Skip to main content
Log in

Differential Effects of Chronic Ethanol Use on Mouse Neuronal and Astroglial Metabolic Activity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic alcohol use disorder, a major risk factor for the development of neuropsychiatric disorders including addiction to other substances, is associated with several neuropathology including perturbed neuronal and glial activities in the brain. It affects carbon metabolism in specific brain regions, and perturbs neuro-metabolite homeostasis in neuronal and glial cells. Alcohol induced changes in the brain neurochemical profile accompany the negative emotional state associated with dysregulated reward and sensitized stress response to withdrawal. However, the underlying alterations in neuro-astroglial activities and neurochemical dysregulations in brain regions after chronic alcohol use are poorly understood. This study evaluates the impact of chronic ethanol use on the regional neuro-astroglial metabolic activity using 1H-[13C]-NMR spectroscopy in conjunction with infusion of [1,6-13C2]glucose and sodium [2-13C]acetate, respectively, after 48 h of abstinence. Besides establishing detailed 13C labeling of neuro-metabolites in a brain region-specific manner, our results show chronic ethanol induced-cognitive deficits along with a reduction in total glucose oxidation rates in the hippocampus and striatum. Furthermore, using [2-13C]acetate infusion, we showed an alcohol-induced increase in astroglial metabolic activity in the hippocampus and prefrontal cortex. Interestingly, increased astroglia activity in the hippocampus and prefrontal cortex was associated with a differential expression of monocarboxylic acid transporters that are regulating acetate uptake and metabolism in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available on request.

Abbreviations

Ala:

Alanine

AlaC3 :

[3-13C]alanine

Asp:

Aspartate

AspC3 :

[3-13C]aspartate

Cho:

Choline

Cre:

Creatine

CMRAce(Ox) :

Cerebral metabolic rate of acetate oxidation

CMRGlc(Ox) :

Cerebral metabolic rate of glucose oxidation

GABA:

γ-Aminobutyric acid

GABAC2 :

[2-13C]GABA

GABAC4 :

[4-13C]GABA

Gln:

Glutamine

GlnC4 :

[4-13C]Glutamine

Glu:

Glutamate

GluC3 :

[3-13C]Glutamate

GluC4 :

[4-13C]Glutamate

GPC:

Glycerophosphocholine

LacC3 :

[3-13C]Lactate

m-Ino:

myo-Inositol

NAA:

N-Acetylaspartate

NMR:

Nuclear magnetic resonance

Tau:

Taurine

TSP:

3-Trimethylsilyl[2,2,3,3-D4]-propionate

References

  1. Nutt DJ, King LA, Phillips LD (2010) Drug harms in the UK: a multicriteria decision analysis. The Lancet 376:1558–1565

    Article  Google Scholar 

  2. Koob GF (2015) The dark side of emotion: the addiction perspective. Eur J Pharmacol 753:73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koob GF (2017) The Dark Side of Addiction: The Horsley Gantt to Joseph Brady Connection. J Nerv Ment Dis 205:270–272

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wise RA, Koob GF (2014) The development and maintenance of drug addiction. Neuropsychopharmacology 39:254–262

    Article  PubMed  Google Scholar 

  5. Fama R, Le Berre AP, Hardcastle C, Sassoon SA, Pfefferbaum A, Sullivan EV, Zahr NM (2019) Neurological, nutritional and alcohol consumption factors underlie cognitive and motor deficits in chronic alcoholism. Addict Biol 24:290–302

    Article  PubMed  Google Scholar 

  6. Bruijnen CJ, Dijkstra BA, Walvoort SJ, Markus W, VanDerNagel JE, Kessels RP, De Jong CA (2019) Prevalence of cognitive impairment in patients with substance use disorder. Drug Alcohol Rev 38:435–442

    Article  PubMed  PubMed Central  Google Scholar 

  7. Le Berre AP, Fama R, Sullivan EV (2017) Executive functions, memory, and social cognitive deficits and recovery in chronic alcoholism: a critical review to inform future research. Alcohol Clin Exp Res 41:1432–1443

    Article  PubMed  PubMed Central  Google Scholar 

  8. White AM, Matthews DB, Best PJ (2000) Ethanol, memory, and hippocampal function: a review of recent findings. Hippocampus 10:88–93

    Article  CAS  PubMed  Google Scholar 

  9. Gilpin NW, Herman MA, Roberto M (2015) The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry 77:859–869

    Article  PubMed  Google Scholar 

  10. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW Jr (2014) Addiction as a stress surfeit disorder. Neuropharmacology 76:370–382

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Du H, Jiang L, Ma X, de Graaf RA, Behar KL, Mason GF (2013) Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure. Proc Natl Acad Sci U S A 110:14444–14449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang W, Singla R, Maheshwari O, Fontaine CJ, Gil-Mohapel J (2022) Alcohol use disorder: neurobiology and therapeutics. Biomedicines 10:1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chastain G (2006) Alcohol, neurotransmitter systems, and behavior. J Gen Psychol 133:329–335

    Article  PubMed  Google Scholar 

  14. Valenzuela CF (1997) Alcohol and neurotransmitter interactions. Alcohol Health Res World 21:144

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jagannathan NR, Desai NG, Raghunathan P (1996) Brain metabolite changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study. Magn Reson Imaging 14:553–557

    Article  CAS  PubMed  Google Scholar 

  16. Enculescu C, Kerr ED, Yeo KYB, Schenk G, Fortes MRS, Schulz BL (2019) Proteomics reveals profound metabolic changes in the alcohol use disorder brain. ACS Chem Neurosci 10:2364–2373

    Article  CAS  PubMed  Google Scholar 

  17. Tiwari V, Veeraiah P, Subramaniam V, Patel AB (2014) Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain. J Neurochem 128:628–640

    Article  CAS  PubMed  Google Scholar 

  18. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26:865–877

    Article  CAS  PubMed  Google Scholar 

  19. Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL (2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 24:972–985

    Article  CAS  PubMed  Google Scholar 

  20. Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100-112

    Article  CAS  PubMed  Google Scholar 

  21. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karisetty BC, Maitra S, Wahul AB, Musalamadugu A, Khandelwal N, Guntupalli S, Garikapati R, Jhansyrani T, Kumar A, Chakravarty S (2017) Differential effect of chronic stress on mouse hippocampal memory and affective behavior: Role of major ovarian hormones. Behav Brain Res 318:36–44

    Article  CAS  PubMed  Google Scholar 

  24. Khandelwal N, Dey SK, Chakravarty S, Kumar A (2019) miR-30 family miRNAs mediate the effect of chronic social defeat stress on hippocampal neurogenesis in mouse depression model. Front Mol Neurosci 12:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amalakanti S, Bhat UA, Mylavarapu MB, Khandelwal N, Sundarachary NV, Chakravarty S, Kumar A (2021) Gene expression analysis identifies cholesterol metabolism dysregulation in hippocampus of phenytoin-resistant pentylenetetrazol-kindled epileptic mice. Neuromolecular Med 23:485–490

    Article  CAS  PubMed  Google Scholar 

  26. Duarte JM, Gruetter R (2013) Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T. J Neurochem 126:579–590

    Article  CAS  PubMed  Google Scholar 

  27. Lanz B, Xin L, Millet P, Gruetter R (2014) In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T. J Neurochem 128:125–139

    Article  CAS  PubMed  Google Scholar 

  28. Mishra PK, Kumar A, Behar KL, Patel AB (2018) Subanesthetic ketamine reverses neuronal and astroglial metabolic activity deficits in a social defeat model of depression. J Neurochem 146:722–734

    Article  CAS  PubMed  Google Scholar 

  29. Tiwari V, Ambadipudi S, Patel AB (2013) Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain. J Cereb Blood Flow Metab 33:1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soni ND, Ramesh A, Roy D, Patel AB (2021) Brain energy metabolism in intracerebroventricularly administered streptozotocin mouse model of Alzheimer’s disease: A 1H-[13C]-NMR study. J Cereb Blood Flow Metab 41:2344–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel AB, Rothman DL, Cline GW, Behar KL (2001) Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Res 919:207–220

    Article  CAS  PubMed  Google Scholar 

  32. Bagga P, Chugani AN, Varadarajan KS, Patel AB (2013) In vivo NMR studies of regional cerebral energetics in MPTP model of Parkinson’s disease: recovery of cerebral metabolism with acute levodopa treatment. J Neurochem 127:365–377

    Article  CAS  PubMed  Google Scholar 

  33. de Graaf RA, Brown PB, Mason GF, Rothman DL, Behar KL (2003) Detection of [1,6–13C2]-glucose metabolism in rat brain by in vivo 1H-[13C]-NMR spectroscopy. Magn Reson Med 49:37–46

    Article  PubMed  Google Scholar 

  34. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 102:5588–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37:2541–2553

    Article  CAS  PubMed  Google Scholar 

  36. Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF (2010) Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 30:1200–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xin L, Mlynarik V, Lanz B, Frenkel H, Gruetter R (2010) 1H-[13C] NMR spectroscopy of the rat brain during infusion of [2-13C] acetate at 14.1 T. Magn Reson Med 64:334–340

    Article  CAS  PubMed  Google Scholar 

  39. Bendszus M, Weijers HG, Wiesbeck G, Warmuth-Metz M, Bartsch AJ, Engels S, Boning J, Solymosi L (2001) Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. AJNR Am J Neuroradiol 22:1926–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zahr NM, Carr RA, Rohlfing T, Mayer D, Sullivan EV, Colrain IM, Pfefferbaum A (2016) Brain metabolite levels in recently sober individuals with alcohol use disorder: Relation to drinking variables and relapse. Psychiat Res Neuroim 250:42–49

  41. Lee DW, Kim SY, Lee T, Nam YK, Ju A, Woo DC, You SJ, Han JS, Lee SH, Choi CB, Kim SS, Shin HC, Kim HY, Kim DJ, Rhim HS, Choe BY (2012) Ex vivo detection for chronic ethanol consumption-induced neurochemical changes in rats. Brain Res 1429:134–144

    Article  CAS  PubMed  Google Scholar 

  42. Durazzo TC, Gazdzinski S, Rothlind JC, Banys P, Meyerhoff DJ (2006) Brain metabolite concentrations and neurocognition during short-term recovery from alcohol dependence: preliminary evidence of the effects of concurrent chronic cigarette smoking. Alcohol Clin Exp Res 30:539–551

    Article  CAS  PubMed  Google Scholar 

  43. Mason GF, Petrakis IL, de Graaf RA, Gueorguieva R, Guidone E, Coric V, Epperson CN, Rothman DL, Krystal JH (2006) Cortical gamma-aminobutyric acid levels and the recovery from ethanol dependence: preliminary evidence of modification by cigarette smoking. Biol Psychiatry 59:85–93

    Article  CAS  PubMed  Google Scholar 

  44. Thoma R, Mullins P, Ruhl D, Monnig M, Yeo RA, Caprihan A, Bogenschutz M, Lysne P, Tonigan S, Kalyanam R, Gasparovic C (2011) Perturbation of the glutamate-glutamine system in alcohol dependence and remission. Neuropsychopharmacology 36:1359–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prisciandaro JJ, Schacht JP, Prescot AP, Renshaw PF, Brown TR, Anton RF (2016) Associations between recent heavy drinking and dorsal anterior cingulate N-acetylaspartate and glutamate concentrations in non-treatment-seeking individuals with alcohol dependence. Alcohol Clin Exp Res 40:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592:692–702

    Article  CAS  PubMed  Google Scholar 

  48. Jung ME, Metzger DB (2010) Alcohol withdrawal and brain injuries: beyond classical mechanisms. Molecules 15:4984–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gardner S, Sohrabi S, Shen K, Rainey-Smith S, Weinborn M, Bates K, Shah T, Foster J, Lenzo N, Salvado O (2016) Cerebral glucose metabolism is associated with verbal not visual performance in community-dwelling older adults. J Alzheimers Dis 10:x–x

    Article  Google Scholar 

  50. Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M, Laska E, Rusinek H, de Leon MJ (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29:676–692

    Article  CAS  PubMed  Google Scholar 

  51. Mosconi L, Tsui W-H, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, De Leon M (2005) Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64:1860–1867

    Article  CAS  PubMed  Google Scholar 

  52. Patel AB, Tiwari V, Veeraiah P, Saba K (2018) Increased astroglial activity and reduced neuronal function across brain in AβPP-PS1 mouse model of Alzheimer’s disease. J Cereb Blood Flow Metab 38:1213–1226

    Article  CAS  PubMed  Google Scholar 

  53. Tiwari V, Patel AB (2012) Impaired glutamatergic and GABAergic function at early age in APPswe-PS1dE9 mice: implications for preclinical diagnosis of Alzheimer’s disease 1. J Alzheimers Dis 20(10):3233

    Google Scholar 

  54. Schallier A, Smolders I, Van Dam D, Loyens E, De Deyn PP, Michotte A, Michotte Y, Massie A (2011) Region- and age-specific changes in glutamate transport in the AbetaPP23 mouse model for Alzheimer’s disease. J Alzheimers Dis 24:287–300

    Article  CAS  PubMed  Google Scholar 

  55. Chen KH, Reese EA, Kim HW, Rapoport SI, Rao JS (2011) Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J Alzheimers Dis 26:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, Koretski J, Harman S, Petrakis IL, Krystal JH, Mason GF (2013) Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 123:1605–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14

    Article  CAS  PubMed  Google Scholar 

  59. Pellerin L, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 79:55–64

    Article  CAS  PubMed  Google Scholar 

  60. Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370

    Article  PubMed  Google Scholar 

  61. Pierre K, Magistretti PJ, Pellerin L (2002) MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J Cereb Blood Flow Metab 22:586–595

    Article  CAS  PubMed  Google Scholar 

  62. Flores-Bastias O, Karahanian E (2018) Neuroinflammation produced by heavy alcohol intake is due to loops of interactions between Toll-like 4 and TNF receptors, peroxisome proliferator-activated receptors and the central melanocortin system: a novel hypothesis and new therapeutic avenues. Neuropharmacology 128:401–407

    Article  CAS  PubMed  Google Scholar 

  63. Nam M-H, Ko HY, Lee S, Park YM, Hyeon SJ, Won W, Kim SY, Jo HH, Chung J-I, Han Y-E; Lee G-H, Ju Y, Stein TD, Kong M, Lee L, Lee SE, Oh S-J, Chun J-H, Park KD, Ryu H, Yun M, Lee CJ (2021) Visualization of reactive astrocytes in living brain of Alzheimer’s disease patient. https://doi.org/10.1101/2021.04.13.439744

  64. Jurga AM, Paleczna M, Kadluczka J, Kuter KZ (2021) Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules 11:1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li T, Chen X, Zhang C, Zhang Y, Yao W (2019) An update on reactive astrocytes in chronic pain. J Neuroinflammation 16:1–13

    Article  Google Scholar 

  66. Li K, Li J, Zheng J, Qin S (2019) Reactive astrocytes in neurodegenerative diseases. Aging Dis 10:664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fowler A-K, Thompson J, Chen L, Dagda M, Dertien J, Dossou KSS, Moaddel R, Bergeson SE, Kruman II (2014) Differential sensitivity of prefrontal cortex and hippocampus to alcohol-induced toxicity. PLoS ONE 9:e106945

    Article  PubMed  PubMed Central  Google Scholar 

  68. de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci U S A 101:12700–12705

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lai M, Gruetter R, Lanz B (2017) Progress towards in vivo brain 13C-MRS in mice: Metabolic flux analysis in small tissue volumes. Anal Biochem 529:229–244

    Article  CAS  PubMed  Google Scholar 

  70. McNair LM, Mason GF, Chowdhury GM, Jiang L, Ma X, Rothman DL, Waagepetersen HS, Behar KL (2022) Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-13C]/[1-13C]glucose infusion and 1H-[13C]NMR ex vivo. J Cereb Blood Flow Metab 42:1507–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R, Rainer G, Duarte JMN (2018) Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 66:477–491

    Article  PubMed  Google Scholar 

  72. Jensen NJ, Wodschow HZ, Nilsson M, Rungby J (2020) Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int J Mol Sci 21(22):8767

  73. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yudkoff M, Daikhin Y, Lin ZP, Nissim I, Stern J, Pleasure D, Nissim I (1994) Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem 62:1192–1202

    Article  CAS  PubMed  Google Scholar 

  75. Bagga P, Behar KL, Mason GF, De Feyter HM, Rothman DL, Patel AB (2014) Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data. J Cereb Blood Flow Metab 34:1666–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Biotechnology, India [BT/PR27426/MED/122/140/2018 to AK]. UAB acknowledge Council of Scientific and Industrial Research (CSIR), India and department of Biotechnology, India for fellowship. Dr. Robin de Graff of Yale University for providing the POCE pulse sequence. Mr. Jedy Jose, CCMB, Animal House, is duly acknowledged for his constant support in maintaining the quality of animals used for the study.

Funding

This study was supported by Department of Biotechnology grant no: BT/PR27426/MED/122/140/2018.

Author information

Authors and Affiliations

Authors

Contributions

UAB, ABP and AK designed the experiments. UAB, SAK, SC performed the experiments, UAB, ABP, AK analyzed the data. UAB, ABP, AK wrote the manuscript. ABP and AK managed the resources and supervised whole project.

Corresponding authors

Correspondence to Anant Bahadur Patel or Arvind Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

All experimental procedures involving mice were approved by the Institutional Animal Ethics Committee (IAEC) of CSIR-CCMB, Hyderabad, and conducted in accordance with the guidelines established by the Committee for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Environment and Forests, Government of India.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 952 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, U.A., Kumar, S.A., Chakravarty, S. et al. Differential Effects of Chronic Ethanol Use on Mouse Neuronal and Astroglial Metabolic Activity. Neurochem Res 48, 2580–2594 (2023). https://doi.org/10.1007/s11064-023-03922-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03922-y

Keywords

Navigation