Skip to main content
Log in

Role of Necroptosis, a Regulated Cell Death, in Seizure and Epilepsy

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is a chronic neurological disease that is characterized by spontaneous and recurrent seizures. Regulated cell death is a controlled process and has been shown to be involved in neurodegenerative diseases. Necroptosis is a type of regulated cell death, and its association with epilepsy has been documented. Necroptosis signaling can be divided into two pathways: canonical and non-canonical pathways. Inhibition of caspase-8, dimerization of receptor-interacting protein kinase 1 (RIP1) and RIP3, activation of mixed-lineage kinase domain-like protein (MLKL), movement of MLKL to the plasma membrane, and cell rupture occurred in these pathways. Through literature review, it has been revealed that there is a relationship between seizure, neuroinflammation, and oxidative stress. The seizure activity triggers the activation of various pathways within the central nervous system, including TNF-α/matrix metalloproteases, Neogenin and Calpain/ Jun N-terminal Kinase 1, which result in distinct responses in the brain. These responses involve the activation of neurons and astrocytes, consequently leading to an increase in the expression levels of proteins and genes such as RIP1, RIP3, and MLKL in a time-dependent manner in regions such as the hippocampus (CA1, CA3, dentate gyrus, and hilus), piriform cortex, and amygdala. Furthermore, the imbalance in calcium ions, depletion of adenosine triphosphate, and elevation of extracellular glutamate and potassium within these pathways lead to the progression of necroptosis, a reduction in seizure threshold, and increased susceptibility to epilepsy. Therefore, it is plausible that therapeutic targeting of these pathways could potentially provide a promising approach for managing seizures and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data were utilized in the research described in the manuscript.

References

  1. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348–354. https://doi.org/10.1007/s11910-007-0053-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Beghi E (2020) The epidemiology of epilepsy. Neuroepidemiology 54:185–191. https://doi.org/10.1159/000503831

    Article  PubMed  Google Scholar 

  3. Lee SK (2019) Epilepsy in the elderly: treatment and consideration of comorbid diseases. J Epilepsy Res 9:27–35. https://doi.org/10.14581/jer.19003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stewart E, Lah S, Smith ML (2019) Patterns of impaired social cognition in children and adolescents with epilepsy: the borders between different epilepsy phenotypes. Epilepsy Behav 100:106146. https://doi.org/10.1016/j.yebeh.2019.01.031

    Article  PubMed  Google Scholar 

  5. Blume WT (2003) Diagnosis and management of epilepsy. CMAJ 168:441–448

    PubMed  PubMed Central  Google Scholar 

  6. Shorvon SD (2011) The etiologic classification of epilepsy. Epilepsia 52:1052–1057. https://doi.org/10.1111/j.1528-1167.2011.03041.x

    Article  PubMed  Google Scholar 

  7. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  PubMed  CAS  Google Scholar 

  8. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflamm 15:144. https://doi.org/10.1186/s12974-018-1192-7

    Article  CAS  Google Scholar 

  9. Ho YH, Lin YT, Wu CW, Chao YM, Chang AY, Chan JY (2015) Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci 22:46. https://doi.org/10.1186/s12929-015-0157-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fabisiak T, Patel M (2022) Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol 10:976953. https://doi.org/10.3389/fcell.2022.976953

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98:813–880. https://doi.org/10.1152/physrev.00011.2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Du K, He M, Zhao D, Wang Y, Ma C, Liang H, Wang W, Min D, Xue L, Guo F (2022) Mechanism of cell death pathways in status epilepticus and related therapeutic agents. Biomed Pharmacother 149:112875. https://doi.org/10.1016/j.biopha.2022.112875

    Article  PubMed  CAS  Google Scholar 

  13. Atabaki R, Khaleghzadeh-Ahangar H, Esmaeili N, Mohseni-Moghaddam P (2023) Role of pyroptosis, a pro-inflammatory programmed cell death, in epilepsy. Cell Mol Neurobiol 43:1049–1059. https://doi.org/10.1007/s10571-022-01250-3

    Article  PubMed  CAS  Google Scholar 

  14. Newton K, Manning G (2016) Necroptosis and inflammation. Annu Rev Biochem 85:743–763. https://doi.org/10.1146/annurev-biochem-060815-014830

    Article  PubMed  CAS  Google Scholar 

  15. Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflamm 15:1–9. https://doi.org/10.1186/s12974-018-1192-7

    Article  CAS  Google Scholar 

  16. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320. https://doi.org/10.1038/nature14191

    Article  PubMed  CAS  Google Scholar 

  17. Lu Z, Van Eeckhoutte HP, Liu G, Nair PM, Jones B, Gillis CM, Nalkurthi BC, Verhamme F, Buyle-Huybrecht T, Vandenabeele P (2021) Necroptosis signaling promotes inflammation, airway remodeling, and emphysema in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 204:667–681. https://doi.org/10.1164/rccm.202009-3442OC

    Article  PubMed  CAS  Google Scholar 

  18. Wang R, Li H, Wu J, Cai Z-Y, Li B, Ni H, Qiu X, Chen H, Liu W, Yang Z-H (2020) Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580:386–390. https://doi.org/10.1038/s41586-020-2127-x

    Article  PubMed  CAS  Google Scholar 

  19. Cai Q, Gan J, Luo R, Qu Y, Li S, Wan C, Mu D (2017) The role of necroptosis in status epilepticus-induced brain injury in juvenile rats. Epilepsy Behav 75:134–142. https://doi.org/10.1016/j.yebeh.2017.05.025

    Article  PubMed  Google Scholar 

  20. Yan WT, Lu S, Yang YD, Ning WY, Cai Y, Hu XM, Zhang Q, Xiong K (2021) Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regen Res 16:1628–1637. https://doi.org/10.4103/1673-5374.303032

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308. https://doi.org/10.1016/s0092-8674(00)80984-8

    Article  PubMed  CAS  Google Scholar 

  22. Füllsack S, Rosenthal A, Wajant H, Siegmund D (2019) Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death Dis 10:122. https://doi.org/10.1038/s41419-019-1396-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190. https://doi.org/10.1016/s0092-8674(03)00521-x

    Article  PubMed  CAS  Google Scholar 

  24. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336. https://doi.org/10.1126/science.1172308

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28:9–21. https://doi.org/10.1038/cr.2017.133

    Article  PubMed  CAS  Google Scholar 

  26. Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J, Han J (2014) Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death Differ 21:1709–1720. https://doi.org/10.1038/cdd.2014.77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    Article  PubMed  CAS  Google Scholar 

  28. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279. https://doi.org/10.1074/jbc.M113.462341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, Rall GF, Degterev A, Balachandran S (2013) Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A 110:E3109–3118. https://doi.org/10.1073/pnas.1301218110

    Article  PubMed  PubMed Central  Google Scholar 

  30. McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci U S A 111:E3206–E3213. https://doi.org/10.1073/pnas.1407068111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang J, Liu Y, Li XH, Zeng XC, Li J, Zhou J, Xiao B, Hu K (2017) Curcumin protects neuronal cells against status-epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis. Can J Physiol Pharmacol 95:501–509. https://doi.org/10.1139/cjpp-2016-0154

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Li Y, Huang WH, Zeng XC, Li XH, Li J, Zhou J, Xiao J, Xiao B, Ouyang DS, Hu K (2017) The protective effect of aucubin from Eucommia ulmoides against status epilepticus by inducing autophagy and inhibiting necroptosis. Am J Chin Med 45:557–573. https://doi.org/10.1142/S0192415X17500331

    Article  PubMed  CAS  Google Scholar 

  33. Jia R, Jia N, Yang F, Liu Z, Li R, Jiang Y, Zhao J, Wang L, Zhang S, Zhang Z, Zhang H, Wu S, Gao F, Jiang W (2019) Hydrogen alleviates necroptosis and cognitive deficits in lithium–pilocarpine model of status epilepticus. Cell Mol Neurobiol 39:857–869. https://doi.org/10.1007/s10571-019-00685-5

    Article  PubMed  CAS  Google Scholar 

  34. Lin DQ, Cai XY, Wang CH, Yang B, Liang RS (2020) Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus. Neural Regen Res 15:936–943. https://doi.org/10.4103/1673-5374.268903

    Article  PubMed  CAS  Google Scholar 

  35. Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20:366. https://doi.org/10.1038/cdd.2012.133

    Article  PubMed  CAS  Google Scholar 

  36. Murru S, Hess S, Barth E, Almajan ER, Schatton D, Hermans S, Brodesser S, Langer T, Kloppenburg P, Rugarli EI (2019) Astrocyte-specific deletion of the mitochondrial m-AAA protease reveals glial contribution to neurodegeneration. Glia 67:1526–1541. https://doi.org/10.1002/glia.23626

    Article  PubMed  PubMed Central  Google Scholar 

  37. Younis NS, Mohamed ME, Alolayan AA, Alhussain GY, Al-Mousa HA, Alshamrani JA, AlMutayib MM, AlQahtani MM, Alhaddad ZA, Alfarhan ZS, AlOmran ZA, Almostafa MM (2022) Identification of epilepsy concomitant candidate genes recognized in Saudi epileptic patients. Eur Rev Med Pharmacol Sci 26:2143–2157. https://doi.org/10.26355/eurrev_202203_28362

    Article  PubMed  CAS  Google Scholar 

  38. Muona M, Berkovic SF, Dibbens LM et al (2015) A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 47:39–46. https://doi.org/10.1038/ng.3144

    Article  PubMed  CAS  Google Scholar 

  39. Wu Z, Deshpande T, Henning L, Bedner P, Seifert G, Steinhäuser C (2021) Cell death of hippocampal CA1 astrocytes during early epileptogenesis. Epilepsia 62:1569–1583. https://doi.org/10.1111/epi.16910

    Article  PubMed  CAS  Google Scholar 

  40. Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF, Jiang SH, Hou JJ, Cui YM, Jia XL, Zhang SQ (2016) Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis 7:e2089. https://doi.org/10.1038/cddis.2015.390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P, Deshpande T, Schramm J, Häussler U, Haas CA, Henneberger C, Theis M, Steinhäuser C (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138:1208–1222. https://doi.org/10.1093/brain/awv067

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen PY, Tsai YW, Chang AY, Chang HH, Hsiao YH, Huang CW, Sung PS, Chen BH, Fu TF (2020) Increased leptin-b expression and metalloprotease expression contributed to the pyridoxine-associated toxicity in zebrafish larvae displaying seizure-like behavior. Biochem Pharmacol 182:114294. https://doi.org/10.1016/j.bcp.2020.114294

    Article  PubMed  CAS  Google Scholar 

  43. Li C, Gu H, Yu M, Yang P, Zhang M, Ba H, Yin Y, Wang J, Yin B, Zhou X, Li Z (2019) Inhibition of transmembrane TNF-α shedding by a specific antibody protects against septic shock. Cell Death Dis 10:586. https://doi.org/10.1038/s41419-019-1808-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Becker-Pauly C, Rose-John S (2013) TNFα cleavage beyond TACE/ADAM17: matrix metalloproteinase 13 is a potential therapeutic target in sepsis and colitis. EMBO Mol Med 5:970–972. https://doi.org/10.1002/emmm.201302899

    Article  PubMed  CAS  Google Scholar 

  45. Sun W, Wu X, Gao H, Yu J, Zhao W, Lu JJ, Wang J, Du G, Chen X (2017) Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radical Biol Med 108:433–444. https://doi.org/10.1016/j.freeradbiomed.2017.04.010

    Article  CAS  Google Scholar 

  46. Huang WY, Lai YL, Liu KH, Lin S, Chen HY, Liang CH, Wu HM, Hsu KS (2022) TNFα-mediated necroptosis in brain endothelial cells as a potential mechanism of increased seizure susceptibility in mice following systemic inflammation. J Neuroinflamm 19:29. https://doi.org/10.1186/s12974-022-02406-0

    Article  CAS  Google Scholar 

  47. Zhang S, Xie H, Wang Y, Li D, Du L, Wu Y, Yang G-Y (2017) Enriched environment improves behavioral performance and attenuates inflammatory response induced by TNF-α in healthy adult mice. Eur J Inflam 15:200–209. https://doi.org/10.1177/1721727x17730471

    Article  CAS  Google Scholar 

  48. Hu X, Xu Y, Zhang H, Li Y, Wang X, Xu C, Ni W, Zhou K (2022) Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 40:125–134. https://doi.org/10.1016/j.jare.2021.12.002

    Article  PubMed  CAS  Google Scholar 

  49. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ, Li YN, You MF, Wang XX, Lei H, He QW, Hu B (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10:487. https://doi.org/10.1038/s41419-019-1716-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Moerke C, Jaco I, Dewitz C, Müller T, Jacobsen AV, Gautheron J, Fritsch J, Schmitz J, Bräsen JH, Günther C, Murphy JM, Kunzendorf U, Meier P, Krautwald S (2019) The anticonvulsive Phenhydan® suppresses extrinsic cell death. Cell Death Differ 26:1631–1645. https://doi.org/10.1038/s41418-018-0232-2

    Article  PubMed  CAS  Google Scholar 

  51. Abd El-Aal SA, El-Abhar HS, Abulfadl YS (2022) Morin offsets PTZ-induced neuronal degeneration and cognitive decrements in rats: the. Eur J Pharmacol 931:175213. https://doi.org/10.1016/j.ejphar.2022.175213. modulation of TNF-α/TNFR-1/RIPK1,3/MLKL/PGAM5/Drp-1, IL-6/JAK2/STAT3/GFAP and Keap-1/Nrf-2/HO-1 trajectories

  52. Choi IY, Shim JH, Kim MH, Yu WD, Kim YJ, Choi G, Lee JH, Kim HJ, Cho KO (2021) Truncated neogenin promotes hippocampal neuronal death after acute seizure. Neuroscience 470:78–87. https://doi.org/10.1016/j.neuroscience.2021.06.039

    Article  PubMed  CAS  Google Scholar 

  53. Wilson NH, Key B (2007) Neogenin: one receptor, many functions. Int J Biochem Cell Biol 39:874–878. https://doi.org/10.1016/j.biocel.2006.10.023

    Article  PubMed  CAS  Google Scholar 

  54. Sun D, Tan ZB, Sun XD, Liu ZP, Chen WB, Milibari L, Ren X, Yao LL, Lee D, Shen C, Pan JX, Huang ZH, Mei L, Xiong WC (2021) Hippocampal astrocytic neogenin regulating glutamate uptake, a critical pathway for preventing epileptic response. Proc Natl Acad Sci U S A 118:e2022921118. https://doi.org/10.1073/pnas.2022921118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bollino D, Balan I, Aurelian L (2015) Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 133:174–186. https://doi.org/10.1111/jnc.13029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lam PM, Carlsen J, González MI (2017) A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis 102:1–10. https://doi.org/10.1016/j.nbd.2017.02.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol Commun 9:159. https://doi.org/10.1186/s40478-021-01264-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bronisz E, Kurkowska-Jastrzębska I (2016) Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediators Inflamm 2016:7369020. https://doi.org/10.1155/2016/7369020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dubey D, McRae PA, Rankin-Gee EK, Baranov E, Wandrey L, Rogers S, Porter BE (2017) Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res 132:50–58. https://doi.org/10.1016/j.eplepsyres.2017.02.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H (2020) Regulation of Alzheimer’s disease-associated proteins during epileptogenesis. Neuroscience 424:102–120. https://doi.org/10.1016/j.neuroscience.2019.08.037

    Article  CAS  Google Scholar 

  61. Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF (2019) Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 76:3055–3081. https://doi.org/10.1007/s00018-019-03173-7

    Article  PubMed  CAS  Google Scholar 

  62. Rempe RG, Hartz AMS, Soldner ELB, Sokola BS, Alluri SR, Abner EL, Kryscio RJ, Pekcec A, Schlichtiger J, Bauer B (2018) Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci 38:4301–4315. https://doi.org/10.1523/jneurosci.2751-17.2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, Xu Q (2017) Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 214:547–563. https://doi.org/10.1084/jem.20160667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jacobsen AV, Lowes KN, Tanzer MC, Lucet IS, Hildebrand JM, Petrie EJ, van Delft MF, Liu Z, Conos SA, Zhang JG, Huang DC, Silke J, Lessene G, Murphy JM (2016) HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 7:e2051. https://doi.org/10.1038/cddis.2015.386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kovac S, Domijan AM, Walker MC, Abramov AY (2012) Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J Cell Sci 125:1796–1806. https://doi.org/10.1242/jcs.099176

    Article  PubMed  CAS  Google Scholar 

  66. Nazıroğlu M, Övey İS (2015) Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience 293:55–66. https://doi.org/10.1016/j.neuroscience.2015.02.041

    Article  PubMed  CAS  Google Scholar 

  67. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155. https://doi.org/10.1152/physrev.1999.79.4.1127

    Article  PubMed  CAS  Google Scholar 

  68. Sisodia SS, St George-Hyslop PH (2002) gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290. https://doi.org/10.1038/nrn785

    Article  PubMed  CAS  Google Scholar 

  69. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100:6382–6387. https://doi.org/10.1073/pnas.1037392100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cai Z, Zhang A, Choksi S, Li W, Li T, Zhang XM, Liu ZG (2016) Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration. Cell Res 26:886–900. https://doi.org/10.1038/cr.2016.87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hernández DE, Salvadores NA, Moya-Alvarado G, Catalán RJ, Bronfman FC, Court FA (2018) Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci 131:jcs214684. https://doi.org/10.1242/jcs.214684

    Article  PubMed  CAS  Google Scholar 

  72. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831. https://doi.org/10.1016/j.yjmcc.2009.02.021

    Article  PubMed  CAS  Google Scholar 

  73. Nikseresht S, Khodagholi F, Dargahi L, Ahmadiani A (2017) Necroptosis resumes apoptosis in hippocampus but not in frontal cortex. J Cell Biochem 118:4628–4638. https://doi.org/10.1002/jcb.26127

    Article  PubMed  CAS  Google Scholar 

  74. Lerman-Sagie T, Watemberg N, Kramer U, Shahar E, Lerman P (2001) Absence seizures aggravated by valproic acid. Epilepsia 42:941–943. https://doi.org/10.1046/j.1528-1157.2001.042007941.x

    Article  PubMed  CAS  Google Scholar 

  75. Belcastro V, Caraballo RH, Romeo A, Striano P (2013) Early-onset absence epilepsy aggravated by valproic acid: a video-EEG report. Epileptic Disord 15:440–443. https://doi.org/10.1684/epd.2013.0616

    Article  PubMed  Google Scholar 

  76. Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C (2019) Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. Curr Neuropharmacol 17:926–946. https://doi.org/10.2174/1570159x17666181227165722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hussein AM, Awadalla A, Abbas KM, Sakr HF, Elghaba R, Othman G, Mokhtar N, Helal GM (2021) Chronic valproic acid administration enhances oxidative stress, upregulates IL6 and downregulates Nrf2, Glut1 and Glut4 in rat’s liver and brain. NeuroReport 32:840–850. https://doi.org/10.1097/wnr.0000000000001663

    Article  PubMed  CAS  Google Scholar 

  78. Salimi A, Alyan N, Akbari N, Jamali Z, Pourahmad J (2022) Selenium and L-carnitine protects from valproic acid-Induced oxidative stress and mitochondrial damages in rat cortical neurons. Drug Chem Toxicol 45:1150–1157. https://doi.org/10.1080/01480545.2020.1810259

    Article  PubMed  CAS  Google Scholar 

  79. Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38:78–100. https://doi.org/10.1007/s12035-008-8036-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang L, Ma N, Liu Q, Ma Y (2013) Genome-wide screening for genes associated with valproic acid sensitivity in fission yeast. PLoS ONE 8:e68738. https://doi.org/10.1371/journal.pone.0068738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Desfossés-Baron K, Hammond-Martel I, Simoneau A, Sellam A, Roberts S, Wurtele H (2016) Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae. Sci Rep 6:36013. https://doi.org/10.1038/srep36013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wahab A (2010) Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceuticals (Basel) 3:2090–2110. https://doi.org/10.3390/ph3072090

  83. Molnár T, Pallagi P, Tél B, Király R, Csoma E, Jenei V, Varga Z, Gogolák P, Odile Hueber A, Máté Z, Erdélyi F, Szabó G, Pettkó-Szandtner A, Bácsi A, Virág L, Maléth J, Koncz G (2021) Caspase-9 acts as a regulator of necroptotic cell death. FEBS J 288:6476–6491. https://doi.org/10.1111/febs.15898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study did not receive any financial support.

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

RA contributed to the study’s conception and design. The introduction section of the manuscript was written by HKA, and all subsequent sections were written by RA in the first draft. HKA also contributed to the design of the figures. PMM commented on previous versions of the manuscript and provided valuable grammatical and scientific editing, as well as the initial idea for the study. The final version of the manuscript has been reviewed and approved by all authors.

Corresponding author

Correspondence to Rabi Atabaki.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors mentioned have participated in this manuscript.

Consent to Publish

The authors read and approved the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohseni-Moghaddam, P., Khaleghzadeh-Ahangar, H. & Atabaki, R. Role of Necroptosis, a Regulated Cell Death, in Seizure and Epilepsy. Neurochem Res 49, 1–13 (2024). https://doi.org/10.1007/s11064-023-04010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04010-x

Keywords

Navigation