Skip to main content

Advertisement

Log in

Morphine Induced Neuroprotection in Ischemic Stroke by Activating Autophagy Via mTOR-Independent Activation of the JNK1/2 Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Morphine (Mor) has exhibited efficacy in safeguarding neurons against ischemic injuries by simulating ischemic/hypoxic preconditioning (I/HPC). Concurrently, autophagy plays a pivotal role in neuronal survival during IPC against ischemic stroke. However, the involvement of autophagy in Mor-induced neuroprotection and the potential mechanisms remain elusive. Our experiments further confirmed the effect of Mor in cellular and animal models of ischemic stroke and explored its potential mechanism. The findings revealed that Mor enhanced cell viability in a dose-dependent manner by augmenting autophagy levels and autophagic flux in neurons subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pretreatment of Mor improved neurological outcome and reduced infarct size in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) at 1, 7 and 14 days. Moreover, the use of autophagy inhibitors nullified the protective effects of Mor, leading to reactive oxygen species (ROS) accumulation, increased loss of mitochondrial membrane potential (MMP) and neuronal apoptosis in OGD/R neurons. Results further demonstrated that Mor-induced autophagy activation was regulated by mTOR-independent activation of the c-Jun NH2- terminal kinase (JNK)1/2 Pathway, both in vitro and in vivo. Overall, these findings suggested Mor-induced neuroprotection by activating autophagy, which were regulated by JNK1/2 pathway in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Vlisides PE, Moore LE, Whalin MK, Robicsek SA, Gelb AW, Lele AV, Mashour GA (2020) Perioperative Care of patients at High Risk for Stroke during or after Non-cardiac, non-neurological surgery: 2020 guidelines from the Society for Neuroscience in Anesthesiology and critical care. J Neurosurg Anesthesiol 32:210–226

    Article  PubMed  Google Scholar 

  2. Vlisides PE, Moore LE (2021) Stroke in Surgical patients. Anesthesiology 134:480–492

    Article  PubMed  Google Scholar 

  3. Lin MH, Kamel H, Singer DE, Wu YL, Lee M, Ovbiagele B (2019) Perioperative/Postoperative atrial fibrillation and risk of subsequent stroke and/or mortality. Stroke 50:1364–1371

    Article  PubMed  Google Scholar 

  4. Leary MC, Varade P (2020) Perioperative Stroke. Curr Neurol Neurosci Rep 20:12

    Article  PubMed  Google Scholar 

  5. Ammon-Treiber S, Stolze D, Schröder H, Loh H, Höllt V (2005) Effects of opioid antagonists and morphine in a hippocampal hypoxia/hypoglycemia model. Neuropharmacology 49:1160–1169

    Article  CAS  PubMed  Google Scholar 

  6. Zhao P, Huang Y, Zuo Z (2006) Opioid preconditioning induces opioid receptor-dependent delayed neuroprotection against ischemia in rats. J Neuropathol Exp Neurol 65:945–952

    Article  CAS  PubMed  Google Scholar 

  7. Arabian M, Aboutaleb N, Soleimani M, Ajami M, Habibey R, Rezaei Y, Pazoki-Toroudi H (2018) Preconditioning with morphine protects hippocampal CA1 neurons from ischemia-reperfusion injury via activation of the mTOR pathway. Can J Physiol Pharmacol 96:80–87

    Article  CAS  PubMed  Google Scholar 

  8. Rostami F, Oryan S, Ahmadiani A, Dargahi L (2012) Morphine preconditioning protects against LPS-induced neuroinflammation and memory deficit. J Mol Neurosci 48:22–34

    Article  CAS  PubMed  Google Scholar 

  9. Gwak MS, Li L, Zuo Z (2010) Morphine preconditioning reduces lipopolysaccharide and interferon-gamma-induced mouse microglial cell injury via delta 1 opioid receptor activation. Neuroscience 167:256–260

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14:887–894

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Fang Y, Huang Q, Xu P, Lenahan C, Lu J, Zheng J, Dong X, Shao A, Zhang J (2021) An updated review of autophagy in ischemic stroke: from mechanisms to therapies. Exp Neurol 340:113684

    Article  CAS  PubMed  Google Scholar 

  12. Sheng R, Qin ZH (2015) The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin 36:411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu X, Ye Q, Huang Z, Li X, Zhang L, Liu X, Wu YC, Brockmeier U, Hermann DM, Wang YC, Ren L (2023) BAG3 overexpression attenuates ischemic Stroke Injury by activating autophagy and inhibiting apoptosis. Stroke 54:2114–2125

    Article  CAS  PubMed  Google Scholar 

  14. Wang G, Wang T, Zhang Y, Li F, Yu B, Kou J (2019) Schizandrin Protects against OGD/R-Induced Neuronal Injury by Suppressing Autophagy: Involvement of the AMPK/mTOR Pathway. Molecules (Basel, Switzerland) 24

  15. Zhang DM, Zhang T, Wang MM, Wang XX, Qin YY, Wu J, Han R, Sheng R, Wang Y, Chen Z, Han F, Ding Y, Li M, Qin ZH (2019) TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 137:13–23

    Article  CAS  PubMed  Google Scholar 

  16. Jia C, Keasey MP, Lovins C, Hagg T (2018) Inhibition of astrocyte FAK-JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia 66:2456–2469

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao XY, Li JF, Li TZ, Pan CX, Xue FS, Wang GY (2021) Morphine pretreatment protects against cerebral ischemic injury via a cPKCgamma-mediated anti-apoptosis pathway. Exp Ther Med 22:1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu C, Han S, Zheng J, Wang H, Li S, Li J (2022) EphA4 regulates white matter remyelination after ischemic stroke through Ephexin-1/RhoA/ROCK signaling pathway. Glia

  19. Rodriguez R, Santiago-Mejia J, Gomez C, San-Juan ER (2005) A simplified procedure for the quantitative measurement of neurological deficits after forebrain ischemia in mice. J Neurosci Methods 147:22–28

    Article  PubMed  Google Scholar 

  20. Ding YZY, Lai Q, Li J, Park H, Diaz FG (2002) 36.) < impaired motor activity and motor learning function in rat with.pdf>, vol 132. Behav Brain Res, p 29. 1

  21. Rosell A, Agin V, Rahman M, Morancho A, Ali C, Koistinaho J, Wang X, Vivien D, Schwaninger M, Montaner J (2013) Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome? Translational Stroke Res 4:297–307

    Article  Google Scholar 

  22. Orenduff MC, Rezeli ET, Hursting SD, Pieper CF (2021) Psychometrics of the Balance Beam Functional Test in C57BL/6 mice. Comp Med 71:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, Liu J, Wang X, Fan X, Dong Z (2022) β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine: Int J Phytotherapy Phytopharmacology 102:154112

    Article  CAS  Google Scholar 

  24. Tian T, Zeng J, Zhao G, Zhao W, Gao S, Liu L (2018) Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. Exp Biol Med (Maywood) 243:78–86

    Article  CAS  PubMed  Google Scholar 

  25. Zhou T, Liang L, Liang Y, Yu T, Zeng C, Jiang L (2017) Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux. Exp Cell Res 358:147–160

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Wei M, Fan J, Yan W, Zha X, Song H, Wan R, Yin Y, Wang W (2021) Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy 17:1519–1542

    Article  CAS  PubMed  Google Scholar 

  27. Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568

    Article  CAS  PubMed  Google Scholar 

  28. Zhao XY, Li JF, Li TZ, Pan CX, Xue FS, Wang GY (2021) Morphine pretreatment protects against cerebral ischemic injury via a cPKCγ-mediated anti-apoptosis pathway. Exp Ther Med 22:1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Che X, Zhang H, Fu X, Yao Y, Luo J, Yang Y, Cai R, Yu X, Yang J, Zhou MS (2021) CAPN1 (Calpain1)-Mediated impairment of Autophagic Flux contributes to Cerebral Ischemia-Induced neuronal damage. Stroke 52:1809–1821

    Article  CAS  PubMed  Google Scholar 

  30. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14:1435–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuo QZ, Zhang ST, Lei P (2022) Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 42:259–305

    Article  PubMed  Google Scholar 

  32. Neikirk K, Vue Z, Katti P, Rodriguez BI, Omer S, Shao J, Christensen T, Garza Lopez E, Marshall A, Palavicino-Maggio CB, Ponce J, Alghanem AF, Vang L, Barongan T, Beasley HK, Rodman T, Stephens D, Mungai M, Correia M, Exil V, Damo S, Murray SA, Crabtree A, Glancy B, Pereira RO, Abel ED, Hinton AO Jr (2023) Systematic Transmission Electron Microscopy-based identification and 3D Reconstruction of Cellular Degradation Machinery. Adv Biology 7:e2200221

    Article  Google Scholar 

  33. Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J (2011) Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCγ-mediated molecular mechanism. Neurochem Int 58:684–692

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Ma L, Yan Y, Zhao L, Han S, Wu D, Borlongan CV, Li J, Ji X (2022) cPKCγ-Modulated Autophagy Contributes to Ischemic Preconditioning-Induced Neuroprotection in Mice with Ischemic Stroke via mTOR-ULK1 Pathway. Translational stroke research

  35. Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, Marciano DK, Schiattarella GG, Bhagat G, Moe OW, Hu MC, Levine B (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558:136–140

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rahimi S, Dadfar B, Tavakolian G, Asadi Rad A, Rashid Shabkahi A, Siahposht-Khachaki A (2021) Morphine attenuates neuroinflammation and blood-brain barrier disruption following traumatic brain injury through the opioidergic system. Brain Res Bull 176:103–111

    Article  CAS  PubMed  Google Scholar 

  37. Arabian M, Aboutaleb N, Soleimani M, Mehrjerdi FZ, Ajami M, Pazoki-Toroudi H (2015) Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice. Iran J Basic Med Sci 18:14–21

    PubMed  PubMed Central  Google Scholar 

  38. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  39. Peng H, Yang J, Li G, You Q, Han W, Li T, Gao D, Xie X, Lee BH, Du J, Hou J, Zhang T, Rao H, Huang Y, Li Q, Zeng R, Hui L, Wang H, Xia Q, Zhang X, He Y, Komatsu M, Dikic I, Finley D, Hu R (2017) Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res 27:657–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng Q, Su H, Ranek MJ, Wang X (2011) Autophagy and p62 in cardiac proteinopathy. Circul Res 109:296–308

    Article  CAS  Google Scholar 

  41. Liu N, Peng A, Sun H, Zhuang Y, Yu M, Wang Q, Wang J (2021) LncRNA AC136007.2 alleviates cerebral ischemic-reperfusion injury by suppressing autophagy. Aging 13:19587–19597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Zhang S, Ni H, Zhang Y, Yan X, Gao Y, He B, Wang W, Liu C, Guo M (2021) Autophagy is involved in the neuroprotective effect of nicotiflorin. J Ethnopharmacol 278:114279

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Wu M, Chen Z (2022) Schaftoside improves cerebral ischemia-reperfusion injury by enhancing autophagy and reducing apoptosis and inflammation through the AMPK/mTOR pathway. Advances in clinical and experimental medicine. official organ Wroclaw Medical University

  44. Su J, Zhang T, Wang K, Zhu T, Li X (2014) Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats. Neurochem Res 39:2068–2077

    Article  CAS  PubMed  Google Scholar 

  45. Sheng R, Zhang TT, Felice VD, Qin T, Qin ZH, Smith CD, Sapp E, Difiglia M, Waeber C (2014) Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J Biol Chem 289:20845–20857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Hu K, Liang M, Yan Q, Huang M, Jin L, Chen Y, Yang X, Li X (2021) Stilbene Glycoside upregulates SIRT3/AMPK to promotes neuronal mitochondrial autophagy and inhibit apoptosis in ischemic stroke. Advances in clinical and experimental medicine: official organ. Wroclaw Med Univ 30:139–146

    Google Scholar 

  47. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Liu W, Lu Y, Tian H, Duan C, Lu L, Gao G, Wu X, Wang X, Yang H (2018) Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy 14:845–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Al-Bari MAA, Xu P (2020) Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci 1467:3–20

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Wu F, Zhou M, Zhou J, Cui S, Guo J, Wu J, He L (2022) ProNGF/NGF modulates autophagy and apoptosis through PI3K/Akt/mTOR and ERK Signaling Pathways following cerebral ischemia-reperfusion in rats. Oxidative medicine and cellular longevity 2022:6098191

  51. Zhao XH, Wang YB, Yang J, Liu HQ, Wang LL (2019) MicroRNA-326 suppresses iNOS expression and promotes autophagy of dopaminergic neurons through the JNK signaling by targeting XBP1 in a mouse model of Parkinson’s disease. J Cell Biochem 120:14995–15006

    Article  CAS  PubMed  Google Scholar 

  52. Su AC, Zhang LY, Zhang JG, Hu YY, Liu XY, Li SC, Xian XH, Li WB, Zhang M (2022) The regulation of Autophagy by p38 MAPK-PPARγ signaling during the Brain Ischemic Tolerance Induced by Cerebral ischemic preconditioning. DNA Cell Biol 41:838–849

    Article  CAS  PubMed  Google Scholar 

  53. Long C, Gao Y, Gao G, Han S, Zu P, Fang L, Li J (2006) Decreased phosphorylation and protein expression of ERK1/2 in the brain of hypoxic preconditioned mice. Neurosci Lett 397:307–312

    Article  CAS  PubMed  Google Scholar 

  54. Zhang N, Gao G, Bu X, Han S, Fang L, Li J (2007) Neuron-specific phosphorylation of c-Jun N-terminal kinase increased in the brain of hypoxic preconditioned mice. Neurosci Lett 423:219–224

    Article  CAS  PubMed  Google Scholar 

  55. Zhao L, Liu X, Liang J, Han S, Wang Y, Yin Y, Luo Y, Li J (2013) Phosphorylation of p38 MAPK mediates hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury via mitochondria translocation of Bcl-xL in mice. Brain Res 1503:78–88

    Article  CAS  PubMed  Google Scholar 

  56. Appunni S, Gupta D, Rubens M, Ramamoorthy V, Singh HN, Swarup V (2021) Deregulated protein kinases: friend and foe in ischemic stroke. Mol Neurobiol 58:6471–6489

    Article  CAS  PubMed  Google Scholar 

  57. Kuan CY, Burke RE (2005) Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr drug Targets CNS Neurol Disorders 4:63–67

    Article  CAS  Google Scholar 

  58. Lin T, Ruan S, Huang D, Meng X, Li W, Wang B, Zou F (2019) MeHg-induced autophagy via JNK/Vps34 complex pathway promotes autophagosome accumulation and neuronal cell death. Cell Death Dis 10:399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marchesi N, Thongon N, Pascale A, Provenzani A, Koskela A, Korhonen E, Smedowski A, Govoni S, Kauppinen A, Kaarniranta K, Amadio M (2018) Autophagy stimulus promotes early HuR protein activation and p62/SQSTM1 protein synthesis in ARPE-19 cells by triggering Erk1/2, p38(MAPK), and JNK kinase pathways. Oxidative medicine and cellular longevity 2018:4956080

Download references

Acknowledgements

None.

Funding

This research received supports from the Natural Science Foundation of Shandong Province (ZR2020MH125), the Health Science and Technology Development Program of Shandong Province (No. 202104110344), Jinan Science and Technology Plan Project (No. 20222502) and the Youth Science Foundation of Shandong First Medical University (No. 202201128).

Author information

Authors and Affiliations

Authors

Contributions

WC performed the experiments, analyzed the data and completed the initial draft of the manuscript; YH, PL and XW contributed to some of the experimental work, data collection and data analysis. FM and JL were primarily responsible for designing the study, providing funding, and finalizing the manuscript. All authors provided feedback on previous versions as well as approved the final manuscript.

Corresponding authors

Correspondence to Junfa Li or Fanjun Meng.

Ethics declarations

Ethical Approval

This study adhered rigorously to the guidelines of National Institutes of Health (NIH) and ARRIVE guidelines on the Use of Laboratory Animals. All animal procedures received approval from the Experimental Animal Ethics Committee of the Central Hospital Affiliated to Shandong First Medical University (JNCHIACUC2021-65).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Consent to Participate

Not applicable.

Conflict of Interest

The authors affirm that they do not have any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, W., Huang, Y., Li, P. et al. Morphine Induced Neuroprotection in Ischemic Stroke by Activating Autophagy Via mTOR-Independent Activation of the JNK1/2 Pathway. Neurochem Res 49, 2249–2270 (2024). https://doi.org/10.1007/s11064-024-04181-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-024-04181-1

Keywords

Navigation