Skip to main content

Advertisement

Log in

Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nesfatin-1 is a novel adipocytokine consisting of 82 amino acids with anorexic and anti-hyperglycemic properties. Further studies of nesfatin-1 have shown it to be closely associated with neurological disorders. Changes in nesfatin-1 levels are closely linked to the onset, progression and severity of neurological disorders. Nesfatin-1 may affect the development of neurological disorders and can indicate disease evolution and prognosis, thus informing the choice of treatment options. In addition, regulation of the expression or level of nesfatin-1 can improve the level of neuroinflammation, apoptosis, oxidative damage and other indicators. It is demonstrated that nesfatin-1 is involved in neuroprotection and may be a therapeutic target for neurological disorders. In this paper, we will also discuss the role of nesfatin-1 as a biomarker in neurological diseases and its potential mechanism of action in neurological diseases, providing new ideas for the diagnosis and treatment of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Oh IS, Shimizu H, Satoh T et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus[J]. Nature 443(7112):709–712

    Article  Google Scholar 

  2. Zegers D, Beckers S, Mertens IL et al (2011) Association between polymorphisms of the nesfatin gene, NUCB2, and obesity in men[J]. Mol Genet Metab 103(3):282–286

    Article  PubMed  CAS  Google Scholar 

  3. Wang XQ, Zheng Y, Fang PF et al (2020) Nesfatin-1 is a potential diagnostic biomarker for gastric cancer[J]. Oncol Lett 19(2):1577–1583

    PubMed  CAS  Google Scholar 

  4. Su Y, Zhang J, Tang Y et al (2010) The novel function of nesfatin-1: anti-hyperglycemia[J]. Biochem Biophys Res Commun 391(1):1039–1042

    Article  PubMed  CAS  Google Scholar 

  5. !!! INVALID CITATION !!! [5]

  6. Kirisci M, Yardimci MM, Kocarslan A et al (2020) Nesfatin 1: a promising biomarker predicting successful reperfusion after coronary artery bypass surgery[J]. Bratisl Lek Listy 121(4):282–286

    PubMed  CAS  Google Scholar 

  7. Nakata M, Yada T (2013) Role of NUCB2/nesfatin-1 in glucose control: diverse functions in islets, adipocytes and brain[J]. Curr Pharm Des 19(39):6960–6965

    Article  PubMed  CAS  Google Scholar 

  8. Luo JJ, Wen FJ, Qiu D et al (2021) Nesfatin-1 in lipid metabolism and lipid-related diseases[J]. Clin Chim Acta 522:23–30

    Article  PubMed  CAS  Google Scholar 

  9. Rupp SK, Stengel A (2022) Interactions between nesfatin-1 and the autonomic nervous system-An overview[J]. Peptides 149:170719

    Article  PubMed  CAS  Google Scholar 

  10. Zhou B, Zuo YX, Jiang RT (2019) Astrocyte morphology: diversity, plasticity, and role in neurological diseases[J]. CNS Neurosci Ther 25(6):665–673

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kwiatkowska J (1986) [Inositol phospholipids in transforming information in the cells][J]. Postepy Biochem 32(3):329–334

    PubMed  CAS  Google Scholar 

  12. Pan W, Hsuchou H, Kastin AJ (2007) Nesfatin-1 crosses the blood-brain barrier without saturation[J]. Peptides 28(11):2223–2228

    Article  PubMed  CAS  Google Scholar 

  13. Meschia JF, Bushnell C, Boden-Albala B et al (2014) Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke 45(12):3754–3832

    Article  PubMed  PubMed Central  Google Scholar 

  14. Malone K, Amu S, Moore AC et al (2019) The immune system and stroke: from current targets to future therapy[J]. Immunol Cell Biol 97(1):5–16

    Article  PubMed  Google Scholar 

  15. Kazimierczak-Kabzińska A, Marek B, Borgiel-Marek H et al (2020) Assessing the blood concentration of new adipocytokines in patients with ischaemic stroke[J]. Endokrynol Pol 71(6):504–511

    Article  PubMed  Google Scholar 

  16. Huang L, Li X, Liu Y et al (2021) Curcumin alleviates cerebral ischemia-reperfusion Injury by inhibiting NLRP1-dependent neuronal Pyroptosis[J]. Curr Neurovasc Res 18(2):189–196

    Article  PubMed  CAS  Google Scholar 

  17. Xu D, Kong T, Shao Z et al (2021) Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis 1867(11):166230

    Article  PubMed  CAS  Google Scholar 

  18. White BC, Sullivan JM, Degracia DJ et al (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury[J]. J Neurol Sci 179(1–2):1–33

    Article  PubMed  CAS  Google Scholar 

  19. Hu GQ, Du X, Li YJ et al (2017) Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway[J]. Neural Regen Res 12(1):96–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Amalia L (2021) Glial fibrillary acidic protein (GFAP): Neuroinflammation Biomarker in Acute Ischemic Stroke[J]. J Inflamm Res 14:7501–7506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Qiu J, Yan Z, Tao K et al (2016) Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice[J]. J Neuroinflammation 13(1):263

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jung JE, Kim GS, Chen H et al (2010) Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection[J]. Mol Neurobiol 41(2–3):172–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dvorak F, Haberer I, Sitzer M et al (2009) Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke[J]. Cerebrovasc Dis 27(1):37–41

    Article  PubMed  CAS  Google Scholar 

  24. Foerch C, Niessner M, Back T et al (2012) Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke[J]. Clin Chem 58(1):237–245

    Article  PubMed  CAS  Google Scholar 

  25. Wunderlich MT, Wallesch CW, Goertler M (2006) Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke[J]. Eur J Neurol 13(10):1118–1123

    Article  PubMed  CAS  Google Scholar 

  26. Shi FJ, Xie H, Zhang CY et al (2021) Is Iba-1 protein expression a sensitive marker for microglia activation in experimental diabetic retinopathy?[J]. Int J Ophthalmol 14(2):200–208

    Article  PubMed  PubMed Central  Google Scholar 

  27. Erfani S, Moghimi A, Aboutaleb N et al (2019) Protective Effects of Nucleobinding-2 after Cerebral Ischemia Via modulating Bcl-2/Bax ratio and reducing glial Fibrillary acid protein Expression[J]. Basic Clin Neurosci 10(5):451–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Erfani S, Moghimi A, Aboutaleb N et al (2019) Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses[J]. Metab Brain Dis 34(1):79–85

    Article  PubMed  CAS  Google Scholar 

  29. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease[J]. Neurosci Bull 30(2):271–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gaweł S, Wardas M, Niedworok E et al (2004) [Malondialdehyde (MDA) as a lipid peroxidation marker][J]. Wiad Lek 57(9–10):453–455

    PubMed  Google Scholar 

  31. Fricker M, Tolkovsky AM, Borutaite V et al (2018) Neuronal Cell Death[J] Physiol Rev 98(2):813–880

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Fan TJ, Han LH, Cong RS et al (2005) Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin (Shanghai) 37(11):719–727

    Article  PubMed  CAS  Google Scholar 

  33. Takai Y, Canning J, Perez GI et al (2003) Bax, caspase-2, and caspase-3 are required for ovarian follicle loss caused by 4-vinylcyclohexene diepoxide exposure of female mice in vivo[J]. Endocrinology 144(1):69–74

    Article  PubMed  CAS  Google Scholar 

  34. Zhao Xu (2019) Effects of Nesfatin-1 preconditioning on the expression of caspase-3, Bcl-2 and bax after cerebral ischemia-reperfusion[D]. WanNan Medical College

  35. Erfani S, Moghimi A, Aboutaleb N et al (2018) Nesfatin-1 improve spatial memory impairment following transient global cerebral Ischemia/Reperfusion via inhibiting Microglial and Caspase-3 Activation[J]. J Mol Neurosci 65(3):377–384

    Article  PubMed  CAS  Google Scholar 

  36. Wang Y (2020) Effect of Nesfatin-1 on exPression of CAMKII and PSD95 protein after cerebral ischemia-reperfusion in rats[D]. WanNan Medical College

  37. Bonetta L (2002) No CaMK, no gain[J]. Nat Med 8(5):457

    Article  PubMed  CAS  Google Scholar 

  38. Bustos FJ, Ampuero E, Jury N et al (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer’s disease mice[J]. Brain 140(12):3252–3268

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grote E, Hassler W (1988) The critical first minutes after subarachnoid hemorrhage[J]. Neurosurgery 22(4):654–661

    Article  PubMed  CAS  Google Scholar 

  40. Sailer AM, Grutters JP, Wildberger JE et al (2013) Cost-effectiveness of CTA, MRA and DSA in patients with non-traumatic subarachnoid haemorrhage[J]. Insights Imaging 4(4):499–507

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cao Bing D, Qi L, Chunjiang et al (2020) The prognostic value of serum Nesfatin-1 and MMP-9 in aneurysmal subarachnoid hemorrhage[J]. Tianjin Med J 48(2):5

    Google Scholar 

  42. Wu Gangqun L, Luoxin H, Haoting et al (2020) Determination of plasma Nesfatin-1 concentration in patients with cerebral hemorrhage and its clinical significance[J]. ZH J J Traumatic 25(3):3

    Google Scholar 

  43. Cakir M, Calikoglu C, Yılmaz A et al (2017) Serum nesfatin-1 levels: a potential new biomarker in patients with subarachnoid hemorrhage[J]. Int J Neurosci 127(2):154–160

    Article  PubMed  CAS  Google Scholar 

  44. Acik V, Matyar S, Arslan A et al (2020) Relationshıp of spontaneous subarachnoid haemorrhage and cerebral aneurysm to serum visfatin and Nesfatin-1 levels[J]. Clin Neurol Neurosurg 194:105837

    Article  PubMed  Google Scholar 

  45. Özsavcí D, Erşahin M, Şener A et al (2011) The novel function of nesfatin-1 as an anti-inflammatory and antiapoptotic peptide in subarachnoid hemorrhage-induced oxidative brain damage in rats[J]. Neurosurgery, 68(6): 1699 – 708; discussion 1708.

  46. Scotece M, Conde J, Abella V et al (2014) NUCB2/nesfatin-1: a new adipokine expressed in human and murine chondrocytes with pro-inflammatory properties, an in vitro study[J]. J Orthop Res 32(5):653–660

    Article  PubMed  CAS  Google Scholar 

  47. Angelone T, Filice E, Pasqua T et al (2013) Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury[J]. Cell Mol Life Sci 70(3):495–509

    Article  PubMed  CAS  Google Scholar 

  48. Watanabe Y, Himeda T, Araki T (2005) Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease[J]. Med Sci Monit 11(1):Ra17–23

    PubMed  CAS  Google Scholar 

  49. Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications[J]. Lancet Neurol 5(8):677–687

    Article  PubMed  CAS  Google Scholar 

  50. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease[J]. J Parkinsons Dis 3(4):461–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Emir GK, Ünal Y, Yılmaz N et al (2019) The association of low levels of nesfatin-1 and glucagon-like peptide-1 with oxidative stress in Parkinson’s disease[J]. Neurol Sci 40(12):2529–2535

    Article  PubMed  Google Scholar 

  52. Natale G, Kastsiushenka O, Fulceri F et al (2010) MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut[J]. Brain Res 1355:195–206

    Article  PubMed  CAS  Google Scholar 

  53. Douiri S, Bahdoudi S, Hamdi Y et al (2016) Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes[J]. J Neurochem 137(6):913–930

    Article  PubMed  CAS  Google Scholar 

  54. Wang G, Qi C, Fan GH et al (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone[J]. FEBS Lett 579(18):4005–4011

    Article  PubMed  CAS  Google Scholar 

  55. Waschek JA (2013) VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair[J]. Br J Pharmacol 169(3):512–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shen Xiaoli. The Protective Effect of Nesfatin-1 on dopamainergic neurons and its underlying mechanisms [D]. QINGDAO UNIVERSITY

  57. Shen XL, Song N, Du XX et al (2017) Nesfatin-1 protects dopaminergic neurons against MPP(+)/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway[J]. Sci Rep 7:40961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival[J]. Eur J Biochem 271(11):2050–2055

    Article  PubMed  CAS  Google Scholar 

  59. Exner N, Lutz AK, Haass C et al (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences[J]. Embo j 31(14):3038–3062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hartley A, Stone JM, Heron C et al (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease[J]. J Neurochem 63(5):1987–1990

    Article  PubMed  CAS  Google Scholar 

  61. Moon Y, Lee KH, Park JH et al (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10[J]. J Neurochem 93(5):1199–1208

    Article  PubMed  CAS  Google Scholar 

  62. Miller RL, James-Kracke M, Sun GY et al (2009) Oxidative and inflammatory pathways in Parkinson’s disease[J]. Neurochem Res 34(1):55–65

    Article  PubMed  CAS  Google Scholar 

  63. Tan Z, Xu H, Shen X et al (2015) Nesfatin-1 antagonized rotenone-induced neurotoxicity in MES23.5 dopaminergic cells[J]. Peptides 69:109–114

    Article  PubMed  CAS  Google Scholar 

  64. Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease[J]. Cell Calcium 47(2):175–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bishop MW, Chakraborty S, Matthews GA et al (2010) Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice[J]. J Neurophysiol 104(6):3009–3020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yao LH, Li CH, Yan WW et al (2011) Cordycepin decreases activity of hippocampal CA1 pyramidal neuron through membrane hyperpolarization[J]. Neurosci Lett 503(3):256–260

    Article  PubMed  CAS  Google Scholar 

  67. Li C, Zhang F, Shi L et al (2014) Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra[J]. J Mol Neurosci 52(3):419–424

    Article  PubMed  CAS  Google Scholar 

  68. Li Xuelian. Nesfatin-1 antibody Induced lesion of Nigrostriatal System in mice and the underlying mechanism [D]. QINGDAO UNIVERSITY

  69. Chen H, Li X, Ma H et al (2021) Reduction in Nesfatin-1 levels in the Cerebrospinal Fluid and increased Nigrostriatal Degeneration following ventricular administration of anti-nesfatin-1 antibody in Mice[J]. Front Neurosci 15:621173

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rizzi L, Rosset I, Roriz-Cruz M (2014) Global epidemiology of dementia: Alzheimer’s and vascular types[J]. Biomed Res Int, 2014: 908915

  71. Fortea J, Vilaplana E, Carmona-Iragui M et al (2020) Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study[J]. Lancet 395(10242):1988–1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Scheff SW, Price DA, Schmitt FA et al (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment[J]. Neurology 68(18):1501–1508

    Article  PubMed  CAS  Google Scholar 

  73. Alpua M, Kisa U (2019) Nesfatin-1 and caspase-cleaved cytokeratin-18: promising biomarkers for Alzheimer’s disease?[J]. Bratisl Lek Listy 120(4):295–298

    PubMed  CAS  Google Scholar 

  74. Qi CC, Chen XX, Gao XR et al (2021) Impaired learning and memory ability Induced by a bilaterally hippocampal injection of streptozotocin in mice: involved with the adaptive changes of synaptic Plasticity[J]. Front Aging Neurosci 13:633495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: a practical clinical definition of epilepsy[J]. Epilepsia 55(4):475–482

    Article  PubMed  Google Scholar 

  76. Sander JW (2003) The epidemiology of epilepsy revisited[J]. Curr Opin Neurol 16(2):165–170

    Article  PubMed  Google Scholar 

  77. Jacoby A, Snape D, Baker GA (2005) Epilepsy and social identity: the stigma of a chronic neurological disorder[J]. Lancet Neurol 4(3):171–178

    Article  PubMed  Google Scholar 

  78. Marriott JJ, Miyasaki JM, Gronseth G et al (2010) Evidence report: the efficacy and safety of mitoxantrone (novantrone) in the treatment of multiple sclerosis: report of the therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology[J]. Neurology 74(18):1463–1470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. The Research of Expression and Significance of (2013) Neuropeptides Ghrelin and Nesfatin-1 in Kainic acid kindling Rats [J],

  80. Zhang Y (2019) The correlation and clinical significance between serum Nesfatin-1 and prognosis in patients with primary epilepsy[J]. Gansu Med J 38(10):2

    Google Scholar 

  81. Aydin S, Dag E, Ozkan Y et al (2011) Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients[J]. Peptides 32(6):1276–1280

    Article  PubMed  CAS  Google Scholar 

  82. Aydin S, Dag E, Ozkan Y et al (2009) Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients: hormonal changes can have a major effect on seizure disorders[J]. Mol Cell Biochem 328(1–2):49–56

    Article  PubMed  CAS  Google Scholar 

  83. Arabacı Tamer S, Koyuncuoğlu T, Karagöz Köroğlu A et al (2022) Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure[J]. Life Sci 294:120376

    Article  PubMed  Google Scholar 

  84. Machado-Santos J, Saji E, Tröscher AR et al (2018) The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8 + T lymphocytes and B cells[J]. Brain 141(7):2066–2082

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wattjes MP, Rovira À, Miller D et al (2015) Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis–establishing disease prognosis and monitoring patients[J]. Nat Rev Neurol 11(10):597–606

    Article  PubMed  CAS  Google Scholar 

  86. Altas M, Uca AU, Akdag T et al (2022) Serum levels of irisin and nesfatin-1 in multiple sclerosis[J]. Arq Neuropsiquiatr 80(2):161–167

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Joint Plan of Liaoning Province Livelihood Science and Technology Program (No. 2021JH2/10300103).

Author information

Authors and Affiliations

Authors

Contributions

Siyu Zhou and Jianfei Nao: Conceptualization, Data curation, Writing – original draft, Writing – review & editing. All authors adjusted the combined draft and approved the final version.

Corresponding author

Correspondence to Jianfei Nao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that there is no conflict of interest in this study.

Ethical Approval

No human and animals were involved in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Nao, J. Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders. Neurochem Res 49, 38–51 (2024). https://doi.org/10.1007/s11064-023-04037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04037-0

Keywords

Navigation