Skip to main content

Advertisement

Log in

7, 8-dihydroxyflavone Ameliorates Cholinergic Dysfunction, Inflammation, Oxidative Stress, and Apoptosis in a Rat Model of Vascular Dementia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vascular dementia (VD) is a degenerative cerebrovascular disorder associated with progressive cognitive decline. Previous reports have shown that 7,8-dihydroxyflavone (7,8-DHF), a well-known TrkB agonist, effectively ameliorates cognitive deficits in several disease models. Therefore, this study investigated the protective effects of 7,8-DHF against 2-VO-induced VD. VD was established in rats using the permanent bilateral carotid arteries occlusion (two-vessel occlusion, 2-VO) model. 7,8-DHF (5, 10, and 20 mg/kg) and Donepezil (10 mg/kg) were administered for 4 weeks. Memory function was assessed by the novel objective recognition task (NOR) and Morris water maze (MWM) tests. Inflammatory (TNF-α, IL-1β, and NF-kβ), oxidative stress, and apoptotic (BAX, BCL-2, caspase-3) markers, along with the activity of choline acetylcholinesterase (AChE) was assessed. p-AKT, p-CREB, BDNF, and neurotransmitter (NT) (GLU, GABA, and ACh) levels were also analyzed in the hippocampus of 2-VO rats. Our results show that 7,8-DHF effectively improved memory performance and cholinergic dysfunction in 2-VO model rats. Furthermore, 7,8-DHF treatment also increased p-AKT, p-CREB, and BDNF levels, suppressed oxidative, inflammatory, and apoptotic markers, and restored altered NT levels in the hippocampus. These findings imply that 7, 8-DHF may act via multiple mechanisms and as such serve as a promising neuroprotective agent in the context of VD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated and/ or analysed during this study are included in this article.

References

  1. Luo X-Q, Li A, Yang X, Xiao X, Hu R, Wang T-W, Dou X-Y, Yang D-J, Dong Z (2018) Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular Dementia rats via cannabinoid receptor 2. Chin Med 13:1–17

    Article  Google Scholar 

  2. Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M (2017) Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2 diabetes mellitus. J Diabetes Res 2017:2823671

    Article  PubMed  PubMed Central  Google Scholar 

  3. Venkat P, Culmone L, Chopp M, Landschoot-Ward J, Wang F, Zacharek A, Chen J (2020) HUCBC Treatment improves cognitive outcome in rats with vascular Dementia. Front Aging Neurosci 12:258

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Z-Y, Liu Z, Deng H-H, Chen Q (2018) Effects of acupuncture on vascular Dementia (VD) animal models: a systematic review and meta-analysis. BMC Complement Altern Med 18:1–10

    Article  Google Scholar 

  5. Zhang Y, Wang LL, Wu Y, Wang N, Wang SM, Zhang B, Shi CG, Zhang SC (2016) Paeoniflorin attenuates hippocampal damage in a rat model of vascular Dementia. Exp Ther Med 12:3729–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erkinjuntti T, Roman G, Gauthier S, Feldman H, Rockwood K (2004) Emerging therapies for vascular Dementia and vascular cognitive impairment. Stroke 35:1010–1017

    Article  CAS  PubMed  Google Scholar 

  7. Baskys A, Cheng J-x (2012) Pharmacological prevention and treatment of vascular Dementia: approaches and perspectives. Exp Gerontol 47:887–891

    Article  CAS  PubMed  Google Scholar 

  8. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhen Y-F, Liu X-Y, Zhou D-H, Du X, Yin G, Zhang Y, Fang H, Xu G, Soares JC, Zhang XY (2018) Cognition, serum BDNF levels, and BDNF Val66Met polymorphism in type 2 Diabetes patients and healthy controls. Oncotarget 9:3653

    Article  PubMed  Google Scholar 

  10. Wang D-P, Yin H, Lin Q, Fang S-P, Shen J-H, Wu Y-F, Su S-H, Hai J (2019) Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn-Schmiedeberg Arch Pharmacol 392:1277–1284

    Article  CAS  Google Scholar 

  11. Wan Q, Ma X, Zhang Z-J, Sun T, Xia F, Zhao G, Wu Y-M (2017) Ginsenoside reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor regulated by epigenetic modulation. Mol Neurobiol 54:2889–2900

    Article  CAS  PubMed  Google Scholar 

  12. Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegen 1:1–9

    Article  Google Scholar 

  13. Liu C, Chan CB, Ye K (2016) 7, 8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegen 5:1–9

    Article  Google Scholar 

  14. Wu C-H, Hung T-H, Chen C-C, Ke C-H, Lee C-Y, Wang P-Y, Chen S-F (2014) Post-injury treatment with 7, 8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE 9:e113397

    Article  PubMed  PubMed Central  Google Scholar 

  15. Agrawal R, Noble E, Tyagi E, Zhuang Y, Ying Z, Gomez-Pinilla F (2015) Flavonoid derivative 7, 8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta Mol Basis Dis 1852:862–872

    Article  CAS  Google Scholar 

  16. Pandey SN, Mohit K, Dwivedi DK, Priyansha C, Mangala L, Ashok J (2020) 7, 8-Dihydroxyflavone alleviated the high-fat diet and alcohol-induced memory impairment: behavioral, biochemical and molecular evidence. Psychopharmacology 237:1827–1840

    Article  CAS  PubMed  Google Scholar 

  17. Tan Y, Nie S, Zhu W, Liu F, Guo H, Chu J, Cao XB, Jiang X, Zhang Y, Li Y (2016) 7, 8-dihydroxyflavone ameliorates cognitive impairment by inhibiting expression of tau pathology in ApoE-knockout mice. Front Aging Neurosci 8:287

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q (2012) 7, 8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats. J Neurochem 122:800–811

    Article  CAS  PubMed  Google Scholar 

  19. Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014) 7, 8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS ONE 9:e91453

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kwon KJ, Kim MK, Lee EJ, Kim JN, Choi B-R, Kim SY, Cho KS, Han J-S, Kim HY, Shin CY (2014) Effects of Donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular Dementia. J Neurol Sci 347:66–77

    Article  CAS  PubMed  Google Scholar 

  21. Dhaliwal N, Dhaliwal J, Singh A, Chopra K (2021) Dimethyl fumarate attenuates 2-VO-induced vascular Dementia via activating the Nrf2 signaling pathway in rats. Inflammopharmacology 29:537–547

    Article  CAS  PubMed  Google Scholar 

  22. Akhtar A, Dhaliwal J, Sah SP (2021) 7, 8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology 238:1–19

    Article  Google Scholar 

  23. Jian W-x, Zhang Z, Zhan J-h, Chu S-f, Peng Y, Zhao M, Wang Q, Chen N-h (2020) Donepezil attenuates vascular Dementia in rats through increasing BDNF induced by reducing HDAC6 nuclear translocation. Acta Pharmacol Sin 41:588–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sachdeva AK, Chopra K (2015) Lycopene abrogates Aβ (1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s Disease. J Nutr Biochem 26:736–744

    Article  CAS  PubMed  Google Scholar 

  25. Wills E (1965) Mechanisms of lipid peroxide formation in tissues role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids. Biochim Biophys Acta Lipids Lipid Metab 98:238–251

    Article  CAS  Google Scholar 

  26. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology. Elsevier, Amsterdam, pp 464–478

    Google Scholar 

  27. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  28. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  29. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  31. Bernt E, Bergmeyer HU (1974) l-Glutamate UV-assay with gutamate dehydrogenase and NAD. Methods of enzymatic analysis. Elsevier, Amsterdam, pp 1704–1715

    Chapter  Google Scholar 

  32. Yadav M, Parle M, Jindal DK, Sharma N (2018) Potential effect of spermidine on GABA, dopamine, acetylcholinesterase, oxidative stress and proinflammatory cytokines to diminish ketamine-induced psychotic symptoms in rats. Biomed Pharmacother 98:207–213

    Article  CAS  PubMed  Google Scholar 

  33. Naik B, Nirwane A, Majumdar A (2017) Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats. Cog Neurodyn 11:35–49

    Article  Google Scholar 

  34. Liu D-d, Yuan X, Chu S-f, Chen C, Ren Q, Luo P, Lin M-y, Wang S-s, Zhu T-b, Zhang D-m (2019) CZ-7, a new derivative of Claulansine F, ameliorates 2VO-induced vascular Dementia in rats through a Nrf2-mediated antioxidant responses. Acta Pharmacol Sin 40:425–440

    Article  PubMed  Google Scholar 

  35. Sohn E, Kim YJ, Lim H-S, Kim B-Y, Jeong S-J (2019) Hwangryunhaedok-Tang exerts neuropreventive effect on memory impairment by reducing cholinergic system dysfunction and inflammatory response in a vascular Dementia rat model. Molecules 24:343

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu Y, Yang Y, Zhang M, Deng M, Zhang J-J (2017) Intermittent fasting pretreatment prevents cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Nutr 147:1437–1445

    Article  CAS  PubMed  Google Scholar 

  37. Zhu X, Tian J, Sun S, Dong Q, Zhang F, Zhang X (2016) (-)-SCR1693 protects against memory impairment and hippocampal damage in a chronic cerebral hypoperfusion rat model. Sci Rep 6:28908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhuvanendran S, Bakar SNS, Kumari Y, Othman I, Shaikh MF, Hassan Z (2019) Embelin improves the spatial memory and hippocampal long-term potentiation in a rat model of chronic cerebral hypoperfusion. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  39. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M (2020) Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci 14:51

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Zhang H-Y, Tang X-c (2009) Cholinergic deficiency involved in vascular Dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin 30:879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang X, Wang H, Du Y, Guan J, Wang X, Fu J (2021) NAD + improves cognitive function and reduces Neuroinflammation by ameliorating mitochondrial damage and decreasing ROS Production in Chronic Cerebral Hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflamm 18:207

    Article  CAS  Google Scholar 

  42. Chen N, Chen X, Xie J, Wu C, Qian J (2019) Dexmedetomidine protects aged rats from postoperative cognitive dysfunction by alleviating hippocampal inflammation. Mol Med Rep 20:2119–2126

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bourgognon J-M, Cavanagh J (2020) The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv 4:2398212820979802

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, Petzold GC (2016) Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular Dementia. Acta Neuropathol Commun 4:1–10

    Article  Google Scholar 

  45. Kang JS, Choi I-W, Han MH, Kim G-Y, Hong SH, Park C, Hwang HJ, Kim CM, Kim BW, Choi YH (2015) The cytoprotective effects of 7, 8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts. Int J Mol Med 36:501–510

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Chua K-W, Chua CC, Yu H, Pei A, Chua BH, Hamdy RC, Xu X, Liu C-F (2011) Antioxidant activity of 7, 8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci Lett 499:181–185

    Article  CAS  PubMed  Google Scholar 

  47. Han X, Zhu S, Wang B, Chen L, Li R, Yao W, Qu Z (2014) Antioxidant action of 7, 8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem Int 64:18–23

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed S, Kwatra M, Gawali B, Panda SR, Naidu V (2021) Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 26:52–70

    Article  CAS  PubMed  Google Scholar 

  49. Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38:579–593

    Article  PubMed  Google Scholar 

  50. Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci: AMS 11:1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu X, Guan Q, Wang Y, Shen H, Zhai L, Lu X, Jin Y (2019) Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling. Epilepsy Res 154:90–96

    Article  CAS  PubMed  Google Scholar 

  52. Kalivarathan J, Kalaivanan K, Chandrasekaran SP, Nanda D, Ramachandran V, Venkatraman AC (2020) Apigenin modulates hippocampal CREB-BDNF signaling in high fat, high fructose diet-fed rats. J Funct Foods 68:103898

    Article  CAS  Google Scholar 

  53. Wu C-H, Chen C-C, Hung T-H, Chuang Y-C, Chao M, Shyue S-K, Chen S-F (2019) Activation of TrkB/Akt signaling by a TrkB receptor agonist improves long-term histological and functional outcomes in experimental intracerebral Hemorrhage. J Biomed Sci 26:1–16

    Article  Google Scholar 

  54. Wilkinson D, Doody R, Helme R, Taubman K, Mintzer J, Kertesz A, Pratt R (2003) Donepezil in vascular Dementia: a randomized, placebo-controlled study. Neurology 61:479–486

    Article  CAS  PubMed  Google Scholar 

  55. Man J, Cui K, Fu X, Zhang D, Lu Z, Gao Y, Yu L, Li N, Wang J (2020) Donepezil promotes neurogenesis via Src signaling pathway in a rat model of chronic cerebral hypoperfusion. Brain Res 1736:146782

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This experimental work did not receive any specific grant from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KC and ND conceived and designed the present study. JD and ND carried out the experiments and analysed and interpreted the data. ND wrote and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kanwaljit Chopra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaliwal, N., Dhaliwal, J. & Chopra, K. 7, 8-dihydroxyflavone Ameliorates Cholinergic Dysfunction, Inflammation, Oxidative Stress, and Apoptosis in a Rat Model of Vascular Dementia. Neurochem Res 49, 1137–1149 (2024). https://doi.org/10.1007/s11064-023-04090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04090-9

Keywords

Navigation