Skip to main content

Advertisement

Log in

Silencing PKM2 Attenuates Brain Injury Induced by Status Epilepticus by Inhibiting the AKT/mTOR Pathway and the NLRP3 Inflammasome

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

PKM2 is a glycolytic pyruvate kinase isoenzyme, and its role in neurological diseases has been published. However, the role and mechanism of PKM2 in the process of status epilepticus have not been reported. The purpose of this study is to explore the role and mechanism of PKM2 in epilepsy. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to explore the expression of PKM2 in cells. Enzyme-linked immunosorbent assay kits were used to evaluate the level of inflammatory factors. An epilepsy model was established by intraperitoneal injection of lithium chloride in rats. Various behavioural assays were conducted to explore the learning ability and cognitive level of rats. PKM2 expression was upregulated in Mg2+-induced hippocampal neurons. PKM2 inhibition ameliorated Mg2+-induced hippocampal neuronal inflammation and reduced neuronal apoptosis. In addition, PKM2 silencing inhibited the metabolic dysfunction of Mg2+-induced hippocampal neurons. Subsequent experiments showed that the Akt/mTOR pathway and NLRP3 inflammasome are involved in PKM2-mediated neuronal regulation. More importantly, PKM2 inhibition could alleviate status epilepticus in rats. PKM2 inhibition attenuates Mg2+-induced hippocampal neuronal inflammation, apoptosis and metabolic dysfunction and improves the cognitive ability of rats. Therefore, PKM2 may be an important target for epilepsy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Rugg-Gunn F, Miserocchi A, McEvoy A (2020) Epilepsy surgery. Pract Neurol 20(1):4–14. https://doi.org/10.1136/practneurol-2019-002192

    Article  PubMed  Google Scholar 

  2. Husari KS, Dubey D (2019) Autoimmune Epilepsy. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 16(3):685–702. https://doi.org/10.1007/s13311-019-00750-3

    Article  PubMed  Google Scholar 

  3. Pack AM (2019) Epilepsy Overview and revised classification of seizures and epilepsies. Continuum (Minneapolis Minn) 25(2):306–321. https://doi.org/10.1212/con.0000000000000707

    Article  PubMed  Google Scholar 

  4. Perucca P, Bahlo M, Berkovic SF (2020) The Genetics of Epilepsy. Annu Rev Genom Hum Genet 21:205–230. https://doi.org/10.1146/annurev-genom-120219-074937

    Article  CAS  Google Scholar 

  5. Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F (2019) PKM2, function and expression and regulation. Cell & Bioscience 9:52. https://doi.org/10.1186/s13578-019-0317-8

    Article  Google Scholar 

  6. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480(7375):118–122. https://doi.org/10.1038/nature10598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS, Waisman A, Cunha FQ, Cunha TM, Alves-Filho JC (2020) PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med 217(10). https://doi.org/10.1084/jem.20190613

  8. Dayton TL, Jacks T, Vander Heiden MG (2016) PKM2, cancer metabolism, and the road ahead. EMBO Rep 17(12):1721–1730. https://doi.org/10.15252/embr.201643300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang B, Liu S, Fan B, Xu X, Chen Y, Lu R, Xu Z, Liu X (2018) PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. J Headache Pain 19(1):7. https://doi.org/10.1186/s10194-018-0836-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dey P, Kundu A, Sachan R, Park JH, Ahn MY, Yoon K, Lee J, Kim ND, Kim IS, Lee BM, Kim HS (2019) PKM2 Knockdown induces autophagic cell death via AKT/mTOR pathway in human prostate Cancer cells. Cell Physiol Biochemistry: Int J Experimental Cell Physiol Biochem Pharmacol 52(6):1535–1552. https://doi.org/10.33594/000000107

    Article  CAS  Google Scholar 

  11. Liu D, Xiao Y, Zhou B, Gao S, Li L, Zhao L, Chen W, Dai B, Li Q, Duan H, Zuo X, Luo H, Zhu H (2021) PKM2-dependent glycolysis promotes skeletal muscle cell pyroptosis by activating the NLRP3 inflammasome in dermatomyositis/polymyositis. Rheumatology (Oxford) 60(5):2177–2189. https://doi.org/10.1093/rheumatology/keaa473

    Article  PubMed  CAS  Google Scholar 

  12. Revathidevi S, Munirajan AK (2019) Akt in cancer: Mediator and more. Sem Cancer Biol 59:80–91. https://doi.org/10.1016/j.semcancer.2019.06.002

    Article  CAS  Google Scholar 

  13. Song M, Bode AM, Dong Z, Lee MH (2019) AKT as a therapeutic target for Cancer. Cancer Res 79(6):1019–1031. https://doi.org/10.1158/0008-5472.Can-18-2738

    Article  PubMed  CAS  Google Scholar 

  14. Murugan AK (2019) mTOR: role in cancer, metastasis and drug resistance. Sem Cancer Biol 59:92–111. https://doi.org/10.1016/j.semcancer.2019.07.003

    Article  CAS  Google Scholar 

  15. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y (2019) Targeting mTOR for cancer therapy. J Hematol Oncol 12(1):71. https://doi.org/10.1186/s13045-019-0754-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhen Y, Zhang H (2019) NLRP3 inflammasome and inflammatory bowel disease. Front Immunol 10:276. https://doi.org/10.3389/fimmu.2019.00276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Karasawa T, Takahashi M (2017) Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb 24(5):443–451. https://doi.org/10.5551/jat.RV17001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang H, Qu Y, Wang A (2018) Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway. Mol Med Rep 17(4):5356–5361. https://doi.org/10.3892/mmr.2018.8465

    Article  PubMed  CAS  Google Scholar 

  19. Beghi E, Giussani G, Sander JW (2015) The natural history and prognosis of epilepsy. Epileptic Disorders: International Epilepsy Journal with Videotape 17(3):243–253. https://doi.org/10.1684/epd.2015.0751

    Article  PubMed  Google Scholar 

  20. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet (London England) 393(10172):689–701. https://doi.org/10.1016/s0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  21. Li T, Han J, Jia L, Hu X, Chen L, Wang Y (2019) PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation. Protein Cell 10(8):583–594. https://doi.org/10.1007/s13238-019-0618-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Magadum A, Singh N, Kurian AA, Munir I, Mehmood T, Brown K, Sharkar MTK, Chepurko E, Sassi Y, Oh JG, Lee P, Santos CXC, Gaziel-Sovran A, Zhang G, Cai CL, Kho C, Mayr M, Shah AM, Hajjar RJ, Zangi L (2020) Pkm2 regulates Cardiomyocyte Cell cycle and promotes Cardiac Regeneration. Circulation 141(15):1249–1265. https://doi.org/10.1161/circulationaha.119.043067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li TE, Wang S, Shen XT, Zhang Z, Chen M, Wang H, Zhu Y, Xu D, Hu BY, Wei R, Zheng Y, Dong QZ, Qin LX (2020) PKM2 drives Hepatocellular Carcinoma Progression by inducing Immunosuppressive Microenvironment. Front Immunol 11:589997. https://doi.org/10.3389/fimmu.2020.589997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xu D, Liang J, Lin J, Yu C (2019) PKM2: a potential Regulator of Rheumatoid Arthritis via Glycolytic and non-glycolytic pathways. Front Immunol 10:2919. https://doi.org/10.3389/fimmu.2019.02919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, Yao H, Song N, Ding X, Ding J, Xiao M, Hu G (2020) Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 11(1):941. https://doi.org/10.1038/s41467-020-14788-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, Sun X, Yang M, Billiar TR, Wang H, Cao L, Jiang J, Tang D (2016) PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun 7:13280. https://doi.org/10.1038/ncomms13280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Narayanan A, Srinaath N, Rohini M, Selvamurugan N (2019) Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 232:116676. https://doi.org/10.1016/j.lfs.2019.116676

    Article  PubMed  CAS  Google Scholar 

  28. Gao D, Tang T, Zhu J, Tang Y, Sun H, Li S (2019) CXCL12 has therapeutic value in facial nerve injury and promotes Schwann cells autophagy and migration via PI3K-AKT-mTOR signal pathway. Int J Biol Macromol 124:460–468. https://doi.org/10.1016/j.ijbiomac.2018.10.212

    Article  PubMed  CAS  Google Scholar 

  29. Wang N, Wang M (2019) Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway. BMC Anesthesiol 19(1):134. https://doi.org/10.1186/s12871-019-0808-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discovery 17(8):588–606. https://doi.org/10.1038/nrd.2018.97

    Article  PubMed  CAS  Google Scholar 

  31. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262. https://doi.org/10.3389/fphar.2015.00262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lin S, Mei X (2020) Role of NLRP3 inflammasomes in Neuroinflammation Diseases. Eur Neurol 83(6):576–580. https://doi.org/10.1159/000509798

    Article  PubMed  CAS  Google Scholar 

  33. Rui W, Li S, Xiao H, Xiao M, Shi J (2020) Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP Induced mice Model of Parkinson’s Disease. Int J Neuropsychopharmacol 23(11):762–773. https://doi.org/10.1093/ijnp/pyaa060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aguiar CC, Almeida AB, Araújo PV, de Abreu RN, Chaves EM, do Vale OC, Macêdo DS, Woods DJ, Fonteles MM, Vasconcelos SM (2012) Oxidative stress and epilepsy: literature review. Oxidative medicine and cellular longevity 2012(795259. https://doi.org/10.1155/2012/795259

  35. Geronzi U, Lotti F, Grosso S (2018) Oxidative stress in epilepsy. Expert Rev Neurother 18(5):427–434. https://doi.org/10.1080/14737175.2018.1465410

    Article  PubMed  CAS  Google Scholar 

  36. Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88(1):23–45. https://doi.org/10.1016/j.eplepsyres.2009.09.020

    Article  PubMed  CAS  Google Scholar 

  37. Xiong Y, Jin E, Yin Q, Che C, He S (2021) Boron attenuates heat Stress-Induced apoptosis by inhibiting endoplasmic reticulum stress in mouse granulosa cells. Biol Trace Elem Res 199(2):611–621. https://doi.org/10.1007/s12011-020-02180-1

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Xiaoli Cui and Feng Jiang designed the experiments and wrote the paper; Ruihua Jia, Rui Zhao and Ni Ma carried out the experiments and performed the data analysis.

Corresponding author

Correspondence to Feng Jiang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the ethics committee of Shaanxi Provincial People’s Hospital. The procedures of handling and caring animals conformed to the guidelines of the current international laws and policies (NIH Guide for the Care and Use of Laboratory Animals, The National Academies Press, 8th edition, 2011).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Jia, R., Zhao, R. et al. Silencing PKM2 Attenuates Brain Injury Induced by Status Epilepticus by Inhibiting the AKT/mTOR Pathway and the NLRP3 Inflammasome. Neurochem Res 49, 212–221 (2024). https://doi.org/10.1007/s11064-023-04023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04023-6

Keywords

Navigation