., and Sauer, H. (2001). Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test-A fMRI study. European Archives of Psychiatry & Clinical Neuroscience 251: 6671.

    CAS  Google Scholar 

  149. Robbins, T. W. (1998). Dissociating executive functions of the prefrontal cortex. In: Roberts, A. C., Robbins, T. W. and Weiskrantz, L. (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 117–130). New York, NY: Oxford University Press.

    Google Scholar 

  150. Robinson, A. L., Heaton, R. K., Lehman, R. A. W., and Stilson, D. W. (1980). The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. Journal of Consulting and Clinical Psychology 48: 605614.

    CAS  Google Scholar 

  151. Rosenthal, R. (1991). Meta-analytic procedures for social research (rev. ed.). Thousand Oaks, CA: Sage Publications, Inc.

    Google Scholar 

  152. Sbordone, R. J. (1996). Ecological validity: Some critical issues for the neuropsychologist. In: Sbordone, R. J. and Long, C. J. (Eds.), Ecological validity of neuropsychological testing (pp. 15–41). Delray Beach, FL: GR/St Lucie Press, Inc.

  153. Sbordone, R. J. (2000). The executive functions of the brain. In: Groth-Marnat, G. (Ed.), Neuropsychological assessment in clinical practice: A guide to test interpretation and integration (pp. 437–456). New York, NY, US: John Wiley & Sons, Inc.

    Google Scholar 

  154. Schmidt, F. (1992). What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. American Psychologist, 47: 1173–1181.

    Google Scholar 

  155. Schnirman, G. M., Welsh, M. C., and Retzlaff, P. D. (1998). Development of the Tower of London–Revised. Assessment 5: 355360.

    PubMed  CAS  Google Scholar 

  156. Schwarzer, R. (1989). Meta-analysis programs (Version 5.3) [Computer software]. Berlin: Author.

  157. Sergeant, J. A., Geurts, H., and Oosterlaan, J. (2002). How specific is a deficit of executive functioning for Attention-Deficit/Hyperactivity Disorder? Behavioural Brain Research 130: 328.

    PubMed  Google Scholar 

  158. Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.

    Google Scholar 

  159. Shallice, T., and Burgess, P. (1991a). Higher-order cognitive impairments and frontal lobe lesions in man. In: Levin, H. S., Eisenberg, H. M. and Benton, A. L. (Eds.), Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.

    Google Scholar 

  160. Shallice, T., and Burgess, P. (1991b). Deficits in strategy application following frontal lobe damage in man. Brain 114: 727741.

    PubMed  Google Scholar 

  161. Shallice, T., and Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex 14: 294303.

    PubMed  CAS  Google Scholar 

  162. Spreen, O., and Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  163. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18: 643662.

    Google Scholar 

  164. Stuss, D. T., and Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research 63: 289298.

    PubMed  CAS  Google Scholar 

  165. Stuss, D. T., Alexander, M. P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., Levine, B., and Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society 4: 265278.

    PubMed  CAS  Google Scholar 

  166. Stuss, D. T., and Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin 95: 328.

    PubMed  CAS  Google Scholar 

  167. Stuss, D. T., and Benson, D. F. (1986). The frontal lobes. NY: Raven Press.

    Google Scholar 

  168. Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., and Della Malva, C. (1981). Leucotomized and nonleucotomized schizophrenics: Comparison on tests of attention. Biological Psychiatry 16: 10851100.

    PubMed  CAS  Google Scholar 

  169. Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., Naeser, M. A., Lieberman, I., and Ferrill, D. (1983). The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia 21: 235248.

    PubMed  CAS  Google Scholar 

  170. Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., and Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia 39: 771786.

    PubMed  CAS  Google Scholar 

  171. Stuss, D. T., and Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology 53: 401433.

    PubMed  Google Scholar 

  172. Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J., and Isukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38: 388402.

    PubMed  CAS  Google Scholar 

  173. Stuss, D. T., Shallice, T., Alexander, M. P., and Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences 769: 191211.

    PubMed  CAS  Google Scholar 

  174. Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., and Koeppe, R. A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage 6: 8192.

    PubMed  CAS  Google Scholar 

  175. Teuber, H. L., Battersby, W. S., and Bender, M. B. (1951). Performance of complex visual tasks after cerebral lesions. Journal of Nervous and Mental Disease 114: 413429.

    PubMed  CAS  Article  Google Scholar 

  176. Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.

    Google Scholar 

  177. Tien, A. Y., Schlaepfer, T. E., Orr, W., and Pearlson, G. D. (1998). SPECT brain blood flow changes with continuous ligand infusion during previously learned WCST performance. Psychiatry Research and Neuroimaging 82: 4752.

    CAS  Google Scholar 

  178. Tranel, D., Anderson, S. W., and Benton, A. (1994). Development of the concept of “executive function” and its relationship to the frontal lobes. In: Boller, F. and Grafman, J. (Eds.), Handbook of Neuropsychology (Vol. 9, pp. 125–148). Amsterdam: Elsevier.

    Google Scholar 

  179. Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., and Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia 36: 499504.

    PubMed  CAS  Google Scholar 

  180. van den Broek, M. D., Bradshaw, C. M., and Szabadi, E. (1993). Utility of the Modified Wisconsin Card Sorting Test in neuropsychological assessment. British Journal of Clinical Psychology 32: 333343.

    PubMed  Google Scholar 

  181. Vandierendonck, A. (2000). Executive functions and task switching. Psychologica Belgica 40: 211226.

    Google Scholar 

  182. Vendrell, P., Junque, C., Pujol, J., Jurado, M. A., Molet, J., and Grafman, J. (1995). The role of prefrontal regions in the Stroop task. Neuropsychologia 33: 341352.

    PubMed  CAS  Google Scholar 

  183. Vigotsky, L. (1934). Thought in schizophrenia. Archives of Neurology and Psychiatry 31: 10631077.

    Google Scholar 

  184. Volz, H., Gaser, C., Häger, F., Rzanny, R., Mentzel, H., Kreitschmann-Andermahr, I., Kaiser, W. A., and Sauer, H. (1997). Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test–A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Research: Neuroimaging 75: 145–157.

    PubMed  CAS  Google Scholar 

  185. Wallesch, C. W., Kornhuber, H. H., Kunz, T., and Brunner, R. J. (1983). Neuropsychological deficits associated with small unilateral thalamic lesions. Brain 106: 141152.

    PubMed  Google Scholar 

  186. Wang, L. (1987). Concept formation and frontal lobe function: The search for a clinical frontal lobe test. In: Perecman, E. (Ed.), The frontal lobes revisited (pp. 189–205). New York: IRBN Press.

    Google Scholar 

  187. Warbuton, E., Wise, R. J. S., Price, C. J., Weiller, C., Hadar, U., Ramsay, S., and Frackowiak, R. S. J. (1996). Noun and verb retrieval by normal subjects: Studies with PET. Brain 119: 159179.

    Google Scholar 

  188. Warkentin, S., and Passant, U. (1997). Functional imaging of the frontal lobes in organic dementia. Dementia & Geriatric Cognitive Disorders 8: 105109.

    CAS  Google Scholar 

  189. Weigl, E. (1941). On the psychology of so-called processes of abstraction. Journal of Abnormal and Social Psychology 36: 333.

    Google Scholar 

  190. Weinberger, D. R., Berman, K. F., and Zec, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow (rCBF) evidence. Archives of General Psychiatry 43: 114124.

    PubMed  CAS  Google Scholar 

  191. Welsh, M. C. (2002). Developmental and clinical variations in executive functions. In: Molfese, D. L. and Molfese, V. J. (Eds.), Developmental variations in learning: Applications to social, executive function, language, and reading skills (pp. 139–185). Mahwah, NJ, US: Lawrence Erlbaum Associates.

    Google Scholar 

  192. Welsh, M. C., Satterlee-Cartmell, T., and Stine, M. (1999). Towers of Hanoi and London: Contribution of working memory and inhibition to performance. Brain & Cognition 41: 231242.

    CAS  Google Scholar 

  193. Wilson, B. A. (1993). Ecological validity of neuropsychological assessment: Do neuropsychological indexes predict performance in everyday activities? Applied & Preventive Psychology 2: 209215.

    Google Scholar 

  194. Zable, M., and Harlow, H. F. (1946). The performance of rhesus monkeys on a series of object quality and positional discriminations and discrimination reversals. Journal of Comparative Psychology 39: 1323.

    Google Scholar 

  195. Zangwill, O. L. (1966). Psychological deficits associated with frontal-lobe lesions. International Journal of Neurology 5: 395402.

    Google Scholar 

  196. Zelazo, P. D., Carter, A., Reznick, J. S., and Frye, D. (1997). Early development of executive function: A problem-solving framework. Review of General Psychology 1: 198226.

    Google Scholar 

Download references

Acknowledgment

Preparation of this research was supported in part by Grant # RO1 MH64732 from the National Institutes of Mental Health to the second author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julie A. Alvarez.

Appendices

APPENDIX A

Formulas and Procedures for Primary Meta- Analysis

Preliminary Issues

All computations described below were carried out using the following three computer programs – DSTAT (Johnson, 1989), Meta-Analysis Programs (Schwarzer, 1989), and Statistical Package for the Social Sciences (SPSS) – and by hand using formulas cited in Cooper and Hedges (1994), Hedges and Olkin (1985), Orwin (1983), and Rosenthal (1991).

Calculation of Effect Sizes

The unbiased estimator d was chosen as the effect size estimator for the meta-analysis in this paper. Although there are a variety of effect size indicators from which to choose (Glass, 1976; Rosenthal, 1991), the decision to use d was based on theoretical and practical matters. First, d was selected because the data to be examined were represented as differences between groups (usually means and standard deviations). Estimators in the d family are better suited than estimators in the r family for studying the strength and direction of mean differences between groups (Hedges and Olkin, 1985). Second, the unbiased estimator d adjusts for bias, that is, it adjusts each effect size to control for a standard discrepancy between the sample effect size and the population effect size (Hedges and Olkin, 1985). Third, with respect to more practical concerns, the majority of studies reported means and standard deviations, which reduced the need to transform original findings to another effect size index such as r. Lastly, for the present review, negative effect sizes indicate that persons with frontal damage performed worse than the control group (i.e., either healthy controls or persons with non-frontal damage). For instance, a negative effect size on the COWA indicates that the frontal group produced fewer words than the control group. For those samples in which a lower score reflected better performance (e.g., fewer perseverative errors on the WCST), the sign of the effect size was reversed.

When means and standard deviations were available, the following formula was used to calculate d (Rosenthal, 1991):

$$ d = M_1 - M_2 /\sigma _{{\rm pooled}} $$
(A.1)

where M 1 and M 2 are means for groups one and two, respectively, and, σpooled (the pooled within-group standard deviation) was computed as follows:

$$ \sigma _{{\rm pooled}} = \sqrt {\frac{{N_1 SD_1^2 + N_2 SD_2^2 }}{{N_1 + N_2 - 2}} + \left( {\frac{1}{{N_1 }} + \frac{1}{{N_2 }}} \right)} $$
(A.2)

When means and standard deviations were not available, t-values, F-values, or p-values were used to calculate d using DSTAT (Johnson, 1989) or Meta-Analysis Programs (Schwarzer, 1989).

Nonindependence

Several studies in this analysis employed more than one EF measure (e.g., WCST and verbal fluency). In addition, the same researcher or team of researchers often conducted more than one study examining the relationship between EF measures and the frontal lobes. While including these studies would violate the assumption of independent samples (Hedges and Olkin, 1985), excluding them would result in too few studies to conduct a meta-analysis with adequate statistical power. Thus, four possible approaches to dealing with this problem (Mullen, 1989) were considered: (a) use each effect size as if it came from an independent sample; (b) use the results from the best EF measure; (c) conduct individual meta-analyses for each EF measure; or (d) average the effect sizes of the different EF measures within each study to form one estimate. The last three approaches were discarded for the following three reasons, respectively: (a) there are no criteria available for determining which EF measure is the “best;” (b) there are too few studies to conduct individual meta-analyses for each EF measure; and (c) averaging the effect sizes of the different EF measures within each study would lose information about the uniqueness of each measure and its possible moderating effect on the relationship between EFs and the frontal lobes. Thus, the first approach was chosen (i.e., each effect size was treated as if it came from an independent sample).

Combining Effect Sizes

The individual effect sizes from the 27 studies listed in Table 8 were averaged to form an unweighted grand mean estimate of the relationship between frontal lobe lesions and performance on the WCST, phonemic verbal fluency, and the Stroop test using the following formula:

$$ \overline d = \frac{{\sum\limits_{i = 1}^k {d_i } }}{k} $$
(A.3)
Table 8. Lesion Studies Included in Meta-Analysis

where k is the number of effect sizes combined and d i is the aggregated effect size from the ith study.

Next, effect sizes were combined after weighting each effect size by its sample size:

$$ d_ + = \frac{{\sum\limits_{i = 1}^k {\frac{{d_i }}{{\frown^\sigma}^2 d_i }} }} {{\sum\limits_{i = 1}^k {\frac{1}{{\frown^\sigma}^2 d_i }}}} $$
(A.4)

where the variance of d is defined as:

$$ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \sigma } ^2 _{d_i } = \frac{{n_F + n_C }}{{n_F n_C }} + \frac{{d_i^2 }}{{2\left( {n_F + n_C } \right)}} $$
(A.5)

where nF is the sample size for the focal group and nC is the sample size for the control group. Weighting the studies by sample size allowed more emphasis to be placed on studies with larger samples, thereby producing more precise effect size estimates (Hedges and Olkin, 1985 ).

For purposes of interpretation, the strength of obtained effect sizes was evaluated according to criteria outlined in Cohen (1992), that is, a d of .20 indicates a small effect, .50 indicates a moderate effect, and .80 indicates a large effect.

Tests of Homogeneity of Effect Sizes

The Q statistic outlined in formula 6 indicates whether the amount of variance in the 27 studies used to obtain an estimate of the population effect is greater than what would be expected based upon sampling error alone (Hedges and Olkin, 1985).

$$ Q = \sum\limits_{i = 1}^k {\frac{{d_i ^2 }}{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \sigma } ^2 d_i }}} - \frac{{\left( {\sum\limits_{i = 1}^k {\frac{{d_i ^2 }}{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \sigma } ^2 d_i }}} } \right)^2 }}{{\sum\limits_{i = 1}^k {\frac{1}{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \sigma } ^2 d_i }}} }} $$
(A.6)

Estimation of the “Fail-safe N”

There is a risk that the studies sampled for this meta-analysis only comprise a subset of the existing research on EF measures and frontal lobe functioning due to the problem that journals often accept for publication only those studies with “significant” results. Although there were studies included in this meta-analysis that did not find significant differences between groups, the 27 studies in this quantitative review may not adequately represent the entire population of studies on this topic. Thus, a “fail-safe N” statistic was computed as an estimate of the number of additional studies with null results (i.e., effect sizes equal to zero) that would be needed to reduce the weighted combined mean effect size to non-significance (Orwin, 1983). A fail-safe N was calculated using the following formula:

$$ N_{{\rm fail - safe}} = \frac{{N_{{\rm total}} \left( {d_ + - d_{{\rm crit}} } \right)}}{{d_{{\rm crit}} }}$$
(A.7)

where N total is the number of effect sizes included in the meta-analysis, d crit is the critical value of d, and d+ is the weighted mean effect size.

APPENDIX B

Formulas and Procedures for Moderator Analyses

Preliminary Issues

All computations described below were carried out using the following three computer programs – DSTAT (Johnson, 1989), Meta-Analysis Programs (Schwarzer, 1989), and Statistical Package for the Social Sciences (SPSS) – and by hand using formulas cited in Cooper and Hedges (1994).

Examination of Moderator Variables

Analyses of potential moderator variables were conducted by means of fixed effects strategies based on whether the variables of interest were categorical or continuous (Hedges, 1994). For categorical moderators (i.e., type of test and comparison group), estimates of both between (Q b) and within (Q w) group variances were derived and tested along the χ 2 distribution to determine whether they were statistically significant moderators. A significant Q b indicates that there is significant variability between the groups that comprise the categorical moderator variable that is greater than what would be expected simply by chance. On the other hand, a significant Q w indicates that there is still significant variability within each effect size that is not being explained by the categorical moderator. Thus, a categorical moderator variable explains all of the heterogeneity present in the grand mean effect size only when the variance is significant between groups (and is not significant within groups). Similar to the analysis of variance (ANOVA), the Q b statistic provides an omnibus test for between-group differences. Follow-up contrasts should be conducted when Q b is significant and there are three or more levels of the moderator variable. [Note that only “type of test” had three levels (i.e., WCST, verbal fluency, and Stroop). A significant Q w was obtained along with a significant Q b for this moderator variable and, thus, a contrast analysis was conducted accordingly.]

The following computational formulas, which weight effect sizes by sample size, were used for the two categorical moderator analyses (Hedges, 1994):

$$ TW = \sum\limits_{i = 1}^j {(n_i - 3} ) $$
(B.8)
$$ TWD = \sum\limits_{i = 1}^j {(n_i - 3} )d_i $$
(B.9)
$$ TWDS = \sum\limits_{i = 1}^j {(n_i - 3)d_i ^2 } $$
(B.10)
$$ Q_{{\rm Total}} = {\rm TWDS} - \frac{{({\rm TWD})^2 }}{{TW}}$$
(B.11)
$$ Q_{wi} = {\rm TWDS}_i - \frac{{{\rm TWD}_i ^2 }}{{{\rm TW}_i }} $$
(B.12)
$$Q_b = Q_T - Q_w$$
(B.13)

[For formulas 8–10, j = total number of cases in each sub-group.]

Weighted least squares regression procedures (WLS) were used to test the continuous moderator, age (Hedges, 1994). Effect sizes were weighted by their sample size and then regressed onto the relevant predictor variable (i.e., age). A Z-test of the unstandardized regression coefficient (b) was used to determine the statistical significance (i.e., whether b differed significantly from zero) of the moderator using formulas 14–16; 95% confidence intervals were constructed according to formula 16:

$$Z_j = \frac{{b_j }}{{S_j }}$$
(B.14)
$$S_j = \frac{{SE_j }}{{\sqrt {MS_{{\rm error}} } }}$$
(B.15)
$$b_j \pm 1.96(S_j )$$
(B.16)

j = 1, …, k; k = total # of predictors in equation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alvarez, J.A., Emory, E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Neuropsychol Rev 16, 17–42 (2006). https://doi.org/10.1007/s11065-006-9002-x

Download citation

KEY WORDS:

  • Executive function
  • Frontal lobe
  • Neuropsychology
  • Meta-analysis