Skip to main content

Advertisement

Log in

GATA6 Inhibits Neuronal Autophagy and Ferroptosis in Cerebral ischemia-reperfusion Injury Through a miR-193b/ATG7 axis-dependent Mechanism

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ferroptosis is a newly described form of regulated necrotic cell death, which is engaged in the pathological cell death related to stroke, contributing to cerebral ischemia-reperfusion (I/R) injury. Therefore, we performed this study to clarify the role of GATA6 in neuronal autophagy and ferroptosis in cerebral I/R injury. The cerebral I/R injury-related differentially expressed genes (DEGs) as well as the downstream factors of GATA6 were predicted bioinformatically. Moreover, the relations between GATA6 and miR-193b and that between miR-193b and ATG7 were evaluated by chromatin immunoprecipitation and dual-luciferase reporter assays. Besides, neurons were treated with oxygen-glucose deprivation (OGD), followed by overexpression of GATA6, miR-193b, and ATG7 alone or in combination to assess neuronal autophagy and ferroptosis. At last, in vivo experiments were performed to explore the impacts of GATA6/miR-193b/ATG7 on neuronal autophagy and ferroptosis in a rat model of middle cerebral artery occlusion (MCAO)-stimulated cerebral I/R injury. It was found that GATA6 and miR-193b were poorly expressed in cerebral I/R injury. GATA6 transcriptionally activated miR-193b to downregulate ATG7. Additionally, GATA6-mediated miR-193b activation suppressed neuronal autophagy and ferroptosis in OGD-treated neurons by inhibiting ATG7. Furthermore, GATA6/miR-193b relieved cerebral I/R injury by restraining neuronal autophagy and ferroptosis via downregulation of ATG7 in vivo. In summary, GATA6 might prevent neuronal autophagy and ferroptosis to alleviate cerebral I/R injury via the miR-193b/ATG7 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and analysed in the current study are available from the corresponding author on reasonable request.

References

  1. Huang L, Li X, Liu Y, Liang X, Ye H, Yang C, Hua L, Zhang X (2021) Curcumin alleviates cerebral ischemia-reperfusion Injury by inhibiting NLRP1-dependent neuronal pyroptosis. Curr Neurovasc Res 18:189–196. https://doi.org/10.2174/1567202618666210607150140

    Article  CAS  PubMed  Google Scholar 

  2. Liu W, Shao C, Zang C, Sun J, Xu M, Wang Y (2021) Protective effects of dexmedetomidine on cerebral ischemia/reperfusion injury via the microRNA-214/ROCK1/NF-kappaB axis. BMC Anesthesiol 21:203. https://doi.org/10.1186/s12871-021-01423-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuan Q, Yuan Y, Zheng Y, Sheng R, Liu L, Xie F, Tan J (2021) Anti-cerebral ischemia reperfusion injury of polysaccharides: a review of the mechanisms. Biomed Pharmacother 137:111303. https://doi.org/10.1016/j.biopha.2021.111303

    Article  CAS  PubMed  Google Scholar 

  4. Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ (2020) Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging 12:13187–13205. https://doi.org/10.18632/aging.103420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shao ZQ, Dou SS, Zhu JG, Wang HQ, Wang CM, Cheng BH, Bai B (2021) Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury. Neural Regen Res 16:1044–1051. https://doi.org/10.4103/1673-5374.300725

    Article  CAS  PubMed  Google Scholar 

  6. Zhao J, Wu Y, Liang S, Piao X (2022) Activation of SSAT1/ALOX15 Axis aggravates cerebral Ischemia/Reperfusion Injury via triggering neuronal ferroptosis. Neuroscience 485:78–90. https://doi.org/10.1016/j.neuroscience.2022.01.017

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Ma N, Xu J, Zhang Y, Yang P, Su X, Xing Y, An N, Yang F, Zhang G, Zhang L, Xing Y (2021) Targeting ferroptosis: pathological mechanism and treatment of Ischemia-Reperfusion Injury. Oxid Med Cell Longev 2021:1587922. https://doi.org/10.1155/2021/1587922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun Z, Yan B (2020) Multiple roles and regulatory mechanisms of the transcription factor GATA6 in human cancers. Clin Genet 97:64–72. https://doi.org/10.1111/cge.13630

    Article  CAS  PubMed  Google Scholar 

  9. Chen F, Han J, Wang D (2021) Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 9:e11454. https://doi.org/10.7717/peerj.11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu H, Du F, Sun L, Wu Q, Wu J, Tong M, Wang X, Wang Q, Cao T, Gao X, Cao J, Wu N, Nie Y, Fan D, Lu Y, Zhao X (2019) GATA6 suppresses migration and metastasis by regulating the miR-520b/CREB1 axis in gastric cancer. Cell Death Dis 10:35. https://doi.org/10.1038/s41419-018-1270-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, Jacob J, Frampton AE, Krell J, Coombes RC, Harding SE, Lyon AR, Stebbing J (2015) Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis 6:e1754. https://doi.org/10.1038/cddis.2015.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Yang J, Zhong J, Luo Y, Du W, Hu C, Xia H, Li Y, Zhang J, Li M, Yang Y, Huang H, Peng Z, Tan X, Wang H (2020) MicroRNA-193b-3p alleviates focal cerebral ischemia and reperfusion-induced injury in rats by inhibiting 5-lipoxygenase expression. Exp Neurol 327:113223. https://doi.org/10.1016/j.expneurol.2020.113223

    Article  CAS  PubMed  Google Scholar 

  13. Ji Y, Zhang W, Yang J, Li C (2020) MiR-193b inhibits autophagy and apoptosis by targeting IGFBP5 in high glucose-induced trophoblasts. Placenta 101:185–193. https://doi.org/10.1016/j.placenta.2020.09.015

    Article  CAS  PubMed  Google Scholar 

  14. Collier JJ, Suomi F, Olahova M, McWilliams TG, Taylor RW (2021) Emerging roles of ATG7 in human health and disease. EMBO Mol Med 13:e14824. https://doi.org/10.15252/emmm.202114824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu S, Yu M, He X, Wen L, Bu Z, Feng J (2019) KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell 18:e12940. https://doi.org/10.1111/acel.12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Liu J, He J, Hu Z, Tan F, Zhu X, Yuan F, Jiang Z (2022) UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and golgi apparatus upon cerebral ischemic/reperfusion insult. Cell Biosci 12:42. https://doi.org/10.1186/s13578-022-00776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao F, Zhao H, Fan J et al (2021) MiR-29a knockout aggravates neurological damage by pre-polarizing M1 Microglia in Experimental Rat Models of Acute Stroke. Front Genet 12:642079. https://doi.org/10.3389/fgene.2021.642079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He H, Liu W, Zhou Y, Liu Y, Weng P, Li Y, Fu H (2018) Sevoflurane post-conditioning attenuates traumatic brain injury-induced neuronal apoptosis by promoting autophagy via the PI3K/AKT signaling pathway. Drug Des Devel Ther 12:629–638. https://doi.org/10.2147/DDDT.S158313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang C, Shan Y, Hu Y, Fang Z, Tong Y, Chen M, Wei X, Fu X, Xu X (2017) FGF2 attenuates neural cell death via suppressing autophagy after rat mild traumatic brain Injury. Stem Cells Int 2017:2923182. https://doi.org/10.1155/2017/2923182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiang L, Sample A, Shea CR, Soltani K, Macleod KF, He YY (2017) Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13:2086–2103. https://doi.org/10.1080/15548627.2017.1380757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Chen H, Wang W, Zhang B, Yu L (2018) Sevoflurane reduces ischemic brain injury in rats with diet and streptozotocin-induced diabetes. J Recept Signal Transduct Res 38:448–454. https://doi.org/10.1080/10799893.2019.1585451

    Article  CAS  PubMed  Google Scholar 

  22. Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, Sullivan R, Kim HT, Cook TD, Kim JY, Kim H, Kim C, Vemuganti R (2018) The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing alpha-synuclein. Sci Signal 11. https://doi.org/10.1126/scisignal.aat4285

  23. Chang MC, Tang CM, Lin YH, Liu HC, Wang TM, Lan WC, Cheng RH, Lin YR, Chang HH, Jeng JH (2021) Toxic mechanisms of Roth801, canals, microparticles and nanoparticles of ZnO on MG-63 osteoblasts. Mater Sci Eng C Mater Biol Appl 119:111635. https://doi.org/10.1016/j.msec.2020.111635

    Article  CAS  PubMed  Google Scholar 

  24. Zhao RB, Zhu LH, Shu JP, Qiao LX, Xia ZK (2018) GAS5 silencing protects against hypoxia/ischemia-induced neonatal brain injury. Biochem Biophys Res Commun 497:285–291. https://doi.org/10.1016/j.bbrc.2018.02.070

    Article  CAS  PubMed  Google Scholar 

  25. Wu Q, Yi X (2018) Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with Epilepsy. J Mol Neurosci 65:234–245. https://doi.org/10.1007/s12031-018-1093-3

    Article  CAS  PubMed  Google Scholar 

  26. Lv B, Jiang XM, Wang DW, Chen J, Han DF, Liu XL (2020) Protective Effects and Mechanisms of Action of Ulinastatin against Cerebral Ischemia-Reperfusion Injury. Curr Pharm Des 26:3332–3340. https://doi.org/10.2174/1381612826666200303114955

    Article  CAS  PubMed  Google Scholar 

  27. Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P, Gao G, Shi H, Chang S, Chang YZ (2021) Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 12:447. https://doi.org/10.1038/s41419-021-03725-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Wang X, Zhang L, Zhou Y, Yang L, Yang M (2021) By targeting apoptosis facilitator BCL2L13, microRNA miR-484 alleviates cerebral ischemia/reperfusion injury-induced neuronal apoptosis in mice. Bioengineered 12:948–959. https://doi.org/10.1080/21655979.2021.1898134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jing H, Liu L, Jia Y, Yao H, Ma F (2019) Overexpression of the long non-coding RNA Oprm1 alleviates apoptosis from cerebral ischemia-reperfusion injury through the Oprm1/miR-155/GATA3 axis. Artif Cells Nanomed Biotechnol 47:2431–2439. https://doi.org/10.1080/21691401.2019.1626408

    Article  CAS  PubMed  Google Scholar 

  30. Yang T, Wu J, Ge K, Wang F, Fan J (2022) MicroRNA-193b-3p reduces oxidative stress and mitochondrial damage in rats with cerebral ischemia-reperfusion injury via the seven in absentia homolog 1/Jun N-terminal kinase pathway. Bioengineered 13:6942–6954. https://doi.org/10.1080/21655979.2022.2036398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai Y, Yang E, Yao X, Zhang X, Wang Q, Wang Y, Liu J, Fan W, Yi K, Kang C, Wu J (2021) FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol 38:101792. https://doi.org/10.1016/j.redox.2020.101792

    Article  CAS  PubMed  Google Scholar 

  32. Mellis D, Caporali A (2018) MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans 46:11–21. https://doi.org/10.1042/BST20170037

    Article  CAS  PubMed  Google Scholar 

  33. Shi CX, Jin J, Wang XQ, Song T, Li GH, Li KZ, Ma JH (2020) Sevoflurane attenuates brain damage through inhibiting autophagy and apoptosis in cerebral ischemiareperfusion rats. Mol Med Rep 21:123–130. https://doi.org/10.3892/mmr.2019.10832

    Article  CAS  PubMed  Google Scholar 

  34. Zou Y, Schreiber SL (2020) Progress in understanding Ferroptosis and Challenges in its targeting for Therapeutic Benefit. Cell Chem Biol 27:463–471. https://doi.org/10.1016/j.chembiol.2020.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo H, Zhu L, Tang P, Chen D, Li Y, Li J, Bao C (2021) Carthamin yellow improves cerebral ischemiareperfusion injury by attenuating inflammation and ferroptosis in rats. Int J Mol Med 47. https://doi.org/10.3892/ijmm.2021.4885

  36. Liu T, Cui Y, Dong S, Kong X, Xu X, Wang Y, Wan Q, Wang Q (2022) Treadmill training reduces cerebral ischemia-reperfusion Injury by inhibiting ferroptosis through activation of SLC7A11/GPX4. Oxid Med Cell Longev 2022:8693664. https://doi.org/10.1155/2022/8693664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang HJ, Wei JY, Liu DX, Zhuang SF, Li Y, Liu H, Ban M, Fang WG, Cao L, Zhao WD, Chen YH (2018) Endothelial Atg7 Deficiency ameliorates Acute Cerebral Injury Induced by Ischemia/Reperfusion. Front Neurol 9:998. https://doi.org/10.3389/fneur.2018.00998

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from Science and Technology Commission of Shanghai Municipality (20Y11909700), Pudong New Area Clinical Plateau Discipline Project (PWYgy2021-03), the Science and Technology Project of Suzhou City of China (No. SYS2020186, SKY2021011, SLJ2022024) and Program for Medical Key subspecialty Department of Shanghai Pudong health system (PWZy2020-13). We acknowledge and appreciate our colleagues for their valuable efforts and comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

Weijian Fan and Jindong Tong were responsible for project design and conducting experiments, data analysis and interpretation and manuscript and figure confection. Wei Liu and Bo Yu conducted experiments, data analysis and interpretation. Weihao Shi and Jianjie Rong provided technical support. Jie Wang and Jinyun Tan reviewed the manuscript and provided help with statistical analysis. All authors have approved the submitted manuscript.

Corresponding authors

Correspondence to Bo Yu or Jindong Tong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Rong, J., Shi, W. et al. GATA6 Inhibits Neuronal Autophagy and Ferroptosis in Cerebral ischemia-reperfusion Injury Through a miR-193b/ATG7 axis-dependent Mechanism. Neurochem Res 48, 2552–2567 (2023). https://doi.org/10.1007/s11064-023-03918-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03918-8

Keywords

Navigation