Skip to main content

Advertisement

Log in

miR-34a/TAN1/CREB Axis Engages in Alleviating Oligodendrocyte Trophic Factor-Induced Myelin Repair Function and Astrocyte-Dependent Neuroinflammation in the Early Stages of Alzheimer's Disease: The Anti-Neurodegenerative Effect of Treadmill Exercise

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Reduced myelin stability observed in the early stages of Alzheimer's disease leads to spatial learning and memory impairment. Exercise has been shown to protect nerves, reduce the risk of Alzheimer's disease, and strengthen synaptic connectivity. However, the underlying mechanisms of how exercise can promote myelin repair and coordinate inflammation and proliferation are still uncertain. In this study, we conducted histological and biochemical assays of cortical lysates after behavioral testing to detect pathological changes, myelin sheath thickness, and mRNA and protein levels. It is notable that D-galactose model mice exhibited elevated miRNA-34a levels, overactive astrocytes, decreased myelin staining scores, increased apoptosis, and decreased synaptic plasticity in the brain. Significantly, after eight weeks of exercise, we observed improvements in LFB scores, NeuN( +) neuron counts, and myelin basic protein (MBP) expression. Additionally, exercise promoted the expression of oligodendrocyte markers Olig2 and PDFGR-α associated with brain proliferation, and improved spatial cognitive function. Furthermore, it decreased the inflammation caused by astrocyte secretions (TNF-α, Cox-2, CXCL2). Interestingly, we also observed downregulation of miR-34a and activation of the TAN1/PI3K/CREB signaling pathway. Our data shed light on a previously unsuspected mechanism by which exercise reduces miR-34a levels and protects neuronal function and survival by preventing excessive demyelination and inflammatory infiltration in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

miR-34a:

MicroRNA-34a

D-Gal:

D-galactose

AD:

Alzheimer's disease

NFTs:

Neurofibrillary tangles

LFB:

Luxol Fast Blue

MWM:

Morries water maze

Cox-2:

Cyclooxygenase-2

CXCL2:

C-X-C Motif Chemokine Ligand 2

PDGFR:

Platelet derived growth factor receptor alpha

MBP:

Myelin basic protein

TAN1:

Translocation-associated notch protein TAN-1

PTEN:

Phosphatase and tensin homolog deleted on chromosome ten

References

  1. Hou YJ, Dan XL, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581

    Article  PubMed  Google Scholar 

  2. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    Article  CAS  PubMed  Google Scholar 

  5. Tan L, Yu JT, Tan L (2015) Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51:1249–1262

    Article  CAS  PubMed  Google Scholar 

  6. Kou XJ, Li J, Liu XR, Chang JR, Zhao QX, Jia SH, Fan JJ, Chen N (2017) Swimming attenuates D-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics. J Appl Physiol 122:1462–1469

    Article  CAS  PubMed  Google Scholar 

  7. Chua CEL, Tang BL (2019) miR-34a in neurophysiology and neuropathology. J Mol Neurosci 67:235–246

    Article  CAS  PubMed  Google Scholar 

  8. Jian Y, Yuan SL, Yang JL, Lei Y, Li X, Liu WF (2022) Aerobic exercise alleviates abnormal autophagy in brain cells of APP/PS1 mice by upregulating adipoR1 levels. Int J Mol Sci 23:9921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Correale J, Ysrraelit MC (2022) Multiple sclerosis and aging: the dynamics of demyelination and remyelination. ASN Neuro. https://doi.org/10.1177/17590914221118502

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nogueras-Ortiz CJ, Mahairaki V, Delgado-Peraza F, Das D, Avgerinos K, Eren E, Hentschel M, Goetzl EJ, Mattson MP, Kapogiannis D (2020) Astrocyte- and neuron-derived extracellular vesicles from Alzheimer’s disease patients effect complement-mediated neurotoxicity. Cells-Basel. 9:1618

    Article  CAS  Google Scholar 

  11. Iliadou P, Bakirtzis C, Ioannidis P, Possin K, Zygouris S, Sintila SA, Grigoriadis N, Aretouli E (2022) Neuropsychological correlates of cerebellar volumes in multiple sclerosis: an MRI volumetric analysis study. J Integr Neurosci 21:13

    Article  PubMed  Google Scholar 

  12. Moallemian S, Salmon E, Bahri MA et al (2023) Multimodal imaging of microstructural cerebral alterations and loss of synaptic density in Alzheimer’s disease. Neurobiol Aging 132:24–35

    Article  CAS  PubMed  Google Scholar 

  13. Esser S, Gopfrich L, Bihler K, Kress E, Nyamoya S, Tauber SC, Clarner T, Stope MB, Pufe T, Kipp M et al (2018) Toll-like receptor 2-mediated glial cell activation in a mouse model of cuprizone-induced demyelination. Mol Neurobiol 55:6237–6249

    Article  CAS  PubMed  Google Scholar 

  14. Isaev NK, Stelmashook EV, Genrikhs EE (2019) Neurogenesis and brain aging. Rev Neurosci 30:573–580

    Article  PubMed  Google Scholar 

  15. Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS, Lee EK, Jee YS (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45:357–365

    Article  PubMed  Google Scholar 

  16. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bao CC, He CQ, Shu B, Meng T, Cai QY, Li BC, Wu GY, Wu B, Li HL (2021) Aerobic exercise training decreases cognitive impairment caused by demyelination by regulating ROCK signaling pathway in aging mice. Brain Res Bull 168:52–62

    Article  CAS  PubMed  Google Scholar 

  18. Tastsoglou S, Skoufos G, Miliotis M, Karagkouni D, Koutsoukos I, Karavangeli A, Kardaras FS, Hatzigeorgiou AG (2023) DIANA-miRPath v4.0 expanding target-based miRNA functional analysis in cell-type and tissue contexts.  Nucleic Acids Res. https://doi.org/10.1093/nar/gkad431

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singhal N, Sharma A, Kumari S, Garg A, Rai R, Singh N, Kumar M, Goel M (2020) Biophysical and biochemical characterization of nascent polypeptide-associated complex of picrophilus torridus and elucidation of its interacting partners. Front Microbiol 11:915

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parsa FG, Nobili S, Karimpour M, Aghdaei HA, Nazemalhosseini-Mojarad E, Mini E (2022) Fanconi anemia pathway in colorectal cancer: a novel opportunity for diagnosis. Prognosis Therapy. J Pers Med. 12:396

    Article  PubMed  Google Scholar 

  21. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42:S125–S152

    Article  PubMed  Google Scholar 

  22. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Moran M, Emanuele E, Joyner MJ, Lucia A (2015) Exercise attenuates the major hallmarks of aging. Rejuv Res 18:57–89

    Article  Google Scholar 

  23. Garcia G, Pinto S, Ferreira S (2022) emerging role of miR-21–5p in neuron-glia dysregulation and exosome transfer using multiple models of Alzheimer’s disease. Cells 11:3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JS, Park YH, Park S, Yoon U, Choe Y, Cheon BK, Hahn A, Cho SH, Kim SJ, Kim JP et al (2019) Distinct brain regions in physiological and pathological brain aging. Front Aging Neurosci. 11:147

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun CC, Yin ZP, Chen JG et al (2021) Dihydromyricetin improves cognitive impairments in d-galactose-induced aging mice through regulating oxidative stress and inhibition of acetylcholinesterase. Mol Nutr Food Res 66:e2101002

    Article  PubMed  Google Scholar 

  26. Zhang L, Chao FL, Luo YM et al (2017) Exercise prevents cognitive function decline and demyelination in the white matter of APP/PS1 transgenic AD mice. Curr Alzheimer Res 14(6):645–655

    Article  CAS  PubMed  Google Scholar 

  27. Mahan TE, Wang C, Bao X, Choudhury A, Ulrich JD, Holtzman DM (2022) Selective reduction of astrocyte apoE3 and apoE4 strongly reduces a beta accumulation and plaque-related pathology in a mouse model of amyloidosis. Mol Neurodegener 17:1–20

    Article  Google Scholar 

  28. Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA (2009) Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol 94:1153–1160

    Article  CAS  PubMed  Google Scholar 

  29. Sujkowski A, Hong LK, Wessells RJ, Todi SV (2022) The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 74:101543

    Article  CAS  PubMed  Google Scholar 

  30. Christensen AJ, Ott T, Kepecs A (2022) Cognition and the single neuron: How cell types construct the dynamic computations of frontal cortex. Curr Opin Neurobiol 77:102630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marangon D, Boccazzi M, Lecca D, Fumagalli M (2020) Regulation of oligodendrocyte functions: targeting lipid metabolism and extracellular matrix for myelin repair. J Clin Med 9:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stogsdill JA, Harwell CC, Goldman SA (2023) Astrocytes as master modulators of neural networks: synaptic functions and disease-associated dysfunction of astrocytes. Ann Ny Acad Sci 1525:41–60

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Yu H, Wu M, Lu G et al (2018) Prednisone alleviates demyelination through regulation of the NLRP3 inflammasome in a C57BL/6 mouse model of cuprizone-induced demyelination. Brain Res 1678:75–84

    Article  CAS  PubMed  Google Scholar 

  34. Yang YY, Garcia-Cruzado M, Zeng HR, Camprubi-Ferrer L, Bahatyrevich-Kharitonik B, Bachiller S, Deierborg T (2023) LPS priming before plaque deposition impedes microglial activation and restrains A ss pathology in the 5xFAD mouse model of Alzheimer ’ s disease. Brain Behav Immun 113:228–247

    Article  CAS  PubMed  Google Scholar 

  35. Silvestroff L, Bartucci S, Pasquini J, Franco P (2012) Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp Neurol 235:357–367

    Article  CAS  PubMed  Google Scholar 

  36. Allnoch L, Baumgärtner W, Hansmann F (2019) Impact of astrocyte depletion upon inflammation and demyelination in a murine animal model of multiple sclerosis. Int J Mol Sci. https://doi.org/10.1093/nar/gkad431

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui H, Ge J, Xie N, Banerjee S, Zhou Y, Liu R, Thannickal VJ, Liu G (2018) miR-34a promotes fibrosis in aged lungs by inducing alveolar epithelial dysfunctions. Am J Physiol-Lung C 314:L332–L332

    Google Scholar 

  38. Raucci A, Macri F, Castiglione S, Badi I, Vinci MC, Zuccolo E (2021) MicroRNA-34a: the bad guy in age-related vascular diseases. Cell Mol Life Sci 78:7355–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abuelezz NZ, Nasr FE, Abdel Aal WM et al (2022) Sera miR-34a, miR-29b and miR-181c as potential novel diagnostic biomarker panel for Alzheimers in the egyptian population. Exp Gerontol 169:111961

    Article  CAS  PubMed  Google Scholar 

  40. Placanica L, Zhu L, Li YM (2009) Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS ONE 4:e5088

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  41. Wang P, Zhang S, Hu C et al (2023) Regulatory role of melatonin in Notch1 signaling pathway in cerebral cortex of Aβ 1–42 -induced Alzheimer’s disease rat model. Mol Biol Rep 50(3):2463–2469

    Article  CAS  PubMed  Google Scholar 

  42. Yu LM, Li Z, Dong X, Xue XD, Liu Y, Xu S, Zhang J, Han JS, Yang Y, Wang HS (2018) Polydatin protects diabetic heart against ischemia-reperfusion injury via notch1/hes1-mediated activation of pten/akt signaling. Oxid Med Cell Longev. https://doi.org/10.1155/2018/2750695

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Li BR, Zheng ZQ, Kang T, Zeng MH, Liu YH, Xia BH (2015) Protective effects of notch1 signaling activation against high glucose-induced myocardial cell injury: analysis of its mechanisms of action. Int J Mol Med 36:897–903

    Article  CAS  PubMed  Google Scholar 

  44. Bi JY, Zhang HY, Lu J, Lei WF (2016) Nobiletin ameliorates isoflurane-induced cognitive impairment via antioxidant, anti-inflammatory and anti-apoptotic effects in aging rats. Mol Med Rep 14:5408–5414

    Article  CAS  PubMed  Google Scholar 

  45. Pak ME, Jung DH, Lee HJ, Shin MJ, Kim SY, Shin YB, Yun YJ, Shin HK, Choi BT (2018) Combined therapy involving electroacupuncture and treadmill exercise attenuates demyelination in the corpus callosum by stimulating oligodendrogenesis in a rat model of neonatal hypoxia-ischemia. Exp Neurol 300:222–231

    Article  PubMed  Google Scholar 

  46. Aguiar AS, Castro AA, Moreira EL et al (2011) Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech Ageing Dev 132(11–12):560–567

    Article  CAS  PubMed  Google Scholar 

  47. Caprariello AV, Mangla S, Miller RH, Selkirk SM (2012) Apoptosis of oligodendrocytes in the central nervous system results in rapid focal demyelination. Ann Neurol 72:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Guo W, Hong S (2023) Aerobic exercise mitigates hippocampal neuronal apoptosis by regulating DAPK1/CDKN2A/REDD1/FoXO1/fasL signaling pathway in D-galactose-induced aging mice. FASEB J 37:e23205

    Article  CAS  PubMed  Google Scholar 

  49. Lombardi M, Parolisi R, Scaroni F et al (2019) Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol 138(6):987–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen JF, Wang F, Huang NX, Xiao L, Mei F (2022) Oligodendrocytes and myelin: active players in neurodegenerative brains? Dev Neurobiol 82:160–174

    Article  PubMed  Google Scholar 

  51. Sy M, Brandt AU, Lee SU, Newton BL, Pawling J, Golzar A, Rahman AMA, Yu ZX, Cooper G, Scheel M et al (2020) N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J Biol Chem 295:17413–17424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The animal study protocol was approved by the Biomedical Research Ethics Committee of Hunan Normal University (Ethics Section 2021 No. 365).

Funding

This research was funded by National Natural Science Foundation of China, grant number: 32371182.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this research and preparation of the manuscript. YL, WG, LZ, and (Chang-fa Tang) CT conceived and designed the experiments and wrote the manuscript. YL, XM, SD, and CT performed the experiments and analyzed the data; YL, WS edited and revised manuscript. YL is the first author to the work. All authors have been involved in the final approval of the manuscript for publication.

Corresponding author

Correspondence to Wen Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 12 KB)

Supplementary file2 (CSV 1 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Meng, XK., Shao, Wz. et al. miR-34a/TAN1/CREB Axis Engages in Alleviating Oligodendrocyte Trophic Factor-Induced Myelin Repair Function and Astrocyte-Dependent Neuroinflammation in the Early Stages of Alzheimer's Disease: The Anti-Neurodegenerative Effect of Treadmill Exercise. Neurochem Res 49, 1105–1120 (2024). https://doi.org/10.1007/s11064-024-04108-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-024-04108-w

Keywords

Navigation