Skip to main content

Advertisement

Log in

Byrsonima sericea Ethanol Extract Protected PC12 Cells from the Oxidative Stress and Apoptosis Induced by 6-Hydroxydopamine

  • Research
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease is characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway and oxidative stress is one of the main mechanisms that lead to neuronal death in this disease. Previous studies have shown antioxidant activity from the leaves of Byrsonima sericea, a plant of the Malpighiaceae family. This study aimed to evaluate the cytoprotective activity of the B. sericea ethanolic extract (BSEE) against the cytotoxicity induced by 6-hydroxydopamine (6-OHDA) in PC12 cells, an in vitro model of parkinsonism. The identification of phenolic compounds in the extract by HPLC-DAD revealed the presence of geraniin, rutin, isoquercetin, kaempferol 3-O-β-rutinoside, and quercetin. The BSEE (75–300 µg/mL) protected PC12 cells from toxicity induced by 6-OHDA (25 µg/mL), protected cell membrane integrity and showed antioxidant activity. BSEE was able to decrease nitrite levels, glutathione depletion, and protect cells from 6-OHDA-induced apoptosis. Thus, we suggest that the BSEE can be explored as a possible cytoprotective agent for Parkinson’s disease due to its high antioxidant capacity and anti-apoptotic action.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Supporting data are available from the corresponding author upon reasonable request.

References

  1. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  PubMed  Google Scholar 

  2. Venderova K, Park DS (2012) Programmed cell death in Parkinson’s disease. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a009365

    Article  PubMed  PubMed Central  Google Scholar 

  3. Elbaz A, Carcaillon L, Kab S, Moisan F (2016) Epidemiology of Parkinson’s disease. Rev Neurol 172:14–26. https://doi.org/10.1016/j.neurol.2015.09.012

    Article  PubMed  CAS  Google Scholar 

  4. Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P (2013) Inflammation and α-synuclein’s prion-like behavior in Parkinson’s disease–is there a link? Mol Neurobiol 47:561–574. https://doi.org/10.1007/s12035-012-8267-8

    Article  PubMed  CAS  Google Scholar 

  5. Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, Garringer HJ, Cullinane PW, Saito Y, Foroud T, Warner TT, Hasegawa K, Vidal R, Murayama S, Revesz T, Ghetti B, Hasegawa M, Lashley T, Scheres SHW, Goedert M (2022) Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610:791–795. https://doi.org/10.1038/s41586-022-05319-3

    Article  PubMed  CAS  Google Scholar 

  6. Chavarría C, Ivagnes R, Souza JM (2022) Extracellular alpha-synuclein: mechanisms for glial cell internalization and activation. Biomolecules 12:655. https://doi.org/10.3390/biom12050655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bohnen NI, Müller ML, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL, Frey KA (2010) Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain 133:1747–1754. https://doi.org/10.1093/brain/awq079

    Article  PubMed  PubMed Central  Google Scholar 

  8. Campos ACP, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL (2019) Monoaminergic regulation of nociceptive circuitry in a Parkinson’s disease rat model. Exp Neurol 318:12–21. https://doi.org/10.1016/j.expneurol.2019.04.015

    Article  PubMed  CAS  Google Scholar 

  9. Miller RL, James-Kracke M, Sun GY, Sun AY (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34:55–65. https://doi.org/10.1007/s11064-008-9656-2

    Article  PubMed  CAS  Google Scholar 

  10. Tufekci KU, Meuwissen R, Genc S, Genc K (2012) Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol 88:69–132. https://doi.org/10.1016/B978-0-12-398314-5.00004-0

    Article  PubMed  CAS  Google Scholar 

  11. MacMahon Copas AN, McComish SF, Fletcher JM, Caldwell MA (2021) The pathogenesis of Parkinson’s disease: a complex interplay between astrocytes, microglia, and T lymphocytes? Front Neurol 12:666737. https://doi.org/10.3389/fneur.2021.666737

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeng XS, Geng WS, Jia JJ (2018) Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro. https://doi.org/10.1177/1759091418777438

    Article  PubMed  PubMed Central  Google Scholar 

  13. Araújo Rodrigues P, de Morais SM, Aguiar LA, Vila-Nova NS, Benjamin SR (2019) Effect of Byrsonima sericea DC. Leaf extracts on mice gastrointestinal tract. Toxicol Rep 6:1182–1187. https://doi.org/10.1016/j.toxrep.2019.10.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Amarquaye A, Che C, Bejar E, Malone M, Fong H (1994) A new glycolipid from Byrsonima crassifolia. Planta Med 60:85–86. https://doi.org/10.1055/s-2006-959415

    Article  PubMed  CAS  Google Scholar 

  15. Sannomiya M, Cardoso CRP, Figueiredo ME, Rodrigues CM, dos Santos LC, dos Santos FV, Serpeloni JM, Clus IMS, Vilegas W, Varanda EA (2007) Mutagenic evaluation and chemical investigation of Byrsonima intermedia A. Juss. Leaf extracts. J Ethnopharmacol 112:319–326. https://doi.org/10.1016/j.jep.2007.03.014

    Article  PubMed  CAS  Google Scholar 

  16. Lima ZP, dos Santos RC, Torres TU, Sannomiya M, Rodrigues CM, dos Santos LC, Pellizzon CH, Rocha LRM, Vilegas W, Souza Brito ARM, Cardoso CRP, Caranda EA, Moraes HP, Bauab TM, Carli C, Carlos IZ, Hiruma-Lima CA (2008) Byrsonima Fagifolia: an integrative study to validate the gastroprotective, healing, antidiarrheal, antimicrobial and mutagenic action. J Ethnopharmacol 120:149–160. https://doi.org/10.1016/j.jep.2008.07.047

    Article  PubMed  Google Scholar 

  17. Guilhon-Simplicio F, Pereira MM (2011) Aspectos químicos e farmacológicos de Byrsonima (Malpighiaceae). Quim Nova 34:1032–1041. https://doi.org/10.1590/S0100-40422011000600021

    Article  CAS  Google Scholar 

  18. Rodrigues PA, de Morais SM, Souza CM, Magalhães DV, Vieira ÍGP, Andrade GM, Rao VS, Santos FA (2012) Gastroprotective effect of Byrsonima sericea DC leaf extract against ethanol-induced gastric injury and its possible mechanisms of action. An Acad Bras Cienc 84:113–122. https://doi.org/10.1590/S0001-37652012000100011

    Article  PubMed  Google Scholar 

  19. Fraige K, Dametto AC, Zeraik ML, de Freitas L, Saraiva AC, Medeiros AI, Castro-Gamboa I, Cavalheiro AJ, Silva DHS, Lopes NP, Bolzani VS (2018) Dereplication by HPLC-DAD-ESI-MS/MS and screening for biological activities of Byrsonima species (Malpighiaceae). Phytochem Anal 29:196–204. https://doi.org/10.1002/pca.2734

    Article  PubMed  CAS  Google Scholar 

  20. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  PubMed  CAS  Google Scholar 

  21. Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T (2021) Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 20:559–572. https://doi.org/10.1016/S1474-4422(21)00061-2

    Article  PubMed  CAS  Google Scholar 

  22. Dionísio PA, Amaral JD, Rodrigues CMP (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 67:101263. https://doi.org/10.1016/j.arr.2021.101263

    Article  PubMed  CAS  Google Scholar 

  23. Jankovic J, Tan EK (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 91:795–808. https://doi.org/10.1136/jnnp-2019-322338

    Article  PubMed  Google Scholar 

  24. Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36:1–12. https://doi.org/10.1016/j.cger.2019.08.002

    Article  PubMed  Google Scholar 

  25. Boscolo OH, Mendonça-Filho RFW, Menezes FS, Senna-Valle L (2007) Potencial antioxidante de algumas plantas de restinga citadas como medicinais. Rev Bras Plantas Med 9:8–12

    Google Scholar 

  26. Ahn TB, Jeon BS (2015) The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-synuclein. Neural Regen Res 10:1113–1119. https://doi.org/10.4103/1673-5374.160106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang Q, Kang ZH, Zhang J, Qu F, Song B (2021) Neuroprotective effects of isoquercetin: an in vitro and in vivo study. Cell J23:355–365. https://doi.org/10.22074/cellj.2021.7116

    Article  Google Scholar 

  28. Hong JT, Yen JH, Wang L, Lo YH, Chen ZT, Wu MJ (2009) Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicol Appl Pharmacol 237:59–68. https://doi.org/10.1016/j.taap.2009.02.014

    Article  PubMed  CAS  Google Scholar 

  29. Wang R, Sun Y, Huang H, Wang L, Chen J, Shen W (2015) Rutin, a natural flavonoid protects PC12 cells against sodium nitroprusside-induced neurotoxicity through activating PI3K/Akt/mTOR and ERK1/2 pathway. Neurochem Res 40:1945–1953. https://doi.org/10.1007/s11064-015-1690-2

    Article  PubMed  CAS  Google Scholar 

  30. Yang Y, He B, Zhang X, Yang R, Xia X, Chen L, Li R, Shen Z, Chen P (2022) Geraniin protects against cerebral ischemia/reperfusion Injury by suppressing oxidative stress and neuronal apoptosis via regulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev 2022:2152746. https://doi.org/10.1155/2022/2152746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhai K, Mazurakova A, Koklesova L, Kubatka P, Büsselberg D (2021) Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules 11:1841. https://doi.org/10.3390/biom11121841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hidalgo M, Sanchez-Moreno C, Pauscal-Teresa S (2010) Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem 121:691–696

    Article  CAS  Google Scholar 

  33. Li J, Ma L, Fan Y, Zhang Y, Sun D, Wu B (2016) Crosstalk between 6-OHDA-induced autophagy and apoptosis in PC12 cells is mediated by phosphorylation of Raf-1/ERK1/2. Pharmazie 71:465–471. https://doi.org/10.1691/ph.2016.6586

    Article  PubMed  CAS  Google Scholar 

  34. Huang N, Huang J, Zhang Y, Chen M, Shi J, Jin F (2021) Resveratrol against 6-OHDA-induced damage of PC12 cells via PI3K/Akt. Transl Neurosci 12:138–144. https://doi.org/10.1515/tnsci-2020-0165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hadipour E, Fereidoni M, Tayarani-Najaran Z (2020) Betanin attenuates oxidative stress induced by 6-OHDA in PC12 cells via SAPK/JNK and PI3 K pathways. Neurochem Res 45:395–403. https://doi.org/10.1007/s11064-019-02927-w

    Article  PubMed  CAS  Google Scholar 

  36. Pontes NHL, Reis TDS, Vasconcelos CFM, Aragão PTTD, Souza RB, Catunda Junior FEA, Aguiar LMV, Cunha RMS (2021) Impact of eugenol on in vivo model of 6-hydroxydopamine-induced oxidative stress. Free Radic Res 55:556–568. https://doi.org/10.1080/10715762.2021.1971662

    Article  PubMed  CAS  Google Scholar 

  37. Nakajima A, Ohizumi Y (2019) Potential benefits of nobiletin, a citrus flavonoid, against alzheimer’s disease and parkinson’s disease. Int J Mol Sci 20:3380. https://doi.org/10.3390/ijms20143380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Putteeraj M, Lim WL, Teoh SL, Yahaya MF (2018) Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr Drug Targets 19:1710–1720. https://doi.org/10.2174/1389450119666180326125252

    Article  PubMed  CAS  Google Scholar 

  39. Meireles M, Moura E, Vieira-Coelho MA, Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, Mateus N, Faria A, Calhau C (2016) Flavonoids as dopaminergic neuromodulators. Mol Nutr Food Res 60:495–501. https://doi.org/10.1002/mnfr.201500557

    Article  PubMed  CAS  Google Scholar 

  40. Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, Asemi Z (2020) The therapeutic potential of quercetin in parkinson’s disease: insights into its molecular and cellular regulation. Curr Drug Targets 21:509–518. https://doi.org/10.2174/1389450120666191112155654

    Article  PubMed  CAS  Google Scholar 

  41. Wan WW, Han R, He HJ, Li J, Chen SY, Gu Y, Xie C (2021) Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned parkinson’s disease models. Aging (Albany NY) 13:11738–11751. https://doi.org/10.18632/aging.202868

    Article  Google Scholar 

  42. Lin ZH, Liu Y, Xue NJ, Zheng R, Yan YQ, Wang ZX, Li YL, Ying CZ, Song Z, Tian J, Pu JL, Zhang BR (2022) Quercetin protects against MPP+/MPTP-induced dopaminergic neuron death in parkinson’s disease by inhibiting ferroptosis. Oxid Med Cell Longev. https://doi.org/10.1155/2022/7769355

    Article  PubMed  PubMed Central  Google Scholar 

  43. Magalingam KB, Radhakrishnan A, Haleagrahara N (2016) Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-Induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int J Immunopathol Pharmacol 29:30–39. https://doi.org/10.1177/0394632015613039

    Article  PubMed  CAS  Google Scholar 

  44. Ling LT, Saito Y, Palanisamy UD, Cheng HM, Noguchi N (2012) Cytoprotective effects of geraniin against peroxynitrite- and peroxyl radical-induced cell death via free radical scavenging activity. Food Chem 132:1899–1907. https://doi.org/10.1016/j.foodchem.2011.12.024

    Article  CAS  Google Scholar 

  45. Wang P, Peng X, Wei ZF, Wei FY, Wang W, Ma WD, Yao LP, Fu YJ, Zu YG (2015) Geraniin exerts cytoprotective effect against cellular oxidative stress by upregulation of Nrf2-mediated antioxidant enzyme expression via PI3K/AKT and ERK1/2 pathway. Biochim Biophys Acta Gen Subj 1850:1751–1761. https://doi.org/10.1016/j.bbagen.2015.04.010

    Article  CAS  Google Scholar 

  46. Gouda NA, Cho J (2022) Omarigliptin mitigates 6-Hydroxydopamine- or rotenone-induced oxidative toxicity in PC12 cells by antioxidant, anti-inflammatory, and anti-apoptotic actions. Antioxidants 11:1940. https://doi.org/10.3390/antiox11101940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Luo A, Fan Y (2011) Antioxidant activities of berberine hydrochloride. J Med Plants Res 5:3702–3707

    CAS  Google Scholar 

  48. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N (2018) Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 40:68–75. https://doi.org/10.1016/j.jff.2017.10.047

    Article  CAS  Google Scholar 

  49. Liu T, Sun L, Zhang Y, Wang Y, Zheng J (2022) Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol 36:e22942. https://doi.org/10.1002/jbt.22942

    Article  PubMed  CAS  Google Scholar 

  50. Dickson DW (2018) Neuropathology of Parkinson Disease. Parkinsonism Relat Disord 46:S30–S33. https://doi.org/10.1016/j.parkreldis.2017.07.033

    Article  PubMed  Google Scholar 

  51. Jha N, Jurma O, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, Andersen JK (2000) Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. J Biol Chem 275:26096–26101. https://doi.org/10.1074/jbc.M000120200

    Article  PubMed  CAS  Google Scholar 

  52. Haleagrahara N, Siew CJ, Ponnusamy K (2013) Effect of quercetin and desferrioxamine on 6-Hydroxydopamine (6-OHDA) Induced neurotoxicity in striatum of rats. J Toxicol Sci 38:25–33. https://doi.org/10.2131/jts.38.25

    Article  PubMed  CAS  Google Scholar 

  53. Sharma S, Raj K, Singh S (2020) Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced parkinson’s disease in experimental rats. Neurotox Res 37:198–209. https://doi.org/10.1007/s12640-019-00120-z

    Article  PubMed  CAS  Google Scholar 

  54. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  55. Bao D, Wang J, Pang X, Liu H (2017) Protective effect of quercetin against oxidative Stress-Induced cytotoxicity in rat pheochromocytoma (PC-12) cells. Molecules 22:1122. https://doi.org/10.3390/molecules22071122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hu G, Du X, Li Y, Gao X, Chen B, Yu L (2017) Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway. Neural Regen Res 12:96. https://doi.org/10.4103/1673-5374.198992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS (2021) Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules 27:96. https://doi.org/10.4103/1673-5374.198992

    Article  CAS  Google Scholar 

  58. Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16:24673–24706. https://doi.org/10.3390/ijms161024673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian National Research and Development Council (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and the Research Support Foundation of Ceará (FUNCAP) for financial support in the form of grants and fellowship awards.

Funding

This study did not receive specific funding. The general funding was supported by the Brazilian National Research and Development Council (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and the Research Support Foundation of Ceará (FUNCAP).

Author information

Authors and Affiliations

Authors

Contributions

Assis ALC, Gomes JMP, Nascimento TC and Oliveira AV: Cells treatment, biochemical analysis, statistical analysis, results interpretation, discussion, and manuscript preparation. Rodrigues PA, Morais SM and Rodrigues ALM: Plant collection, preparation of the extract and HPLC analysis. Andrade GM, Aguiar MSS, Morais SM: Experimental design, statistical analysis, results interpretation, discussion, and manuscript preparation.

Corresponding authors

Correspondence to Mayara Sandrielly Soares de Aguiar or Geanne Matos de Andrade.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Assis, A.L.C., de Araújo Rodrigues, P., de Morais, S.M. et al. Byrsonima sericea Ethanol Extract Protected PC12 Cells from the Oxidative Stress and Apoptosis Induced by 6-Hydroxydopamine. Neurochem Res 49, 234–244 (2024). https://doi.org/10.1007/s11064-023-04028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04028-1

Keywords

Navigation