Skip to main content
Log in

Changes in Astroglial Water Flow in the Pre-amyloid Phase of the STZ Model of AD Dementia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. (2023) 2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement 19:1598–1695. https://doi.org/10.1002/alz.13016

  2. Oeckl P, Halbgebauer S, Anderl-Straub S et al (2019) Glial fibrillary acidic protein in serum is increased in Alzheimer’s Disease and correlates with cognitive impairment. J Alzheimers Dis 67:481–488. https://doi.org/10.3233/JAD-180325

    Article  CAS  PubMed  Google Scholar 

  3. Akhtar A, Gupta SM, Dwivedi S et al (2022) Preclinical models for Alzheimer’s Disease: past, Present, and future approaches. ACS Omega 7:47504–47517. https://doi.org/10.1021/acsomega.2c05609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm (Vienna) 120:233–252. https://doi.org/10.1007/s00702-012-0877-9

    Article  CAS  PubMed  Google Scholar 

  5. Kamat PK, Kalani A, Rai S et al (2016) Streptozotocin Intracerebroventricular-Induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s Disease (sAD)-Like Pathology. Mol Neurobiol 53:4548–4562. https://doi.org/10.1007/s12035-015-9384-y

    Article  CAS  PubMed  Google Scholar 

  6. Rodrigues L, Biasibetti R, Swarowsky A et al (2009) Hippocampal alterations in rats submitted to streptozotocin-induced dementia model are prevented by aminoguanidine. J Alzheimers Dis 17:193–202. https://doi.org/10.3233/JAD-2009-1034

    Article  CAS  PubMed  Google Scholar 

  7. Knezovic A, Osmanovic-Barilar J, Curlin M et al (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna) 122:577–592. https://doi.org/10.1007/s00702-015-1394-4

    Article  CAS  PubMed  Google Scholar 

  8. Biasibetti R, Almeida Dos Santos JP, Rodrigues L et al (2017) Hippocampal changes in STZ-model of Alzheimer’s disease are dependent on sex. Behav Brain Res 316:205–214. https://doi.org/10.1016/j.bbr.2016.08.057

    Article  CAS  PubMed  Google Scholar 

  9. Dos Santos JPA, Vizuete A, Hansen F et al (2018) Early and persistent O-GlcNAc protein modification in the Streptozotocin Model of Alzheimer’s Disease. J Alzheimers Dis 61:237–249. https://doi.org/10.3233/JAD-170211

    Article  CAS  PubMed  Google Scholar 

  10. Tramontina AC, Wartchow KM, Rodrigues L et al (2011) The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer’s disease in rats. J Neural Transm (Vienna) 118:1641–1649. https://doi.org/10.1007/s00702-011-0680-z

    Article  CAS  PubMed  Google Scholar 

  11. Biasibetti R, Tramontina AC, Costa AP et al (2013) Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 236:186–193. https://doi.org/10.1016/j.bbr.2012.08.039

    Article  CAS  PubMed  Google Scholar 

  12. Moreira AP, Vizuete AFK, Zin LEF et al (2022) The Methylglyoxal/RAGE/NOX-2 pathway is persistently activated in the Hippocampus of rats with STZ-Induced sporadic Alzheimer’s Disease. Neurotox Res 40:395–409. https://doi.org/10.1007/s12640-022-00476-9

    Article  CAS  PubMed  Google Scholar 

  13. Dos Santos JPA, Vizuete AF, Gonçalves C-A (2020) Calcineurin-mediated hippocampal inflammatory alterations in Streptozotocin-Induced Model of Dementia. Mol Neurobiol 57:502–512. https://doi.org/10.1007/s12035-019-01718-2

    Article  CAS  PubMed  Google Scholar 

  14. Escartin C, Galea E, Lakatos A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harpin ML, Delaère P, Javoy-Agid F et al (1990) Glial fibrillary acidic protein and beta A4 protein deposits in temporal lobe of aging brain and senile dementia of the Alzheimer type: relation with the cognitive state and with quantitative studies of senile plaques and neurofibrillary tangles. J Neurosci Res 27:587–594. https://doi.org/10.1002/jnr.490270420

    Article  CAS  PubMed  Google Scholar 

  16. Kashon ML, Ross GW, O’Callaghan JP et al (2004) Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis 6:595–604 discussion 673 – 81. https://doi.org/10.3233/jad-2004-6604

    Article  PubMed  Google Scholar 

  17. Pereira JB, Janelidze S, Smith R et al (2021) Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 144:3505–3516. https://doi.org/10.1093/brain/awab223

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lu J, Esposito G, Scuderi C et al (2011) S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors. PLoS ONE 6:e22126. https://doi.org/10.1371/journal.pone.0022126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilcock DM, Griffin WST (2013) Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J Neuroinflammation 10:84. https://doi.org/10.1186/1742-2094-10-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furman JL, Norris CM (2014) Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation 11:158. https://doi.org/10.1186/s12974-014-0158-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gayger-Dias V, Vizuete AF, Rodrigues L et al (2023) How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med (Maywood) 15353702231214260. https://doi.org/10.1177/15353702231214260

  22. Lissner LJ, Wartchow KM, Toniazzo AP et al (2021) Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: a reflection based on the literature and experience. Pharmacol Biochem Behav 210:173273. https://doi.org/10.1016/j.pbb.2021.173273

    Article  CAS  PubMed  Google Scholar 

  23. Lissner LJ, Wartchow KM, Rodrigues L et al (2022) Acute Methylglyoxal-Induced damage in blood-brain barrier and hippocampal tissue. Neurotox Res 40:1337–1347. https://doi.org/10.1007/s12640-022-00571-x

    Article  CAS  PubMed  Google Scholar 

  24. Rodrigues L, Wartchow KM, Suardi LZ et al (2019) Streptozotocin causes acute responses on hippocampal S100B and BDNF proteins linked to glucose metabolism alterations. Neurochem Int 128:85–93. https://doi.org/10.1016/j.neuint.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  25. Peterson GL (1977) A simplification of the protein assay method of Lowry which is more generally applicable. Anal Biochem 83:346–56. https://doi.org/10.1016/0003-2697(77)90043-4

  26. Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43. https://doi.org/10.1016/j.pneurobio.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  27. Grieb P (2016) Intracerebroventricular Streptozotocin Injections as a model of Alzheimer’s Disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752. https://doi.org/10.1007/s12035-015-9132-3

    Article  CAS  PubMed  Google Scholar 

  28. Yeo H-G, Lee Y, Jeon C-Y et al (2015) Characterization of cerebral damage in a Monkey Model of Alzheimer’s Disease Induced by Intracerebroventricular Injection of Streptozotocin. J Alzheimers Dis 46:989–1005. https://doi.org/10.3233/JAD-143222

    Article  CAS  PubMed  Google Scholar 

  29. Heo J-H, Lee S-R, Lee S-T et al (2011) Spatial distribution of glucose hypometabolism induced by intracerebroventricular streptozotocin in monkeys. J Alzheimers Dis 25:517–523. https://doi.org/10.3233/JAD-2011-102079

    Article  PubMed  Google Scholar 

  30. Yang Z, Arja RD, Zhu T et al (2022) Characterization of Calpain and caspase-6-Generated glial fibrillary acidic protein Breakdown products following traumatic Brain Injury and Astroglial Cell Injury. Int J Mol Sci 23. https://doi.org/10.3390/ijms23168960

  31. Mohmmad Abdul H, Baig I, Levine H et al (2011) Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric abeta in primary cell culture. Aging Cell 10:103–113. https://doi.org/10.1111/j.1474-9726.2010.00645.x

    Article  CAS  PubMed  Google Scholar 

  32. Norris CM, Kadish I, Blalock EM et al (2005) Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci 25:4649–4658. https://doi.org/10.1523/JNEUROSCI.0365-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michetti F, D’Ambrosi N, Toesca A et al (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148:168–187. https://doi.org/10.1111/jnc.14574

    Article  CAS  PubMed  Google Scholar 

  34. Hosseinzadeh S, Zahmatkesh M, Zarrindast M-R et al (2013) Elevated CSF and plasma microparticles in a rat model of streptozotocin-induced cognitive impairment. Behav Brain Res 256:503–511. https://doi.org/10.1016/j.bbr.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  35. Broetto N, Hansen F, Brolese G et al (2016) Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation. Brain Res Bull 124:136–143. https://doi.org/10.1016/j.brainresbull.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  36. Vizuete AFK, Hansen F, Da Ré C et al (2019) GABAA Modulation of S100B Secretion in Acute hippocampal slices and astrocyte cultures. Neurochem Res 44:301–311. https://doi.org/10.1007/s11064-018-2675-8

    Article  CAS  PubMed  Google Scholar 

  37. Nakada T, Kwee IL, Igarashi H, Suzuki Y (2017) Aquaporin-4 functionality and Virchow-Robin Space Water Dynamics: physiological model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci 18. https://doi.org/10.3390/ijms18081798

  38. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913. https://doi.org/10.1016/j.neuroscience.2004.08.053

    Article  CAS  PubMed  Google Scholar 

  39. Rasmussen MK, Mestre H, Nedergaard M (2022) Fluid transport in the brain. Physiol Rev 102:1025–1151. https://doi.org/10.1152/physrev.00031.2020

    Article  CAS  PubMed  Google Scholar 

  40. Ardalan M, Chumak T, Quist A et al (2022) Sex-dependent gliovascular interface abnormality in the Hippocampus following postnatal Immune activation in mice. Dev Neurosci 44:320–330. https://doi.org/10.1159/000525478

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Conselho Nacional de Desenvolvimento Científico Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PPSUS 21/2551-0000067-8) and Instituto Nacional de Ciência e Tecnologia (INCT) para Saúde Cerebral (406020/2022-1).

Author information

Authors and Affiliations

Authors

Contributions

V.G.D., L.M., V.F.S. and C.A.G. conceptualized the study. V.G.D., L.M., V.F.S., A.S., A.C.R.S., T.M.S., V.C.Q.S. and B.P.S. performed the experiments. V.G.D. and V.F.S. performed statistical analysis. C.A.G., V.G.D. and L.M. wrote the original draft of the manuscript. C.A.G., M.C.L., L.D.B. and A.Q.S. provided materials and laboratory facilities. All authors revised, edited, and approved the manuscript.

Corresponding author

Correspondence to Carlos-Alberto Gonçalves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study protocol was reviewed and approved by the Animal Care and Use Committee of the Universidade Federal do Rio Grande do Sul, approval number 37479.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayger-Dias, V., Menezes, L., Da Silva, VF. et al. Changes in Astroglial Water Flow in the Pre-amyloid Phase of the STZ Model of AD Dementia. Neurochem Res (2024). https://doi.org/10.1007/s11064-024-04144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04144-6

Keywords

Navigation