Skip to main content


Log in

β-Hydroxybutyrate and Medium-Chain Fatty Acids are Metabolized by Different Cell Types in Mouse Cerebral Cortex Slices

  • Brief Communication
  • Published:
Neurochemical Research Aims and scope Submit manuscript


Ketogenic diets and medium-chain triglycerides are gaining attention as treatment of neurological disorders. Their major metabolites, β-hydroxybutyrate (βHB) and the medium-chain fatty acids (MCFAs) octanoic acid (C8) and decanoic acid (C10), are auxiliary brain fuels. To which extent these fuels compete for metabolism in different brain cell types is unknown. Here, we used acutely isolated mouse cerebral cortical slices to (1) compare metabolism of 200 µM [U-13C]C8, [U-13C]C10 and [U-13C]βHB and (2) assess potential competition between metabolism of βHB and MCFAs by quantifying metabolite 13C enrichment using gas chromatography-mass spectrometry (GC–MS) analysis. The 13C enrichment in most metabolites was similar with [U-13C]C8 and [U-13C]C10 as substrates, but several fold lower with [U-13C]βHB. The 13C enrichment in glutamate was in a similar range for all three substrates, whereas the 13C enrichments in citrate and glutamine were markedly higher with both [U-13C]C8 and [U-13C]C10 compared with [U-13C]βHB. As citrate and glutamine are indicators of astrocytic metabolism, the results indicate active MCFA metabolism in astrocytes, while βHB is metabolized in a different cellular compartment. In competition experiments, 12C-βHB altered 13C incorporation from [U-13C]C8 and [U-13C]C10 in only a few instances, while 12C-C8 and 12C-C10 only further decreased the low [U-13C]βHB-derived 13C incorporation into citrate and glutamine, signifying little competition for oxidative metabolism between βHB and the MCFAs. Overall, the data demonstrate that βHB and MCFAs are supplementary fuels in different cellular compartments in the brain without notable competition. Thus, the use of medium-chain triglycerides in ketogenic diets is likely to be beneficial in conditions with carbon and energy shortages in both astrocytes and neurons, such as GLUT1 deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

All data of this study is available from the corresponding authors upon request.





Octanoic acid


Decanoic acid


Gas chromatography-mass spectrometry


Glutamine synthetase


Medium-chain fatty acid


Monocarboxylate transporter


Tricarboxylic acid


  1. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19:609–633

    Article  CAS  Google Scholar 

  2. Rho JM, Boison D (2022) The metabolic basis of epilepsy. Nat Rev Neurol 18(6):333–347

    Article  CAS  Google Scholar 

  3. Liu H, Yang Y, Wang Y, Tang H, Zhang F, Zhang Y, Zhao Y (2018) Ketogenic diet for treatment of intractable epilepsy in adults: a meta-analysis of observational studies. Epilepsia Open 3:9–17

    Article  CAS  Google Scholar 

  4. Masino SA, Rho JM (2019) Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Res 1703:26–30

    Article  CAS  Google Scholar 

  5. Courchesne-Loyer A, Croteau E, Castellano CA, St-Pierre V, Hennebelle M, Cunnane SC (2017) Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab 37:2485–2493

    Article  CAS  Google Scholar 

  6. Han FY, Conboy-Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K (2021) Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 62:1790–1806

    Article  CAS  Google Scholar 

  7. St-Pierre V, Vandenberghe C, Lowry CM, Fortier M, Castellano CA, Wagner R, Cunnane SC (2019) Plasma ketone and medium chain fatty acid response in humans consuming different medium chain triglycerides during a metabolic study day. Front Nutr 6:46

    Article  Google Scholar 

  8. Achanta LB, Rae CD (2017) β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem Res 42:35–49

    Article  CAS  Google Scholar 

  9. Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628

    Article  CAS  Google Scholar 

  10. Cremer JE, Teal HM, Heath DF, Cavanagh JB (1977) The influence of portocaval anastomosis on the metabolism of labelled octanoate, butyrate and leucine in rat brain. J Neurochem 28:215–222

    Article  CAS  Google Scholar 

  11. Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18:551–561

    Article  CAS  Google Scholar 

  12. Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23:5928–5935

    Article  CAS  Google Scholar 

  13. Thevenet J, De Marchi U, Domingo JS, Christinat N, Bultot L, Lefebvre G, Sakamoto K, Descombes P, Masoodi M, Wiederkehr A (2016) Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. Faseb j 30:1913–1926

    Article  CAS  Google Scholar 

  14. Khabbush A, Orford M, Tsai YC, Rutherford T, O’Donnell M, Eaton S, Heales SJR (2017) Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: A mechanistic insight into the medium-chain triglyceride ketogenic diet. Epilepsia 58:1423–1429

    Article  CAS  Google Scholar 

  15. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  Google Scholar 

  16. Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92:1531–1544

    Article  CAS  Google Scholar 

  17. Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4–13 C2 ]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898

    Article  CAS  Google Scholar 

  18. Cremer JE (1971) Incorporation of label from D- -hydroxy(14 C)butyrate and (3–14 C)acetoacetate into amino acids in rat brain in vivo. Biochem J 122:135–138

    Article  CAS  Google Scholar 

  19. Cremer JE, Heath DF (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem J 142:527–544

    Article  CAS  Google Scholar 

  20. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  Google Scholar 

  21. Valdebenito R, Ruminot I, Garrido-Gerter P, Fernández-Moncada I, Forero-Quintero L, Alegría K, Becker HM, Deitmer JW, Barros LF (2016) Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate. J Cereb Blood Flow Metab 36:1813–1822

    Article  CAS  Google Scholar 

  22. Künnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2–13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    Article  Google Scholar 

  23. Zhang Y, Zhang S, Marin-Valencia I, Puchowicz MA (2015) Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain. J Neurochem 132:301–312

    Article  CAS  Google Scholar 

  24. Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS (2017) Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab 37:1137–1147

    Article  CAS  Google Scholar 

  25. McNair LF, Kornfelt R, Walls AB, Andersen JV, Aldana BI, Nissen JD, Schousboe A, Waagepetersen HS (2017) Metabolic characterization of acutely isolated hippocampal and cerebral cortical slices using [U-13C]glucose and [1,2–13C]acetate as substrates. Neurochem Res 42:810–826

    Article  CAS  Google Scholar 

  26. Samala R, Klein J, Borges K (2011) The ketogenic diet changes metabolite levels in hippocampal extracellular fluid. Neurochem Int 58:5–8

    Article  CAS  Google Scholar 

  27. Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS (2014) Metabolic mapping of astrocytes and neurons in culture using stable isotopes and gas chromatography-mass spectrometry (GC-MS). In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism neuromethods, vol 90. Humana Press, New York

    Google Scholar 

  28. Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, Aldana BI, Waagepetersen HS (2021) Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis 148:105198

    Article  CAS  Google Scholar 

  29. Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI (2021) Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain 14:132

    Article  CAS  Google Scholar 

  30. Lai JC, Liang BB, Zhai S, Jarvi EJ, Lu DR (1994) Brain mitochondrial citrate synthase and glutamate dehydrogenase: differential inhibition by fatty acyl coenzyme a derivatives. Metab Brain Dis 9:143–152

    Article  CAS  Google Scholar 

  31. Achanta LB, Rowlands BD, Thomas DS, Housley GD, Rae CD (2017) β-Hydroxybutyrate boosts mitochondrial and neuronal metabolism but is not preferred over glucose under activated conditions. Neurochem Res 42:1710–1723

    Article  CAS  Google Scholar 

  32. Jiang L, Mason GF, Rothman DL, de Graaf RA, Behar KL (2011) Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo. J Cereb Blood Flow Metab 31:2313–2323

    Article  CAS  Google Scholar 

  33. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719

    Article  CAS  Google Scholar 

  34. Wang P, Pascual JM, De Vivo DC (2018) Glucose transporter type 1 deficiency syndrome. In: Adam MPA, Ardinger HH, Pagon RA (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  35. Masino SA, Rho JM (2012) Mechanisms of ketogenic diet action. In: Noebels JL, Avoli M, Rogawski MA (eds) Jasper’s basic mechanisms of the epilepsies. Bethesda

    Google Scholar 

  36. Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2001) Brain amino acid metabolism and ketosis. J Neurosci Res 66:272–281

    Article  CAS  Google Scholar 

  37. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56:1376–1386

    Article  CAS  Google Scholar 

  38. Schönfeld P, Wojtczak L (2016) Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 57:943–954

    Article  Google Scholar 

  39. Kamp F, Hamilton JA (2006) How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids 75:149–159

    Article  CAS  Google Scholar 

  40. Halestrap AP (2013) The SLC16 gene family – Structure, role and regulation in health and disease. Mol Aspects Med 34:337–349

    Article  CAS  Google Scholar 

  41. Zhang Y, Kuang Y, Xu K, Harris D, Lee Z, LaManna J, Puchowicz MA (2013) Ketosis proportionately spares glucose utilization in brain. J Cereb Blood Flow Metab 33:1307–1311

    Article  CAS  Google Scholar 

  42. Puchowicz MA, Xu K, Sun X, Ivy A, Emancipator D, LaManna JC (2007) Diet-induced ketosis increases capillary density without altered blood flow in rat brain. Am J Physiol Endocrinol Metab 292:E1607-1615

    Article  CAS  Google Scholar 

  43. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527

    Article  CAS  Google Scholar 

  44. Sonnay S, Chakrabarti A, Thevenet J, Wiederkehr A, Christinat N, Masoodi M (2019) Differential metabolism of medium-chain fatty acids in differentiated human-induced pluripotent stem cell-derived astrocytes. Front Physiol 10:657

    Article  Google Scholar 

  45. Guzmán M, Blázquez C (2001) Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 12:169–173

    Article  Google Scholar 

Download references


This work was supported by The Scholarship of Peter & Emma Thomsen (personal financial support to both JVA & EWW), the Hørslev Foundation (awarded to BIA) and a grant from the Australian National Health and Medicine Research Council (1186025, awarded to KB).

Author information

Authors and Affiliations



JA Investigation, Methodology, Formal Analysis, Visualization, Writing—Reviewing and Editing. EW Investigation, Methodology. EN Writing—Reviewing & Editing. BA Supervision, Methodology, Resources. KB Conceptualization, Writing—Original draft, Resources.

Corresponding authors

Correspondence to Jens V. Andersen or Karin Borges.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, J.V., Westi, E.W., Neal, E.S. et al. β-Hydroxybutyrate and Medium-Chain Fatty Acids are Metabolized by Different Cell Types in Mouse Cerebral Cortex Slices. Neurochem Res 48, 54–61 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: