Skip to main content

Advertisement

Log in

Suberoylanilide Hydroxamic Acid Ameliorates Pain Sensitization in Central Neuropathic Pain After Spinal Cord Injury via the HDAC5/NEDD4/SCN9A Axis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pain sensitization in spinal cord injury (SCI)-induced central neuropathic pain has been a research target. Additionally, suberoylanilide hydroxamic acid (SAHA) has been reported to protect against pain hypersensitivity in central neuropathic pain. Hence, this research probed the impact of SAHA on pain sensitization in central neuropathic pain after SCI via the HDAC5/NEDD4/SCN9A axis. After SAHA treatment, SCI modeling, and gain- and loss-of-function assays, behavioral analysis was performed in mice to evaluate pain hypersensitivity and anxiety/depression-like behaviors. The enrichment of H3K27Ac in the NEDD4 promoter and the ubiquitination of SCN9A were measured with ChIP and Co-IP assays, respectively. The treatment of SAHA regained paw withdrawal threshold and paw withdrawal latency values, entry time and numbers in the center area, and entry proportion in the open arm for SCI mice, accompanied by decreases in immobility time, eating latency, thermal hyperalgesia, and mechanical ectopic pain. However, SAHA treatment did not affect the motor function of mice. SAHA treatment lowered HDAC5 expression and SCN9A protein expression in SCI mice, as well as enhanced SCN9A ubiquitination and NEDD4 expression. HDAC5 knockdown greatly increased H3K27Ac enrichment in the NEDD4 promoter. NEDD4 upregulation or HDAC5 knockdown elevated SCN9A ubiquitination but diminished SCN9A protein expression in dorsal root ganglions of SCI mice. NEDD4 silencing mitigated the improving effects of SAHA treatment on the pain hypersensitivity and anxiety/depression-like behaviors of SCI mice. SAHA suppressed HDAC5 to augment NEDD4 expression and SCN9A degradation, thereby ameliorating the pain hypersensitivity and anxiety/depression-like behaviors of SCI mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. Nat Commun 10(1):3879

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qian J, Zhu W, Lu M et al (2017) D-beta-hydroxybutyrate promotes functional recovery and relieves pain hypersensitivity in mice with spinal cord injury. Br J Pharmacol 174(13):1961–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Viswanath O, Urits I, Burns J et al (2020) Central neuropathic mechanisms in pain signaling pathways: current evidence and recommendations. Adv Ther 37(5):1946–1959

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu ZY, Song ZW, Guo SW et al (2019) CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther 25(9):922–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curatolo M, Muller M, Ashraf A et al (2015) Pain hypersensitivity and spinal nociceptive hypersensitivity in chronic pain: prevalence and associated factors. Pain 156(11):2373–2382

    Article  PubMed  Google Scholar 

  7. Liu S, Huang Q, He S et al (2019) Dermorphin [D-Arg2, Lys4] (1–4) amide inhibits below-level heat hypersensitivity in mice after contusive thoracic spinal cord injury. Pain 160(12):2710–2723

    Article  CAS  PubMed  Google Scholar 

  8. Mata-Bermudez A, Rios C, Burelo M et al (2021) Amantadine prevented hypersensitivity and decreased oxidative stress by NMDA receptor antagonism after spinal cord injury in rats. Eur J Pain 25(8):1839–1851

    Article  CAS  PubMed  Google Scholar 

  9. Niehaus JK, Taylor-Blake B, Loo L et al (2021) Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury. Neuron 109(8):1274–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang P, Zhang Y, Xia Y et al (2021) MicroRNA-139-5p promotes functional recovery and reduces pain hypersensitivity in mice with spinal cord injury by targeting mammalian sterile 20-like kinase 1. Neurochem Res 46(2):349–357

    Article  CAS  PubMed  Google Scholar 

  11. Kumar V, Thakur JK, Prasad M (2021) Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 78(10):4467–4486

    Article  CAS  PubMed  Google Scholar 

  12. Sun C, An Q, Li R et al (2021) Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 27(11):1409–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bondarev AD, Attwood MM, Jonsson J et al (2021) Recent developments of HDAC inhibitors: emerging indications and novel molecules. Br J Clin Pharmacol 87(12):4577–4597

    Article  PubMed  Google Scholar 

  14. Yang J, Gong C, Ke Q et al (2021) Insights into the function and clinical application of HDAC5 in cancer management. front Oncol 11:661620

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gu P, Pan Z, Wang XM et al (2018) Histone deacetylase 5 (HDAC5) regulates neuropathic pain through SRY-related HMG-box 10 (SOX10)-dependent mechanism in mice. Pain 159(3):526–539

    Article  CAS  PubMed  Google Scholar 

  16. Ho TCS, Chan AHY, Ganesan A (2020) Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem 63(21):12460–12484

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Liu A, Lu Q et al (2022) HDAC6 inhibitor ACY-1215 improves neuropathic pain and its comorbidities in rats of peripheral nerve injury by regulating neuroinflammation. Chem Biol Interact 353:109803

    Article  CAS  PubMed  Google Scholar 

  18. Moertl S, Payer S, Kell R et al (2019) Comparison of radiosensitization by HDAC inhibitors CUDC-101 and SAHA in pancreatic cancer cells. Int J Mol Sci 20:13

    Article  Google Scholar 

  19. Takada N, Nakamura Y, Ikeda K et al (2021) Treatment with histone deacetylase inhibitor attenuates peripheral inflammation-induced cognitive dysfunction and microglial activation: the effect of SAHA as a peripheral HDAC inhibitor. Neurochem Res 46(9):2285–2296

    Article  CAS  PubMed  Google Scholar 

  20. Borgonetti V, Galeotti N (2021) Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol Res 165:105431

    Article  CAS  PubMed  Google Scholar 

  21. Cheng J, Deng Y, Zhou J (2021) Role of the Ubiquitin System in Chronic Pain. Front Mol Neurosci 14:674914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu H, Jan Fada B (2020) Specificity in Ubiquitination Triggered by Virus Infection. Int J Mol Sci 21(11):2

    Article  Google Scholar 

  23. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19(1):59–70

    Article  CAS  PubMed  Google Scholar 

  24. Sun Y, Liu PY, Scarlett CJ et al (2014) Histone deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc. Oncogene 33(23):2987–2994

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Luo M, Zhang K et al (2020) Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun 11(1):433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laedermann CJ, Cachemaille M, Kirschmann G et al (2013) Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J Clin Invest 123(7):3002–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu BW, Zhang J, Hong YS et al (2021) NGF-induced Nav1.7 upregulation contributes to chronic post-surgical pain by activating SGK1-dependent Nedd4–2 phosphorylation. Mol Neurobiol 58(3):964–982

    Article  CAS  PubMed  Google Scholar 

  28. Cai S, Moutal A, Yu J et al (2021) Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Sci Transl Med 13(619):1314

    Article  Google Scholar 

  29. Chew LA, Bellampalli SS, Dustrude ET et al (2019) Mining the Nav1.7 interactome: opportunities for chronic pain therapeutics. Biochem Pharmacol 163:9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niu HL, Liu YN, Xue DQ et al (2021) Inhibition of Nav1.7 channel by a novel blocker QLS-81 for alleviation of neuropathic pain. Acta Pharmacol Sin 42(8):1235–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172(13):3189–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4(4):303–306

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krishna V, Andrews H, Jin X et al (2013) A contusion model of severe spinal cord injury in rats. J Vis Exp 78:2

    Google Scholar 

  34. Chaplan SR, Bach FW, Pogrel JW et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  35. Hargreaves K, Dubner R, Brown F et al (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  36. Wen J, Xu Y, Yu Z et al (2022) The cAMP response element- binding protein/brain-derived neurotrophic factor pathway in anterior cingulate cortex regulates neuropathic pain and anxiodepression like behaviors in rats. Front Mol Neurosci 15:831151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boinon L, Yu J, Madura CL et al (2022) Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain 163(2):e368–e381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moreno AM, Aleman F, Catroli GF et al (2021) Long-lasting analgesia via targeted in situ repression of Na(V)1.7 in mice. Sci Transl Med 13:584

    Article  Google Scholar 

  39. van Bemmelen MX, Rougier JS, Gavillet B et al (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4–2 mediated ubiquitination. Circ Res 95(3):284–291

    Article  PubMed  Google Scholar 

  40. Gwak YS, Hulsebosch CE (2011) GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 60(5):799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carlton SM, Du J, Tan HY et al (2009) Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 147(1–3):265–276

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin HC, Huang YH, Chao TH et al (2014) Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain 10:63

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smart KM, Blake C, Staines A et al (2012) Self-reported pain severity, quality of life, disability, anxiety and depression in patients classified with “nociceptive”, “peripheral neuropathic” and “central sensitisation” pain. The discriminant validity of mechanisms-based classifications of low back (+/-leg) pain. Man Ther 17(2):119–125

    Article  PubMed  Google Scholar 

  44. Sato T, Verma S, Andrade CDC et al (2020) A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat Commun 11(1):3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He X, Zhang J, Guo Y et al (2022) Exosomal miR-9–5p derived from BMSCs alleviates apoptosis, inflammation and endoplasmic reticulum stress in spinal cord injury by regulating the HDAC5/FGF2 axis. Mol Immunol 145:97–108

    Article  CAS  PubMed  Google Scholar 

  46. Gu P, Fan T, Wong SSC et al (2021) Central endothelin-1 confers analgesia by triggering spinal neuronal histone deacetylase 5 (HDAC5) nuclear exclusion in peripheral neuropathic pain in mice. J Pain 22(4):454–471

    Article  CAS  PubMed  Google Scholar 

  47. Higuchi F, Uchida S, Yamagata H et al (2016) Hippocampal microRNA-124 enhances chronic stress resilience in mice. J Neurosci 36(27):7253–7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujimoto T, Inoue-Mochita M, Iraha S et al (2021) Suberoylanilide hydroxamic acid (SAHA) inhibits transforming growth factor-beta 2-induced increases in aqueous humor outflow resistance. J Biol Chem 297(3):101070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng XL, Deng HB, Wang ZG et al (2019) Suberoylanilide hydroxamic acid triggers autophagy by influencing the mTOR pathway in the spinal dorsal horn in a rat neuropathic pain model. Neurochem Res 44(2):450–464

    Article  CAS  PubMed  Google Scholar 

  50. He XT, Hu XF, Zhu C et al (2020) Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J Neuroinflam 17(1):125

    Article  CAS  Google Scholar 

  51. Meylan EM, Halfon O, Magistretti PJ et al (2016) The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: possible relevance for treatment-resistant depression. Neuropharmacology 107:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whittle N, Singewald N (2014) HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 42(2):569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Snyder LM, Ross SE, Belfer I (2014) An SCN9A variant, known to cause pain, is now found to cause itch. Pain 155(9):1677–1678

    Article  CAS  PubMed  Google Scholar 

  54. Grubinska B, Chen L, Alsaloum M et al (2019) Rat Na(V)1.7 loss-of-function genetic model: deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers. Mol Pain 15:174

    Article  Google Scholar 

  55. Francois-Moutal L, Dustrude ET, Wang Y et al (2018) Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 159(10):2115–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bankar G, Goodchild SJ, Howard S et al (2018) Selective Na(V)1.7 antagonists with long residence time show improved efficacy against inflammatory and neuropathic pain. Cell Rep 24(12):3133–3145

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, North RY, Rhines LD et al (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38(5):1124–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berta T, Qadri Y, Tan PH et al (2017) Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Ther Targets 21(7):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun L, Tong CK, Morgenstern TJ et al (2022) Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain. Proc Natl Acad Sci U S A 119(20):e2118129119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donovan P, Poronnik P (2013) Nedd4 and Nedd4-2: ubiquitin ligases at work in the neuron. Int J Biochem Cell Biol 45(3):706–710

    Article  CAS  PubMed  Google Scholar 

  61. Laedermann CJ, Abriel H, Decosterd I (2015) Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 6:263

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hutson TH, Kathe C, Palmisano I et al (2019) Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med 11:487

    Article  Google Scholar 

  63. Wang X, Shen X, Xu Y et al (2018) The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain 14:1744

    Article  Google Scholar 

  64. Hu Y, Hong XY, Yang XF et al (2019) Inflammation-dependent ISG15 upregulation mediates MIA-induced dendrite damages and depression by disrupting NEDD4/Rap2A signaling. Biochim Biophys Acta Mol Basis Dis 6:1477–1489

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to all the contributors.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CW and RC conceived the ideas; designed the experiments. RC and XTZ performed the experiments. XTZ and XBZ analyzed the data. All authors provided critical materials. XTZ and XBZ wrote the manuscript. CW supervised the study. All the authors have read and approved the final version for publication.

Corresponding author

Correspondence to Changsheng Wang.

Ethics declarations

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 789 KB)

Supplementary file2 (DOCX 35651 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, R., Zhu, X. et al. Suberoylanilide Hydroxamic Acid Ameliorates Pain Sensitization in Central Neuropathic Pain After Spinal Cord Injury via the HDAC5/NEDD4/SCN9A Axis. Neurochem Res 48, 2436–2450 (2023). https://doi.org/10.1007/s11064-023-03913-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03913-z

Keywords

Navigation