Skip to main content
Log in

The Role of PGC-1α-Mediated Mitochondrial Biogenesis in Neurons

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurons are highly dependent on mitochondrial ATP production and Ca2+ buffering. Neurons have unique compartmentalized anatomy and energy requirements, and each compartment requires continuously renewed mitochondria to maintain neuronal survival and activity. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key factor in the regulation of mitochondrial biogenesis. It is widely accepted that mitochondria are synthesized in the cell body and transported via axons to the distal end. However, axonal mitochondrial biogenesis is necessary to maintain axonal bioenergy supply and mitochondrial density due to limitations in mitochondrial axonal transport rate and mitochondrial protein lifespan. In addition, impaired mitochondrial biogenesis leading to inadequate energy supply and neuronal damage has been observed in neurological disorders. In this review, we focus on the sites where mitochondrial biogenesis occurs in neurons and the mechanisms by which it maintains axonal mitochondrial density. Finally, we summarize several neurological disorders in which mitochondrial biogenesis is affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500. https://doi.org/10.1146/annurev-cellbio-100818-125242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777. https://doi.org/10.1016/j.neuron.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  3. Van Steenbergen V, Lavoie-Cardinal F, Kazwiny Y et al (2022) Nano-positioning and tubulin conformation contribute to axonal transport regulation of mitochondria along microtubules. Proc Natl Acad Sci U S A 119:e2203499119. https://doi.org/10.1073/pnas.2203499119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bomba-Warczak E, Edassery SL, Hark TJ, Savas JN (2021) Long-lived mitochondrial cristae proteins in mouse heart and brain. J Cell Biol 220:e202005193. https://doi.org/10.1083/jcb.202005193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fornasiero EF, Mandad S, Wildhagen H et al (2018) Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat Commun 9:4230. https://doi.org/10.1038/s41467-018-06519-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cardanho-Ramos C, Morais VA (2021) Mitochondrial biogenesis in neurons: how and where. Int J Mol Sci 22:13059. https://doi.org/10.3390/ijms222313059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. https://doi.org/10.1016/j.cub.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  8. Ng MYW, Wai T, Simonsen A (2021) Quality control of the mitochondrion. Dev Cell 56:881–905. https://doi.org/10.1016/j.devcel.2021.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Feng Y-F, Liu X-T et al (2021) Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol 38:101771. https://doi.org/10.1016/j.redox.2020.101771

    Article  CAS  PubMed  Google Scholar 

  10. Song J, Herrmann JM, Becker T (2021) Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol 22:54–70. https://doi.org/10.1038/s41580-020-00300-2

    Article  CAS  PubMed  Google Scholar 

  11. Sheng Z-H (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol 27:403–416. https://doi.org/10.1016/j.tcb.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tseng N, Lambie SC, Huynh CQ et al (2021) Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: the role of Miro1. J Cereb Blood Flow Metab 41:761–770. https://doi.org/10.1177/0271678X20928147

    Article  CAS  PubMed  Google Scholar 

  13. Van Laar VS, Arnold B, Howlett EH et al (2018) Evidence for compartmentalized axonal mitochondrial biogenesis: mitochondrial DNA replication increases in distal axons as an early response to Parkinson’s disease-relevant stress. J Neurosci 38:7505–7515. https://doi.org/10.1523/JNEUROSCI.0541-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gale JR, Aschrafi A, Gioio AE, Kaplan BB (2018) Nuclear-encoded mitochondrial mRNAs: a powerful force in axonal growth and development. Neuroscientist 24:142–155. https://doi.org/10.1177/1073858417714225

    Article  CAS  PubMed  Google Scholar 

  15. Simmons EC, Scholpa NE, Schnellmann RG (2020) Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 329:113309. https://doi.org/10.1016/j.expneurol.2020.113309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jamwal S, Blackburn JK, Elsworth JD (2021) PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 219:107705. https://doi.org/10.1016/j.pharmthera.2020.107705

    Article  CAS  PubMed  Google Scholar 

  17. Austin S, St-Pierre J (2012) PGC1α and mitochondrial metabolism–emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971. https://doi.org/10.1242/jcs.113662

    Article  CAS  PubMed  Google Scholar 

  18. St-Pierre J, Lin J, Krauss S et al (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 278:26597–26603. https://doi.org/10.1074/jbc.M301850200

    Article  CAS  PubMed  Google Scholar 

  19. Gureev AP, Shaforostova EA, Popov VN (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 10:435. https://doi.org/10.3389/fgene.2019.00435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR et al (2019) The role of PGC-1α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front Neurosci 13:292. https://doi.org/10.3389/fnins.2019.00292

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li Y-Q, Jiao Y, Liu Y-N et al (2022) PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication. J Cell Mol Med 26:593–600. https://doi.org/10.1111/jcmm.16236

    Article  CAS  PubMed  Google Scholar 

  22. Battey E, Furrer R, Ross J et al (2022) PGC-1α regulates myonuclear accretion after moderate endurance training. J Cell Physiol 237:696–705. https://doi.org/10.1002/jcp.30539

    Article  CAS  PubMed  Google Scholar 

  23. Dorn GW, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29:1981–1991. https://doi.org/10.1101/gad.269894.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puigserver P, Wu Z, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839. https://doi.org/10.1016/s0092-8674(00)81410-5

    Article  CAS  PubMed  Google Scholar 

  25. Liu D, Ma Z, Di S et al (2018) AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med 129:59–72. https://doi.org/10.1016/j.freeradbiomed.2018.08.032

    Article  CAS  PubMed  Google Scholar 

  26. Xu W, Yan J, Ocak U et al (2021) Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Theranostics 11:522–539. https://doi.org/10.7150/thno.49426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Zhao X, Lotz M et al (2015) Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol 67:2141–2153. https://doi.org/10.1002/art.39182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang JX, Thompson K, Taylor RW, Oláhová M (2020) Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis, import, and assembly pathways. Int J Mol Sci 21:3820. https://doi.org/10.3390/ijms21113820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29:1727–1745. https://doi.org/10.1089/ars.2017.7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  32. Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103:1232–1240. https://doi.org/10.1161/01.RES.0000338597.71702.ad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gustafsson CM, Falkenberg M, Larsson N-G (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

    Article  CAS  PubMed  Google Scholar 

  34. Kozhukhar N, Alexeyev MF (2022) TFAM’s contributions to mtDNA replication and OXPHOS biogenesis are genetically separable. Cells 11:3754. https://doi.org/10.3390/cells11233754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638. https://doi.org/10.1152/physrev.00025.2007

    Article  CAS  PubMed  Google Scholar 

  36. Ngo HB, Lovely GA, Phillips R, Chan DC (2014) Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun 5:3077. https://doi.org/10.1038/ncomms4077

    Article  CAS  PubMed  Google Scholar 

  37. Ngo HB, Kaiser JT, Chan DC (2011) The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat Struct Mol Biol 18:1290–1296. https://doi.org/10.1038/nsmb.2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shokolenko IN, Alexeyev MF (2017) Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 22:835–853. https://doi.org/10.2741/4520

    Article  CAS  PubMed  Google Scholar 

  39. Hillen HS, Morozov YI, Sarfallah A et al (2017) Structural basis of mitochondrial transcription initiation. Cell 171:1072-1081.e10. https://doi.org/10.1016/j.cell.2017.10.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asin-Cayuela J, Schwend T, Farge G, Gustafsson CM (2005) The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form. J Biol Chem 280:25499–25505. https://doi.org/10.1074/jbc.M501145200

    Article  CAS  PubMed  Google Scholar 

  41. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714. https://doi.org/10.1146/annurev-biochem-060815-014352

    Article  CAS  PubMed  Google Scholar 

  42. Singh AP, Salvatori R, Aftab W et al (2020) Molecular connectivity of mitochondrial gene expression and OXPHOS biogenesis. Mol Cell 79:1051-1065.e10. https://doi.org/10.1016/j.molcel.2020.07.024

    Article  CAS  PubMed  Google Scholar 

  43. Harbauer AB, Zahedi RP, Sickmann A et al (2014) The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–372. https://doi.org/10.1016/j.cmet.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  44. Sayyed UMH, Mahalakshmi R (2022) Mitochondrial protein translocation machinery: from TOM structural biogenesis to functional regulation. J Biol Chem 298:101870. https://doi.org/10.1016/j.jbc.2022.101870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106:135–159. https://doi.org/10.1093/bmb/ldt017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Popov L-D (2020) Mitochondrial biogenesis: an update. J Cell Mol Med 24:4892–4899. https://doi.org/10.1111/jcmm.15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zehnder T, Petrelli F, Romanos J et al (2021) Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Rep 35:8952. https://doi.org/10.1016/j.celrep.2021.108952

    Article  CAS  Google Scholar 

  48. Kong S, Cai B, Nie Q (2022) PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics 297:621–633. https://doi.org/10.1007/s00438-022-01878-2

    Article  CAS  PubMed  Google Scholar 

  49. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785. https://doi.org/10.1038/nrm2249

    Article  CAS  PubMed  Google Scholar 

  50. Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022. https://doi.org/10.1073/pnas.0705070104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson RM, Barger JL, Edwards MG et al (2008) Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7:101–111. https://doi.org/10.1111/j.1474-9726.2007.00357.x

    Article  CAS  PubMed  Google Scholar 

  52. Bergeron R, Ren JM, Cadman KS et al (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340-1346. https://doi.org/10.1152/ajpendo.2001.281.6.E1340

    Article  CAS  PubMed  Google Scholar 

  53. Zong H, Ren JM, Young LH et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987. https://doi.org/10.1073/pnas.252625599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng Q, Chen J, Guo H et al (2021) Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation. Acta Pharmacol Sin 42:665–678. https://doi.org/10.1038/s41401-020-0487-2

    Article  CAS  PubMed  Google Scholar 

  55. Fan H, Ding R, Liu W et al (2021) Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1α signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 40:101856. https://doi.org/10.1016/j.redox.2021.101856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26:1913–1923. https://doi.org/10.1038/sj.emboj.7601633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sakamoto J, Miura T, Shimamoto K, Horio Y (2004) Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556:281–286. https://doi.org/10.1016/s0014-5793(03)01444-3

    Article  CAS  PubMed  Google Scholar 

  58. Huang Q, Su H, Qi B et al (2021) A SIRT1 activator, ginsenoside Rc, promotes energy metabolism in cardiomyocytes and neurons. J Am Chem Soc 143:1416–1427. https://doi.org/10.1021/jacs.0c10836

    Article  CAS  PubMed  Google Scholar 

  59. Zhao Q, Tian Z, Zhou G et al (2020) SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics 10:4822–4838. https://doi.org/10.7150/thno.42387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lei Y, Wang J, Wang D et al (2020) SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol Psychiatry 25:1094–1111. https://doi.org/10.1038/s41380-019-0352-1

    Article  CAS  PubMed  Google Scholar 

  61. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145. https://doi.org/10.1097/00004647-200110000-00001

    Article  CAS  PubMed  Google Scholar 

  62. Kiser B (2015) Early child development: body of knowledge. Nature. https://doi.org/10.1038/523286a

    Article  PubMed  Google Scholar 

  63. Huang N, Li S, Xie Y et al (2021) Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 31:3098-3114.e7. https://doi.org/10.1016/j.cub.2021.04.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li S, Sheng Z-H (2022) Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 23:4–22. https://doi.org/10.1038/s41583-021-00535-8

    Article  CAS  PubMed  Google Scholar 

  65. Li S, Xiong G-J, Huang N, Sheng Z-H (2020) The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat Metab 2:1077–1095. https://doi.org/10.1038/s42255-020-00289-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abeti R, Abramov AY (2015) Mitochondrial Ca(2+) in neurodegenerative disorders. Pharmacol Res 99:377–381. https://doi.org/10.1016/j.phrs.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  67. Baradaran R, Wang C, Siliciano AF, Long SB (2018) Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature 559:580–584. https://doi.org/10.1038/s41586-018-0331-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fan C, Fan M, Orlando BJ et al (2018) X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature 559:575–579. https://doi.org/10.1038/s41586-018-0330-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797:595–606. https://doi.org/10.1016/j.bbabio.2010.03.024

    Article  CAS  PubMed  Google Scholar 

  70. De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192. https://doi.org/10.1146/annurev-biochem-060614-034216

    Article  CAS  PubMed  Google Scholar 

  71. Baumgartner HK, Gerasimenko JV, Thorne C et al (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803. https://doi.org/10.1074/jbc.M109.025353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang Q, Li Y, Yin C et al (2022) Electro-acupuncture pretreatment ameliorates anesthesia and surgery-induced cognitive dysfunction via inhibiting mitochondrial injury and neuroapoptosis in aged rats. Neurochem Res 47:1751–1764. https://doi.org/10.1007/s11064-022-03567-3

    Article  CAS  PubMed  Google Scholar 

  73. Twiss JL, Kalinski AL, Sahoo PK et al (2021) Neurobiology: resetting the axon’s batteries. Curr Biol 31:R914–R917. https://doi.org/10.1016/j.cub.2021.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alston CL, Rocha MC, Lax NZ et al (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236–250. https://doi.org/10.1002/path.4809

    Article  CAS  PubMed  Google Scholar 

  75. Davis AF, Clayton DA (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 135:883–893. https://doi.org/10.1083/jcb.135.4.883

    Article  CAS  PubMed  Google Scholar 

  76. Schultz RA, Swoap SJ, McDaniel LD et al (1998) Differential expression of mitochondrial DNA replication factors in mammalian tissues. J Biol Chem 273:3447–3451. https://doi.org/10.1074/jbc.273.6.3447

    Article  CAS  PubMed  Google Scholar 

  77. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

    Article  CAS  PubMed  Google Scholar 

  78. Melkov A, Abdu U (2018) Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 75:163–176. https://doi.org/10.1007/s00018-017-2590-1

    Article  CAS  PubMed  Google Scholar 

  79. Takihara Y, Inatani M, Eto K et al (2015) In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A 112:10515–10520. https://doi.org/10.1073/pnas.1509879112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Misgeld T, Kerschensteiner M, Bareyre FM et al (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559–561. https://doi.org/10.1038/nmeth1055

    Article  CAS  PubMed  Google Scholar 

  81. Zhou B, Yu P, Lin M-Y et al (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214:103–119. https://doi.org/10.1083/jcb.201605101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mandal A, Wong H-TC, Pinter K et al (2021) Retrograde mitochondrial transport is essential for organelle distribution and health in zebrafish neurons. J Neurosci 41:1371–1392. https://doi.org/10.1523/JNEUROSCI.1316-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng Y, Wu X, Chen Z, Zhang X (2019) Come and eat: mitochondrial transport guides mitophagy in ischemic neuronal axons. Autophagy. https://doi.org/10.1080/15548627.2019.1618099

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068. https://doi.org/10.1091/mbc.e05-06-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao Y, Song E, Wang W et al (2021) Metaxins are core components of mitochondrial transport adaptor complexes. Nat Commun 12:83. https://doi.org/10.1038/s41467-020-20346-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. López-Doménech G, Covill-Cooke C, Ivankovic D et al (2018) Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J 37:321–336. https://doi.org/10.15252/embj.201696380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin M-Y, Cheng X-T, Tammineni P et al (2017) Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94:595-610.e6. https://doi.org/10.1016/j.neuron.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han Q, Xie Y, Ordaz JD et al (2020) Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 31:623-641.e8. https://doi.org/10.1016/j.cmet.2020.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chang DTW, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. https://doi.org/10.1016/j.pneurobio.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  90. Bros H, Hauser A, Paul F et al (2015) Assessing mitochondrial movement within neurons: manual versus automated tracking methods. Traffic 16:906–917. https://doi.org/10.1111/tra.12291

    Article  CAS  PubMed  Google Scholar 

  91. Sheng Z-H (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098. https://doi.org/10.1083/jcb.201312123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Price JC, Guan S, Burlingame A et al (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A 107:14508–14513. https://doi.org/10.1073/pnas.1006551107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ligon LA, Steward O (2000) Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:340–350. https://doi.org/10.1002/1096-9861(20001120)427:3%3c340::aid-cne2%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  94. Babenko VA, Silachev DN, Zorova LD et al (2015) Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl Med 4:1011–1020. https://doi.org/10.5966/sctm.2015-0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nasoni MG, Carloni S, Canonico B et al (2021) Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J Pineal Res 71:e12747. https://doi.org/10.1111/jpi.12747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hayakawa K, Esposito E, Wang X et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Plucińska G, Paquet D, Hruscha A et al (2012) In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 32:16203–16212. https://doi.org/10.1523/JNEUROSCI.1327-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Watters O, Connolly NMC, König H-G et al (2020) AMPK preferentially depresses retrograde transport of axonal mitochondria during localized nutrient deprivation. J Neurosci 40:4798–4812. https://doi.org/10.1523/JNEUROSCI.2067-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang CL, Ho PL, Kintner DB et al (2010) Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci 30:3555–3566. https://doi.org/10.1523/JNEUROSCI.4551-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hillefors M, Gioio AE, Mameza MG, Kaplan BB (2007) Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons. Cell Mol Neurobiol 27:701–716. https://doi.org/10.1007/s10571-007-9148-y

    Article  CAS  PubMed  Google Scholar 

  101. Glock C, Biever A, Tushev G et al (2021) The translatome of neuronal cell bodies, dendrites, and axons. Proc Natl Acad Sci U S A 118:e2113929118. https://doi.org/10.1073/pnas.2113929118

  102. Aschrafi A, Kar AN, Gale JR et al (2016) A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons. Mitochondrion 30:18–23. https://doi.org/10.1016/j.mito.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gioio AE, Eyman M, Zhang H et al (2001) Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J Neurosci Res 64:447–453. https://doi.org/10.1002/jnr.1096

    Article  CAS  PubMed  Google Scholar 

  104. Kuzniewska B, Cysewski D, Wasilewski M et al (2020) Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO Rep 21:e48882. https://doi.org/10.15252/embr.201948882

  105. Hardingham GE, Arnold FJ, Bading H (2001) A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4:565–566. https://doi.org/10.1038/88380

    Article  CAS  PubMed  Google Scholar 

  106. Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM (2021) ERK/MAPK signalling in the developing brain: perturbations and consequences. Neurosci Biobehav Rev 131:792–805. https://doi.org/10.1016/j.neubiorev.2021.10.009

    Article  CAS  PubMed  Google Scholar 

  107. de Oliveira MR, Peres A, Gama CS, Bosco SMD (2017) Pinocembrin provides mitochondrial protection by the activation of the Erk1/2-Nrf2 signaling pathway in SH-SY5Y neuroblastoma cells exposed to paraquat. Mol Neurobiol 54:6018–6031. https://doi.org/10.1007/s12035-016-0135-5

    Article  CAS  PubMed  Google Scholar 

  108. Vincent AM, Edwards JL, McLean LL et al (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120:477–489. https://doi.org/10.1007/s00401-010-0697-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 68:1348–1361. https://doi.org/10.1002/dneu.20668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cohen B, Altman T, Golani-Armon A et al (2022) Co-transport of the nuclear-encoded Cox7c mRNA with mitochondria along axons occurs through a coding-region-dependent mechanism. J Cell Sci 135:jcs259436. https://doi.org/10.1242/jcs.259436

  111. Fernandopulle MS, Lippincott-Schwartz J, Ward ME (2021) RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 24:622–632. https://doi.org/10.1038/s41593-020-00785-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cioni J-M, Lin JQ, Holtermann AV et al (2019) Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176:56-72.e15. https://doi.org/10.1016/j.cell.2018.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qin W, Myers SA, Carey DK et al (2021) Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nat Commun 12:4980. https://doi.org/10.1038/s41467-021-25259-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Das S, Vera M, Gandin V et al (2021) Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 22:483–504. https://doi.org/10.1038/s41580-021-00356-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rossoll W, Bassell GJ (2019) Crosstalk of local translation and mitochondria: powering plasticity in axons and dendrites. Neuron 101:204–206. https://doi.org/10.1016/j.neuron.2018.12.027

    Article  CAS  PubMed  Google Scholar 

  116. Hodson R (2018) Alzheimer’s disease. Nature 559:S1. https://doi.org/10.1038/d41586-018-05717-6

    Article  CAS  PubMed  Google Scholar 

  117. Singh SK, Srivastav S, Yadav AK et al (2016) Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Longev 2016:7361613. https://doi.org/10.1155/2016/7361613

    Article  CAS  PubMed  Google Scholar 

  118. Vaillant-Beuchot L, Mary A, Pardossi-Piquard R et al (2021) Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer’s disease models and human brains. Acta Neuropathol 141:39–65. https://doi.org/10.1007/s00401-020-02234-7

    Article  CAS  PubMed  Google Scholar 

  119. Costa RO, Ferreiro E, Martins I et al (2012) Amyloid β-induced ER stress is enhanced under mitochondrial dysfunction conditions. Neurobiol Aging 33:824.e5–16. https://doi.org/10.1016/j.neurobiolaging.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  120. Trushina E, Trushin S, Hasan MF (2022) Mitochondrial complex I as a therapeutic target for Alzheimer’s disease. Acta Pharm Sin B 12:483–495. https://doi.org/10.1016/j.apsb.2021.11.003

    Article  CAS  PubMed  Google Scholar 

  121. Stojakovic A, Trushin S, Sheu A et al (2021) Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun Biol 4:61. https://doi.org/10.1038/s42003-020-01584-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reddy PH, Yin X, Manczak M et al (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27:2502–2516. https://doi.org/10.1093/hmg/ddy154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gong B, Pan Y, Vempati P et al (2013) Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging 34:1581–1588. https://doi.org/10.1016/j.neurobiolaging.2012.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Panes JD, Godoy PA, Silva-Grecchi T et al (2020) Changes in PGC-1α/SIRT1 signaling impact on mitochondrial homeostasis in amyloid-beta peptide toxicity model. Front Pharmacol 11:709. https://doi.org/10.3389/fphar.2020.00709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dong Y-T, Cao K, Xiang J et al (2020) Silent mating-type information regulation 2 homolog 1 attenuates the neurotoxicity associated with Alzheimer disease via a mechanism which may involve regulation of peroxisome proliferator-activated receptor gamma coactivator 1-α. Am J Pathol 190:1545–1564. https://doi.org/10.1016/j.ajpath.2020.03.015

    Article  CAS  PubMed  Google Scholar 

  126. Wang R, Li JJ, Diao S et al (2013) Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab 17:685–694. https://doi.org/10.1016/j.cmet.2013.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612. https://doi.org/10.3389/fnins.2018.00612

    Article  PubMed  PubMed Central  Google Scholar 

  128. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793. https://doi.org/10.1016/S0140-6736(04)16305-8

    Article  CAS  PubMed  Google Scholar 

  129. Soyal SM, Zara G, Ferger B et al (2019) The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson’s disease. Neurobiol Dis 121:34–46. https://doi.org/10.1016/j.nbd.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  130. Eschbach J, von Einem B, Müller K et al (2015) Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol 77:15–32. https://doi.org/10.1002/ana.24294

    Article  CAS  PubMed  Google Scholar 

  131. Stevens DA, Lee Y, Kang HC et al (2015) Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc Natl Acad Sci U S A 112:11696–11701. https://doi.org/10.1073/pnas.1500624112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shin J-H, Ko HS, Kang H et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702. https://doi.org/10.1016/j.cell.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Piccinin E, Sardanelli AM, Seibel P et al (2021) PGC-1s in the spotlight with Parkinson’s disease. Int J Mol Sci 22:3487. https://doi.org/10.3390/ijms22073487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilkaniec A, Lenkiewicz AM, Babiec L et al (2021) Exogenous alpha-synuclein evoked Parkin downregulation promotes mitochondrial dysfunction in neuronal cells. Implications for Parkinson’s disease pathology. Front Aging Neurosci 13:591475. https://doi.org/10.3389/fnagi.2021.591475

  135. Pirooznia SK, Wang H, Panicker N et al (2022) Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson’s disease. Sci Adv 8:eabh1824. https://doi.org/10.1126/sciadv.abh1824

  136. Jo A, Lee Y, Ti K et al (2021) PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax8891

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lin C-Y, Huang Y-N, Fu R-H et al (2021) Promotion of mitochondrial biogenesis via the regulation of PARIS and PGC-1α by parkin as a mechanism of neuroprotection by carnosic acid. Phytomedicine 80:153369. https://doi.org/10.1016/j.phymed.2020.153369

  138. Ur Rasheed MS, Tripathi MK, Mishra AK et al (2016) Resveratrol protects from toxin-induced Parkinsonism: plethora of proofs hitherto petty translational value. Mol Neurobiol 53:2751–2760. https://doi.org/10.1007/s12035-015-9124-3

    Article  CAS  PubMed  Google Scholar 

  139. Jiang H, Kang S-U, Zhang S et al (2016) Adult conditional knockout of PGC-1α leads to loss of dopamine neurons. eNeuro 3:ENEURO.0183-16.2016. https://doi.org/10.1523/ENEURO.0183-16.2016

  140. Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071. https://doi.org/10.1038/nrdp.2017.71

    Article  PubMed  Google Scholar 

  141. Vielhaber S, Kunz D, Winkler K et al (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123(Pt 7):1339–1348. https://doi.org/10.1093/brain/123.7.1339

    Article  PubMed  Google Scholar 

  142. Wen J, Li S, Zheng C et al (2021) Tetramethylpyrazine nitrone improves motor dysfunction and pathological manifestations by activating the PGC-1α/Nrf2/HO-1 pathway in ALS mice. Neuropharmacology 182:108380. https://doi.org/10.1016/j.neuropharm.2020.108380

  143. Arnold A-S, Gill J, Christe M et al (2014) Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat Commun 5:3569. https://doi.org/10.1038/ncomms4569

    Article  CAS  PubMed  Google Scholar 

  144. Eschbach J, Schwalenstöcker B, Soyal SM et al (2013) PGC-1α is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Hum Mol Genet 22:3477–3484. https://doi.org/10.1093/hmg/ddt202

    Article  CAS  PubMed  Google Scholar 

  145. Mehta AR, Gregory JM, Dando O et al (2021) Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol 141:257–279. https://doi.org/10.1007/s00401-020-02252-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao W, Varghese M, Yemul S et al (2011) Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 6:51. https://doi.org/10.1186/1750-1326-6-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li X, Chen C, Zhan X et al (2021) R13 preserves motor performance in SOD1G93A mice by improving mitochondrial function. Theranostics 11:7294–7307. https://doi.org/10.7150/thno.56070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Srikanth V, Sinclair AJ, Hill-Briggs F et al (2020) Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol 8:535–545. https://doi.org/10.1016/S2213-8587(20)30118-2

    Article  PubMed  Google Scholar 

  149. Hu Y, Zhou Y, Yang Y et al (2022) Metformin protects against diabetes-induced cognitive dysfunction by inhibiting mitochondrial fission protein DRP1. Front Pharmacol 13:832707. https://doi.org/10.3389/fphar.2022.832707

  150. Potenza MA, Sgarra L, Desantis V et al (2021) Diabetes and Alzheimer’s disease: might mitochondrial dysfunction help deciphering the common path? Antioxidants (Basel) 10:1257. https://doi.org/10.3390/antiox10081257

    Article  CAS  PubMed  Google Scholar 

  151. Lee TH, Christie BR, Lin K et al (2021) Chronic AdipoRon treatment mimics the effects of physical exercise on restoring hippocampal neuroplasticity in diabetic mice. Mol Neurobiol 58:4666–4681. https://doi.org/10.1007/s12035-021-02441-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ruegsegger GN, Creo AL, Cortes TM et al (2018) Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest 128:3671–3681. https://doi.org/10.1172/JCI120843

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zheng T, Qin L, Chen B et al (2016) Association of plasma DPP4 activity with mild cognitive impairment in elderly patients with type 2 diabetes: results from the GDMD Study in China. Diabetes Care 39:1594–1601. https://doi.org/10.2337/dc16-0316

    Article  CAS  PubMed  Google Scholar 

  154. Sun C, Xiao Y, Li J et al (2022) Nonenzymatic function of DPP4 in diabetes-associated mitochondrial dysfunction and cognitive impairment. Alzheimers Dement 18:966–987. https://doi.org/10.1002/alz.12437

    Article  CAS  PubMed  Google Scholar 

  155. Pomytkin I, Costa-Nunes JP, Kasatkin V et al (2018) Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 24:763–774. https://doi.org/10.1111/cns.12866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sajan M, Hansen B, Ivey R et al (2016) Brain insulin signaling is increased in insulin-resistant states and decreases in FOXOs and pgc-1α and increases in Aβ1-40/42 and phospho-tau May Abet Alzheimer development. Diabetes 65:1892–1903. https://doi.org/10.2337/db15-1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Agrawal R, Zhuang Y, Cummings BP et al (2014) Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes. Biochim Biophys Acta 1842:1313–1323. https://doi.org/10.1016/j.bbadis.2014.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from Capital’s Funds for Health Improvement and Research (2022-2-2232) and Science and Technology Development Fund of Beijing Hospital of Traditional Chinese Medicine, Capital Medical University (LYYB202216) to Lingling Ding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. The first draft of the manuscript was written by Mengjie Chen, Ruyu Yan, Lingling Ding. The analysis and sorting of references were performed by Mengjie Chen, Jiansheng Luo, Jiaqi Ning. Figures were produced by Mengjie Chen, Ruyu Yan, Ruiling Zhou. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lingling Ding.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Yan, R., Luo, J. et al. The Role of PGC-1α-Mediated Mitochondrial Biogenesis in Neurons. Neurochem Res 48, 2595–2606 (2023). https://doi.org/10.1007/s11064-023-03934-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03934-8

Keywords

Navigation