Skip to main content
Log in

Research Progress on the Antidepressant Effects of Baicalin and Its Aglycone Baicalein: A Systematic Review of the Biological Mechanisms

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is the most prevalent mental disorder, affecting more than 300 million adults worldwide each year, which can lead to serious economic and social problems. Antidepressants are usually the first-line treatment for depression, however, traditional antidepressants on the market have the disadvantage of low remission rates and may cause side effects to patients, therefore, the current focus in the field of depression is to develop novel therapeutic agents with high remission rates and few side effects. In this context, the antidepressant effects of natural compounds have received attention. Baicalin (baicalein-7-O-glucuronide) and its aglycone baicalein (5,6,7-trihydroxyflavone) are flavonoid compounds extracted from the root of Scutellaria baicalensis. Although lacking the support of clinical data, they have been shown to have significantly promising antidepressant activity in many preclinical studies through various rodent models of depression. This paper reviews the antidepressant effects of baicalin and baicalein in experimental animal models, with emphasis on summarizing the molecular mechanisms of their antidepressant effects including regulation of the HPA axis, inhibition of inflammation and oxidative stress, reduction of neuronal apoptosis and promotion of neurogenesis, as well as amelioration of mitochondrial dysfunction. Controlled clinical trials should be conducted in the future to examine the effects of baicalin and baicalein on depression in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Malhi GS, Mann JJ (2018) Depression Lancet 392:2299–2312

    Article  PubMed  Google Scholar 

  2. Hammen C (2018) Risk factors for depression: an autobiographical review. Annu Rev Clin Psychol 14:1–28

    Article  PubMed  Google Scholar 

  3. Herrman H, Patel V, Kieling C, Berk M, Buchweitz C, Cuijpers P, Furukawa TA, Kessler RC, Kohrt BA, Maj M, McGorry P, Reynolds CF 3rd, Weissman MM, Chibanda D, Dowrick C, Howard LM, Hoven CW, Knapp M, Mayberg HS, Penninx B, Xiao S, Trivedi M, Uher R, Vijayakumar L, Wolpert M (2022) Time for united action on depression: a lancet-world psychiatric association commission. Lancet 399:957–1022

    Article  PubMed  Google Scholar 

  4. Chen ME, Su CH, Yang JS, Lu CC, Hou YC, Wu JB, Hsu YM (2018) Baicalin, Baicalein, and Lactobacillus Rhamnosus JB3 Alleviated Helicobacter pylori Infections in Vitro and in Vivo. J Food Sci 83:3118–3125

    Article  PubMed  CAS  Google Scholar 

  5. Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, Lan S, Slack RL, Kirby KA, Bassit L, Amblard F, Kim B, AbuBakar S, Sarafianos SG, Schinazi RF (2021) Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms 9:893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shi L, Hao Z, Zhang S, Wei M, Lu B, Wang Z, Ji L (2018) Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC. Biochem Pharmacol 150:9–23

    Article  PubMed  CAS  Google Scholar 

  7. Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L (2022) Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 45:535–557

    Article  PubMed  CAS  Google Scholar 

  8. El-Ela SRA, Zaghloul RA, Eissa LA (2022) Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-κB and Wnt/β-catenin pathways. Nutrition 102:111732

    Article  PubMed  CAS  Google Scholar 

  9. Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M (2017) Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 131:68–80

    Article  PubMed  CAS  Google Scholar 

  10. Wang Q, Timberlake MA 2nd, Prall K, Dwivedi Y (2017) The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 77:99–109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  PubMed  CAS  Google Scholar 

  12. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  13. Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, Chen H, Zhu DY, Zhou QG (2018) Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 13:1686–1698

    Article  PubMed  CAS  Google Scholar 

  14. Liao H, Ye J, Gao L, Liu Y (2021) The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 133:110917

    Article  PubMed  CAS  Google Scholar 

  15. Huang T, Liu Y, Zhang C (2019) Pharmacokinetics and bioavailability enhancement of baicalin: a review. Eur J Drug Metab Pharmacokinet 44:159–168

    Article  PubMed  Google Scholar 

  16. Cherian K, Schatzberg AF, Keller J (2019) HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophr Res 213:72–79

    Article  PubMed  Google Scholar 

  17. Li YC, Shen JD, Li J, Wang R, Jiao S, Yi LT (2013) Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behavior: involving the inhibition of cyclooxygenase-2 in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 40:138–143

    Article  PubMed  CAS  Google Scholar 

  18. Yu HY, Yin ZJ, Yang SJ, Ma SP (2014) Baicalin reverse AMPA receptor expression and neuron apoptosis in chronic unpredictable mild stress rats. Biochem Biophys Res Commun 451:467–472

    Article  PubMed  CAS  Google Scholar 

  19. Li YC, Wang LL, Pei YY, Shen JD, Li HB, Wang BY, Bai M (2015) Baicalin decreases SGK1 expression in the hippocampus and reverses depressive-like behaviors induced by corticosterone. Neuroscience 311:130–137

    Article  PubMed  CAS  Google Scholar 

  20. Yu H, Zhang F, Guan X (2019) Baicalin reverse depressive-like behaviors through regulation SIRT1-NF-kB signaling pathway in olfactory bulbectomized rats. Phytother Res 33:1480–1489

    Article  PubMed  CAS  Google Scholar 

  21. Zhao F, Tao W, Shang Z, Zhang W, Ruan J, Zhang C, Zhou L, Aiello H, Lai H, Qu R (2020) Facilitating granule cell survival and maturation in dentate gyrus with baicalin for antidepressant therapeutics. Front Pharmacol 11:556845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang K, He M, Wang F, Zhang H, Li Y, Yang J, Wu C (2019) Revealing antidepressant mechanisms of Baicalin in hypothalamus through systems approaches in corticosterone- induced depressed mice. Front Neurosci 13:834

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    Article  PubMed  CAS  Google Scholar 

  24. Myers B, McKlveen JM, Herman JP (2014) Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 35:180–196

    Article  PubMed  CAS  Google Scholar 

  25. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, Luoni A, Calabrese F, Tansey K, Gennarelli M, Thuret S, Price J, Uher R, Riva MA, Pariante CM (2013) Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci USA 110:8708–8713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V (2021) Neuroinflammation and depression: A review. Eur J Neurosci 53:151–171

    Article  PubMed  CAS  Google Scholar 

  27. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD (2020) Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun 87:901–909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762

    Article  PubMed  CAS  Google Scholar 

  29. Köhler-Forsberg O, Hjorthøj C, Nordentoft M, Mors O, Benros ME (2019) Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: meta-analysis of clinical trials. Acta Psychiatr Scand 139:404–419

    Article  PubMed  Google Scholar 

  30. Bhatt S, Devadoss T, Jha NK, Baidya M, Gupta G, Chellappan DK, Singh SK, Dua K (2023) Targeting inflammation: a potential approach for the treatment of depression. Metab Brain Dis 38:45–59

    Article  PubMed  CAS  Google Scholar 

  31. Liu L, Dong Y, Shan X, Li L, Xia B, Wang H (2019) Anti-Depressive Effectiveness of Baicalin In Vitro and In Vivo. Molecules 24:326

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Liu C (2017) Baicalin ameliorates chronic unpredictable mild stress-induced depressive behavior: Involving the inhibition of NLRP3 inflammasome activation in rat prefrontal cortex. Int Immunopharmacol 48:30–34

    Article  PubMed  CAS  Google Scholar 

  33. Zhong J, Li G, Xu H, Wang Y, Shi M (2019) Baicalin ameliorates chronic mild stress-induced depression-like behaviors in mice and attenuates inflammatory cytokines and oxidative stress. Braz J Med Biol Res 52:e8434

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, Zhao QW, Ma ZQ, Deng XY, Ma SP (2019) Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 16:95

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fu X, Jiao J, Qin T, Yu J, Fu Q, Deng X, Ma S, Ma Z (2021) A New Perspective on ameliorating depression-like behaviors: suppressing neuroinflammation by upregulating PGC-1α. Neurotox Res 39:872–885

    Article  PubMed  CAS  Google Scholar 

  36. Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK (2023) The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 187:106625

    Article  PubMed  CAS  Google Scholar 

  37. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987

    Article  PubMed  CAS  Google Scholar 

  38. Lee KM, Seong SY (2009) Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol Lett 125:31–39

    Article  PubMed  CAS  Google Scholar 

  39. Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, Li J, Ma J, Piao HR, Jin X, Piao LX (2020) Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol 177:5224–5245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, Glass CK, Olefsky JM (2010) FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. Embo j 29:4223–4236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  42. Shen J, Qu C, Xu L, Sun H, Zhang J (2019) Resveratrol exerts a protective effect in chronic unpredictable mild stress-induced depressive-like behavior: involvement of the AKT/GSK3β signaling pathway in hippocampus. Psychopharmacology 236:591–602

    Article  PubMed  CAS  Google Scholar 

  43. Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D (2022) Regulation of SIRT1 and its roles in inflammation. Front Immunol 13:831168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ryan KM, Patterson I, McLoughlin DM (2019) Peroxisome proliferator-activated receptor gamma co-activator-1 alpha in depression and the response to electroconvulsive therapy. Psychol Med 49:1859–1868

    Article  PubMed  Google Scholar 

  45. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25:1939–1948

    Article  PubMed  CAS  Google Scholar 

  46. Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7:a016303

    Article  PubMed  PubMed Central  Google Scholar 

  47. McGrath T, Baskerville R, Rogero M, Castell L (2022) Emerging evidence for the widespread role of glutamatergic dysfunction in neuropsychiatric diseases. Nutrients 14:917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA (2020) Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res 1727:146546

    Article  PubMed  CAS  Google Scholar 

  49. Lucassen PJ, Fuchs E, Czéh B (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 55:789–796

    Article  PubMed  CAS  Google Scholar 

  50. Yuan J, Murrell GA, Trickett A, Wang MX (2003) Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim Biophys Acta 1641:35–41

    Article  PubMed  CAS  Google Scholar 

  51. Brown R (1997) The bcl-2 family of proteins. Br Med Bull 53:466–477

    Article  PubMed  CAS  Google Scholar 

  52. Ma Z, Feng D, Rui W, Wang Z (2023) Baicalin attenuates chronic unpredictable mild stress-induced hippocampal neuronal apoptosis through regulating SIRT1/PARP1 signaling pathway. Behav Brain Res 441:114299

    Article  PubMed  CAS  Google Scholar 

  53. Banaudha K, Marini AM (2000) AMPA prevents glutamate-induced neurotoxicity and apoptosis in cultured cerebellar granule cell neurons. Neurotox Res 2:51–61

    Article  PubMed  CAS  Google Scholar 

  54. Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134

    Article  PubMed  CAS  Google Scholar 

  55. Mahajan SS, Thai KH, Chen K, Ziff E (2011) Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience 189:305–315

    Article  PubMed  CAS  Google Scholar 

  56. Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20:8–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ha HC, Snyder SH (2000) Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol Dis 7:225–239

    Article  PubMed  CAS  Google Scholar 

  58. Ordway GA, Szebeni A, Hernandez LJ, Crawford JD, Szebeni K, Chandley MJ, Burgess KC, Miller C, Bakkalbasi E, Brown RW (2017) Antidepressant-like actions of inhibitors of poly(ADP-Ribose) polymerase in rodent models. Int J Neuropsychopharmacol 20:994–1004

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Luccarini I, Pantano D, Nardiello P, Cavone L, Lapucci A, Miceli C, Nediani C, Berti A, Stefani M, Casamenti F (2016) The Polyphenol oleuropein aglycone modulates the PARP1-SIRT1 interplay: an in vitro and in vivo study. J Alzheimers Dis 54:737–750

    Article  PubMed  CAS  Google Scholar 

  60. Ribeiro FF, Xapelli S (2021) An overview of adult neurogenesis. Adv Exp Med Biol 1331:77–94

    Article  PubMed  CAS  Google Scholar 

  61. Zhang K, Pan X, Wang F, Ma J, Su G, Dong Y, Yang J, Wu C (2016) Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression. Sci Rep 6:30951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Xiao Z, Cao Z, Yang J, Jia Z, Du Y, Sun G, Lu Y, Pei L (2021) Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol 190:114594

    Article  PubMed  CAS  Google Scholar 

  63. Wang Z, Cheng YT, Lu Y, Sun GQ, Pei L (2023) Baicalin ameliorates corticosterone-induced depression by promoting neurodevelopment of hippocampal via mTOR/GSK3 β pathway. Chin J Integr Med 29:405

    Article  PubMed  CAS  Google Scholar 

  64. Mayer JL, Klumpers L, Maslam S, de Kloet ER, Joëls M, Lucassen PJ (2006) Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J Neuroendocrinol 18:629–631

    Article  PubMed  CAS  Google Scholar 

  65. Egeland M, Zunszain PA, Pariante CM (2015) Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 16:189–200

    Article  PubMed  CAS  Google Scholar 

  66. Zhang S, Cheon M, Park H, Kim T, Chung C (2022) Interaction between glucocorticoid receptors and FKBP5 in regulating neurotransmission of the hippocampus. Neuroscience 483:95–103

    Article  PubMed  CAS  Google Scholar 

  67. Gao C, Chen X, Xu A, Cheng K, Shen J (2018) Adaptor Protein APPL2 affects adult antidepressant behaviors and hippocampal neurogenesis via regulating the sensitivity of glucocorticoid receptor. Mol Neurobiol 55:5537–5547

    Article  PubMed  CAS  Google Scholar 

  68. Gao C, Du Q, Li W, Deng R, Wang Q, Xu A, Shen J (2018) Baicalin modulates APPL2/Glucocorticoid receptor signaling cascade, promotes neurogenesis, and attenuates emotional and olfactory dysfunctions in chronic corticosterone-induced depression. Mol Neurobiol 55:9334–9348

    Article  PubMed  CAS  Google Scholar 

  69. Gupta K, Gupta R, Bhatia MS, Tripathi AK, Gupta LK (2017) Effect of agomelatine and fluoxetine on HAM-D score, serum brain-derived neurotrophic factor, and tumor necrosis factor-α level in patients with major depressive disorder with severe depression. J Clin Pharmacol 57:1519–1526

    Article  PubMed  CAS  Google Scholar 

  70. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311–7316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L (2021) Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 414:113463

    Article  PubMed  CAS  Google Scholar 

  72. Pontrello CG, Sun MY, Lin A, Fiacco TA, DeFea KA, Ethell IM (2012) Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc Natl Acad Sci U S A 109:E442-451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lu Y, Sun G, Yang F, Guan Z, Zhang Z, Zhao J, Liu Y, Chu L, Pei L (2019) Baicalin regulates depression behavior in mice exposed to chronic mild stress via the Rac/LIMK/cofilin pathway. Biomed Pharmacother 116:109054

    Article  PubMed  CAS  Google Scholar 

  74. Wang J, Zhai HR, Ma SF, Shi HZ, Zhang WJ, Yun Q, Liu WJ, Liu ZZ, Zhang WN (2022) FOXG1 contributes adult hippocampal neurogenesis in mice. Int J Mol Sci 23:14979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tang MM, Lin WJ, Zhang JT, Zhao YW, Li YC (2017) Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation. Brain Behav Immun 66:322–331

    Article  PubMed  CAS  Google Scholar 

  76. Zhang R, Ma Z, Liu K, Li Y, Liu D, Xu L, Deng X, Qu R, Ma Z, Ma S (2019) Baicalin exerts antidepressant effects through Akt/FOXG1 pathway promoting neuronal differentiation and survival. Life Sci 221:241–248

    Article  PubMed  CAS  Google Scholar 

  77. Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A (2020) GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 9

  78. Pérez-Domper P, Palomo V, Gradari S, Gil C, de Ceballos ML, Martínez A, Trejo JL (2017) The GSK-3-inhibitor VP2.51 produces antidepressant effects associated with adult hippocampal neurogenesis. Neuropharmacology 116:174–187

    Article  PubMed  Google Scholar 

  79. Garza JC, Guo M, Zhang W, Lu XY (2012) Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry 17:790–808

    Article  PubMed  CAS  Google Scholar 

  80. Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J (2016) New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 82:1280–1290

    Article  PubMed  PubMed Central  Google Scholar 

  81. Park SW, Lee JG, Seo MK, Lee CH, Cho HY, Lee BJ, Seol W, Kim YH (2014) Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons. Int J Neuropsychopharmacol 17:1831–1846

    Article  PubMed  CAS  Google Scholar 

  82. Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25:1270–1276

    Article  PubMed  CAS  Google Scholar 

  83. Palta P, Samuel LJ, Miller ER 3rd, Szanton SL (2014) Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med 76:12–19

    Article  PubMed  CAS  Google Scholar 

  84. Zhang CY, Zeng MJ, Zhou LP, Li YQ, Zhao F, Shang ZY, Deng XY, Ma ZQ, Fu Q, Ma SP, Qu R (2018) Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol 64:175–182

    Article  PubMed  CAS  Google Scholar 

  85. Bansal Y, Kuhad A (2016) Mitochondrial Dysfunction in Depression. Curr Neuropharmacol 14:610–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Popov LD (2020) Mitochondrial biogenesis: An update. J Cell Mol Med 24:4892–4899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lu S, Li C, Jin X, Zhu L, Shen J, Bai M, Li Y, Xu E (2022) Baicalin improves the energy levels in the prefrontal cortex of mice exposed to chronic unpredictable mild stress. Heliyon 8:e12083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jin X, Zhu L, Lu S, Li C, Bai M, Xu E, Shen J, Li Y (2023) Baicalin ameliorates CUMS-induced depression-like behaviors through activating AMPK/PGC-1α pathway and enhancing NIX-mediated mitophagy in mice. Eur J Pharmacol 938:175435

    Article  PubMed  CAS  Google Scholar 

  90. Yu HY, Yin ZJ, Yang SJ, Ma SP, Qu R (2016) Baicalin Reverses depressive-like behaviours and regulates apoptotic signalling induced by olfactory bulbectomy. Phytother Res 30:469–475

    Article  PubMed  CAS  Google Scholar 

  91. Xiong Z, Jiang B, Wu PF, Tian J, Shi LL, Gu J, Hu ZL, Fu H, Wang F, Chen JG (2011) Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biol Pharm Bull 34:253–259

    Article  PubMed  CAS  Google Scholar 

  92. Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH (2013) Chronic administration of baicalein decreases depression-like behavior induced by repeated restraint stress in rats. Korean J Physiol Pharmacol 17:393–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Liu HT, Lin YN, Tsai MC, Wu YC, Lee MC (2022) Baicalein exerts therapeutic effects against endotoxin-induced depression-like behavior in mice by decreasing inflammatory cytokines and increasing brain-derived neurotrophic factor levels. Antioxidants (Basel) 11:947

    Article  PubMed  CAS  Google Scholar 

  94. Wu H, Long X, Yuan F, Chen L, Pan S, Liu Y, Stowell Y, Li X (2014) Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm Sin B 4:217–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kang MJ, Ko GS, Oh DG, Kim JS, Noh K, Kang W, Yoon WK, Kim HC, Jeong HG, Jeong TC (2014) Role of metabolism by intestinal microbiota in pharmacokinetics of oral baicalin. Arch Pharm Res 37:371–378

    Article  PubMed  CAS  Google Scholar 

  96. Zhang R, Cui Y, Wang Y, Tian X, Zheng L, Cong H, Wu B, Huo X, Wang C, Zhang B, Wang X, Yu Z (2017) Catechol-O-Methyltransferase and UDP-glucuronosyltransferases in the metabolism of baicalein in different species. Eur J Drug Metab Pharmacokinet 42:981–992

    Article  PubMed  CAS  Google Scholar 

  97. Zhang L, Xing D, Wang W, Wang R, Du L (2006) Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract. J Ethnopharmacol 103:120–125

    Article  PubMed  CAS  Google Scholar 

  98. Zhang J, Cai W, Zhou Y, Liu Y, Wu X, Li Y, Lu J, Qiao Y (2015) Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. J Chromatogr B Analyt Technol Biomed Life Sci 985:91–102

    Article  PubMed  CAS  Google Scholar 

  99. Li M, Shi A, Pang H, Xue W, Li Y, Cao G, Yan B, Dong F, Li K, Xiao W, He G, Du G, Hu X (2014) Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol 156:210–215

    Article  PubMed  CAS  Google Scholar 

  100. Pang H, Xue W, Shi A, Li M, Li Y, Cao G, Yan B, Dong F, Xiao W, He G, Du G, Hu X, Cheng G (2016) Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy chinese volunteers. Clin Drug Investig 36:713–724

    Article  PubMed  CAS  Google Scholar 

  101. Cai Y, Ma W, Xiao Y, Wu B, Li X, Liu F, Qiu J, Zhang G (2017) High doses of baicalin induces kidney injury and fibrosis through regulating TGF-β/Smad signaling pathway. Toxicol Appl Pharmacol 333:1–9

    Article  PubMed  CAS  Google Scholar 

  102. Perez-Caballero L, Torres-Sanchez S, Romero-López-Alberca C, González-Saiz F, Mico JA, Berrocoso E (2019) Monoaminergic system and depression. Cell Tissue Res 377:107–113

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Liaoning Province (LJKZ0778).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. CW: Conceptualization, Writing—original draft. M-QG: Funding acquisition, Writing—review and editing.

Corresponding author

Correspondence to Ming-Qi Gao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Gao, MQ. Research Progress on the Antidepressant Effects of Baicalin and Its Aglycone Baicalein: A Systematic Review of the Biological Mechanisms. Neurochem Res 49, 14–28 (2024). https://doi.org/10.1007/s11064-023-04026-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04026-3

Keywords

Navigation