Skip to main content
Log in

Identification of the miR-423-3p/VLDLR Regulatory Network for Glioma Using Transcriptome Analysis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

As the most prevalent primary CNS tumor, glioma is characterized by high mortality and morbidity. This research aims to investigate glioma-associated microRNAs (miRNAs) and their target mRNAs, as well as to explore their biological functions in gliomas. The Gene Expression Omnibus (GEO) database was applied to acquire the GSE112264 miRNA microarray dataset and the GSE15824 mRNA dataset. We selected samples from the GSE112264 dataset and the GSE15824 to identify differently expressed miRNAs (DE-miRNAs) as well as differentially expressed mRNAs (DEGs), respectively. Next, the intersections of mRNA and target mRNAs of miRNA were selected, and we constructed miRNA–mRNA regulation networks. These DEGs were selected for Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses by conducting the package clusterProfiler. After conducting Cytoscape software, a protein–protein interaction (PPI) network was created. Next, survival analysis of the miR-423-3p was confirmed by conducting TCGA database. Subsequently, Quantitative real-time PCR (qRT-PCR) was conducted to verify miR-423-3p’s expression. Finally, miR-423-3p’s biological functions of in effecting the cell proliferative, migratory, and invasive capabilities of glioma were investigated by performing Cell Counting Kit-8 (CCK-8) and Transwell assays. Our analysis elucidated a novel miRNA–mRNA regulatory network related to glioma carcinogenesis, which may be considered as future therapeutic biomarkers for glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

These data utilized to back up the study’s findings is supplied in the article.

References

  1. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14:284–297

    Article  PubMed  PubMed Central  Google Scholar 

  2. Poff A, Koutnik AP, Egan KM, Sahebjam S, D’Agostino D, Kumar NB (2019) Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol 56:135–148

    Article  CAS  PubMed  Google Scholar 

  3. Miyauchi JT, Tsirka SE (2018) Advances in immunotherapeutic research for glioma therapy. J Neurol 265:741–756

    Article  CAS  PubMed  Google Scholar 

  4. Ghotme KA, Barreto GE, Echeverria V, Gonzalez J, Bustos RH, Sanchez M et al (2017) Gliomas: new perspectives in diagnosis, treatment and prognosis. Curr Top Med Chem 17:1438–1447

    Article  CAS  PubMed  Google Scholar 

  5. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207

    Article  CAS  PubMed  Google Scholar 

  6. Lou W, Liu J, Gao Y, Zhong G, Ding B, Xu L, Fan W (2018) MicroRNA regulation of liver cancer stem cells. Am J Cancer Res 8:1126–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chi Y, Zhou D (2016) MicroRNAs in colorectal carcinoma–from pathogenesis to therapy. J Exp Clin Cancer Res 35:43

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC, Jaggi M (2017) miRNA nanotherapeutics for cancer. Drug Discovery Today 22:424–432

    Article  CAS  PubMed  Google Scholar 

  9. Cao T, Zhen X-C (2018) Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther 24:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, He Y, Mackowiak B, Gao B (2021) MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 70:784–795

    Article  CAS  PubMed  Google Scholar 

  11. Barwari T, Joshi A, Mayr M (2016) MicroRNAs in cardiovascular disease. J Am Coll Cardiol 68:2577–2584

    Article  CAS  PubMed  Google Scholar 

  12. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA (2016) MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 18:457–468

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Cao Y, Lu X, Wang T, Li S, Kong X, Wang L et al (2020) MicroRNAs and nervous system diseases: network insights and computational challenges. Brief Bioinform 21:863–875

    Article  CAS  PubMed  Google Scholar 

  14. van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briedé JJ (2020) Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 185:101732

    Article  PubMed  Google Scholar 

  15. Gu J, Lu Z, Ji C, Chen Y, Liu Y, Lei Z, Li X et al (2017) Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed Pharmacother 93:969–975

    Article  CAS  PubMed  Google Scholar 

  16. Xiong W, Ran J, Jiang R, Guo P, Shi X, Li H, Chen D et al (2018) miRNA-320a inhibits glioma cell invasion and migration by directly targeting aquaporin 4. Oncol Rep 39:1939–1947

    CAS  PubMed  Google Scholar 

  17. Jiang Z, Yao L, Ma H, Xu P, Li Z, Guo M, Lin Z et al (2017) miRNA-214 inhibits cellular proliferation and migration in glioma cells targeting caspase 1 involved in pyroptosis. Oncol Res 25:1009–1019

    Article  PubMed  PubMed Central  Google Scholar 

  18. Urabe F, Matsuzaki J, Yamamoto Y, Kimura T, Hara T, Ichikawa M, Ochiya T et al (2019) Large-scale circulating microRNA profiling for the liquid biopsy of prostate cancer. Clin Cancer Res 25:3016–3025

    Article  CAS  PubMed  Google Scholar 

  19. Sepulveda JL (2020) Using R and bioconductor in clinical genomics and transcriptomics. J Mol Diagn 22:3–20

    Article  CAS  PubMed  Google Scholar 

  20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pathan M, Keerthikumar S, Chisanga D, Alessandro R, Ang C-S, Askenase P, Mathivanan S et al (2017) A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles 6:1321455

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grzmil M, Morin P, Lino MM, Merlo A, Frank S, Wang Y, Hemmings BA et al (2011) MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res 71:2392–2402

    Article  CAS  PubMed  Google Scholar 

  23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sang L, Wang X-M, Xu D-Y, Zhao W-J (2018) Bioinformatics analysis of aberrantly methylated-differentially expressed genes and pathways in hepatocellular carcinoma. World J Gastroenterol 24:2605–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu G, Wang L-G, Han Y, He Q-Y (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Sherlock G et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97

    Article  CAS  PubMed  Google Scholar 

  28. Gao J, Dai C, Yu X, Yin X-B, Zhou F (2021) Long noncoding RNA LEF1-AS1 acts as a microRNA-10a-5p regulator to enhance MSI1 expression and promote chemoresistance in hepatocellular carcinoma cells through activating AKT signaling pathway. J Cell Biochem 122:86–99

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Bao H, Zhang K, Yang X, Liu X, Li P, Chen W et al (2020) MiR-542-3p drives renal fibrosis by targeting AGO1 in vivo and in vitro. Life Sci 255:117845

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Yuan J, Wang L, Zheng Z, Ran H, Liu F, Wan Y et al (2020) MiR-26a targets EphA2 to resist intracellular Listeria monocytogenes in macrophages. Mol Immunol 128:69–78

    Article  CAS  PubMed  Google Scholar 

  31. Cui Y, Wang J, Liu S, Qu D, Jin H, Zhu L, Yao Y et al (2019) miR-216a promotes breast cancer cell apoptosis by targeting PKCα. Fundam Clin Pharmacol 33:397–404

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Pan L, Yang L, Lv P, Mai S, Wang Y (2020) Long non-coding RNA GATA6-AS1 sponges miR-324–5p to inhibit lung cancer cell proliferation and invasion. Onco Targ Ther 13:9741–9751

    Article  CAS  Google Scholar 

  33. Zhao T, Zhang J, Ye C, Tian L, Li Y (2020) lncRNA FOXD2-AS1 promotes hemangioma progression through the miR-324–3p/PDRG1 pathway. Cancer Cell Int 20:189

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Deutsch A et al (2017) The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 14:20170490

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reni M, Mazza E, Zanon S, Gatta G, Vecht CJ (2017) Central nervous system gliomas. Crit Rev Oncol 113:213–234

    Article  Google Scholar 

  36. Cordier D, Krolicki L, Morgenstern A, Merlo A (2016) Targeted radiolabeled compounds in glioma therapy. Semin Nucl Med 46:243–249

    Article  PubMed  Google Scholar 

  37. Wang R, Li G, Zhuang G, Sun S, Song Z (2019) Overexpression of microRNA-423-3p indicates poor prognosis and promotes cell proliferation, migration, and invasion of lung cancer. Diagn Pathol 14:53

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kong P, Zhu X, Geng Q, Xia L, Sun X, Chen Y, Xu D et al (2017) The microRNA-423-3p-bim axis promotes cancer progression and activates oncogenic autophagy in gastric cancer. Mol Ther 25:1027–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, He J, Huang H, Peng R, Xi J (2018) MicroRNA-423-3p promotes glioma growth by targeting PANX2. Oncol Lett 16:179–188

    PubMed  PubMed Central  Google Scholar 

  40. Cui X, Sun Y, Shen M, Song K, Yin X, Di W, Duan Y (2018) Enhanced chemotherapeutic efficacy of paclitaxel nanoparticles co-delivered with MicroRNA-7 by inhibiting paclitaxel-induced EGFR/ERK pathway activation for ovarian cancer therapy. ACS Appl Mater Interfaces 10:7821–7831

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Bertoni H, Kozielski KL, Rui Y, Lal B, Vaughan H, Wilson DR, Green JJ et al (2018) Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett 18:4086–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Our project was funded by the Shenzhen Science and Technology Innovation Project (2020) No. 11 (JCYJ20190822090801701) and the San Ming Project of Shenzhen City, China (Grant No. SZSM201812096).

Author information

Authors and Affiliations

Authors

Contributions

YS conceptualized and designed the study. YS, QL, XZ conducted the analysis. XC, ZW and HJ wrote the article. All authors reviewed and approved the final draft.

Corresponding author

Correspondence to Li Yi.

Ethics declarations

Competing interest

There are no conflict of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Jiao, H., Lin, Q. et al. Identification of the miR-423-3p/VLDLR Regulatory Network for Glioma Using Transcriptome Analysis. Neurochem Res 47, 3864–3901 (2022). https://doi.org/10.1007/s11064-022-03774-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03774-y

Keywords

Navigation