Skip to main content
Log in

ATF6β Deficiency Elicits Anxiety-like Behavior and Hyperactivity Under Stress Conditions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER) stress-regulated transcription factor that induces expression of major molecular chaperones in the ER. We recently reported that ATF6β, a subtype of ATF6, promoted survival of hippocampal neurons exposed to ER stress and excitotoxicity, at least in part by inducing expression of calreticulin, an ER molecular chaperone with high Ca2+-binding capacity. In the present study, we demonstrate that ATF6β deficiency in mice also decreases calreticulin expression and increases expression of glucose-regulated protein 78, another ER molecular chaperone, in emotional brain regions such as the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala. Comprehensive behavioral analyses revealed that Atf6b−/− mice exhibit anxiety-like behavior in the light/dark transition test and hyperactivity in the forced swim test. Consistent with these results, PFC and hypothalamic corticotropin-releasing hormone (CRH) expression was increased in Atf6b−/− mice, as was circulating corticosterone. Moreover, CRH receptor 1 antagonism alleviated anxiety-like behavior in Atf6b−/− mice. These findings suggest that ATF6β deficiency produces anxiety-like behavior and hyperactivity via a CRH receptor 1-dependent mechanism. ATF6β could play a role in psychiatric conditions in the emotional centers of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. https://doi.org/10.1016/j.cell.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  2. Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146:743–750. https://doi.org/10.1093/jb/mvp166

    Article  CAS  PubMed  Google Scholar 

  3. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L et al (2007) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908. https://doi.org/10.1523/JNEUROSCI.4289-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sprencke NT, Sims SG, Sánchez CL, Meares GP (2017) Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 12:42. https://doi.org/10.1186/s13024-017-0183-y

    Article  CAS  Google Scholar 

  5. Thiebaut AM, Hedou E, Marciniak SJ, Vivien D, Roussel BD (2019) Proteostasis during cerebral ischemia. Front Neurosci 13:637. https://doi.org/10.3389/fnins.2019.00637

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hayashi T, Suet TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate ca(2+) signaling and cell survival. Cell 131:596–610. https://doi.org/10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen LD, Fischer TT, Abreu D, Arroyo A, Urano F, Ehrlich BE (2020) Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome. Proc Natl Acad Sci USA 117:17389–17398. https://doi.org/10.1073/pnas.2007136117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kato T, Ishiwata M, Yamada K, Kasahara T, Kakiuchi C, Iwamoto K et al (2008) Behavioral and gene expression analyses of Wfs1 knockout mice as a possible animal model of mood disorder. Neurosci Res 61:143–158. https://doi.org/10.1016/j.neures.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  9. Luuk H, Plaas M, Raud S, Innos J, Sütt S, Lasner H et al (2009) Wfs1-deficient mice display impaired behavioural adaptation in stressful environment. Behav Brain Res 198:334–345. https://doi.org/10.1016/j.bbr.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  10. Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP (2009) Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res 198:472–476. https://doi.org/10.1016/j.bbr.2008.11.036

    Article  CAS  PubMed  Google Scholar 

  11. Martínez G, Vidal RL, Mardones P, Serrano FG, Ardiles AO, Wirth C et al (2016) Regulation of memory formation by the transcription factor XBP1. Cell Rep 14:1382–1394. https://doi.org/10.1016/j.celrep.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  12. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799. https://doi.org/10.1091/mbc.10.11.3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  14. Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R et al (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364. https://doi.org/10.1016/s1097-2765(00)00133-7

    Article  CAS  PubMed  Google Scholar 

  15. Hashida K, Kitao Y, Sudo H, Awa Y, Maeda S, Mori K et al (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS ONE 7:e47950. https://doi.org/10.1371/journal.pone.0047950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshikawa A, Kamide T, Hashida K, Ta HM, Inahata Y, Takarada-Iemata M et al (2015) Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice. J Neurochem 132:342–353. https://doi.org/10.1111/jnc.12981

    Article  CAS  PubMed  Google Scholar 

  17. Kezuka D, Tkarada-Iemata M, Hattori T, Mori K, Takahashi R, Kitao Y et al (2016) Deletion of Atf6alpha enhances kainate-induced neuronal death in mice. Neurochem Int 92:67–74. https://doi.org/10.1016/j.neuint.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  18. Ta HM, Le TM, Ishii H, Takarada-Iemata M, Hattori T, Hashida K et al (2016) Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. J Neurochem 139:1124–1137. https://doi.org/10.1111/jnc.13714

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J et al (2021) The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 11:13086. https://doi.org/10.1038/s41598-021-92529-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13:365–376. https://doi.org/10.1016/j.devcel.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  21. Hattori T, Shimizu S, Koyama Y, Emoto H, Matsumoto Y, Kumamoto N et al (2014) DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS ONE 9:e88506. https://doi.org/10.1371/journal.pone.0088506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250. https://doi.org/10.1523/JNEUROSCI.21-14-05239.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takao K, Miyakawa T (2006) Light/dark transition test for mice. J Vis Exp 13:104. https://doi.org/10.3791/104

    Article  Google Scholar 

  24. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33. https://doi.org/10.1016/s0014-2999(03)01272-x

    Article  CAS  PubMed  Google Scholar 

  25. Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp 22:1088. https://doi.org/10.3791/1088

    Article  Google Scholar 

  26. Omata Y, Aoki R, Aoki-Yoshida A, Hiemori K, Toyoda A, Tateno H et al (2018) Reduced fucosylation in the distal intestinal epithelium of mice subjected to chronic social defeat stress. Sci Rep 8:13199. https://doi.org/10.1038/s41598-018-31403-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shoji H, Takao K, Hattori S, Miyakawa T (2016) Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 9:11. https://doi.org/10.1186/s13041-016-0191-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  29. Fujioka R, Nii T, Iwaki A, Shibata A, Ito I, Kitaichi K et al (2014) Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes. Mol Brain 7:31. https://doi.org/10.1186/1756-6606-7-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP et al (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87:605–620. https://doi.org/10.1016/j.neuron.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S (2018) MARCKSL1 regulates spine formation in the amygdala and controls the hypothalamic-pituitary-adrenal axis and anxiety-like behaviors. EBioMedicine 30:62–73. https://doi.org/10.1016/j.ebiom.2018.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. https://doi.org/10.1038/nrn1683

    Article  CAS  PubMed  Google Scholar 

  33. Herman JP, Tasker JG (2016) Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front Endocrinol 7:137. https://doi.org/10.3389/fendo.2016.00137

    Article  Google Scholar 

  34. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45. https://doi.org/10.1038/nature05526

    Article  CAS  PubMed  Google Scholar 

  35. Terauchi A, Johnson-Venkatesh EM, Bullock B, Lehtinen MK, Umemori H (2016) Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. Elife 5:e12151. https://doi.org/10.7554/eLife.12151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan S (2019) IGFBP-2 signaling in the brain: from brain development to higher order brain functions. Front Endocrinol 10:822. https://doi.org/10.3389/fendo.2019.00822

    Article  Google Scholar 

  37. Farivar R, Zangenehpour S, Chaudhuri A (2004) Cellular-resolution activity mapping of the brain using immediate-early gene expression. Front Biosci 9:104–109. https://doi.org/10.2741/1198

    Article  CAS  PubMed  Google Scholar 

  38. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34:186–195. https://doi.org/10.1016/j.psyneuen.2009.05.021

    Article  CAS  Google Scholar 

  39. Ke X, Fu Q, Majnik A, Cohen S, Liu Q, Lane R (2018) Adverse early life environment induces anxiety-like behavior and increases expression of FKBP5 mRNA splice variants in mouse brain. Physiol Genomics 50:973–981. https://doi.org/10.1152/physiolgenomics.00054.2018

    Article  CAS  PubMed  Google Scholar 

  40. Riad MH, Park K, Ibañez-Tallon I, Heintz N (2022) Local production of corticotropin-releasing hormone in prefrontal cortex modulates male-specific novelty exploration. Proc Natl Acad Sci USA 119:e2211454119. https://doi.org/10.1073/pnas.2211454119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Muramoto (Kanazawa Medical University) for support with the experiments. We would also like to thank Drs. Y. Ishigaki, H. Nishizono, and Y. Kaneko (Animal Resources and Genetic Engineering Center, Kanazawa Medical University) for technical assistance with Atf6b−/− mice.

Funding

This work was supported in part by JSPS KAKENHI (Grant Numbers JP17K13079 and JP20K11222) and by AMED (Grant Number JP20gm1410005s0301).

Author information

Authors and Affiliations

Authors

Contributions

Takashi Tanaka conceived the project, designed and performed all behavioral tests and ELISAs, analyzed the data, and wrote the manuscript. Dinh Thi Nguyen, Nichakarn Kwankaew, Hiroshi Ishii, Mika Takarada-Iemata, and Tsuyoshi Hattori performed in situ hybridization, RT-qPCR studies, and immunohistochemistry experiments. Megumi Sumizono conducted statistical analyses. Reika Shinoda performed genotyping of Atf6b−/− mice. Nobuo Kato supported experiments. Seiichi Oyadomari and Kazutoshi Mori provided Atf6b−/− mice. Osamu Hori searched the literature, wrote the manuscript, and supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Osamu Hori.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Nguyen, D.T., Kwankaew, N. et al. ATF6β Deficiency Elicits Anxiety-like Behavior and Hyperactivity Under Stress Conditions. Neurochem Res 48, 2175–2186 (2023). https://doi.org/10.1007/s11064-023-03900-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03900-4

Keywords

Navigation