Skip to main content
Log in

MiR-182 Inhibition Protects Against Experimental Stroke in vivo and Mitigates Astrocyte Injury and Inflammation in vitro via Modulation of Cortactin Activity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemic stroke remains a devastating cerebrovascular disease that accounts for a high proportion of mortality and disability worldwide. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are responsible for regulation of post-transcriptional gene expression, and growing evidence supports a role for miRNAs in stroke injury and recovery. The current study examined the role of miR-182 in experimental stroke using both in vitro and in vivo models of ischemic injury. Brain levels of miR-182 significantly increased after transient middle cerebral artery occlusion (MCAO) in mice and in primary astrocyte cultures subjected to combined oxygen–glucose deprivation/reperfusion (OGD/R) injury. In vivo, stroke volume and neurological score were significantly improved by pre-treatment with miR-182 antagomir. Astrocyte cultures stressed with OGD/R resulted in mitochondrial fragmentation and downregulation of cortactin, an actin-binding protein. Inhibition of miR-182 significantly preserved cortactin expression, reduced mitochondrial fragmentation and improved astrocyte survival after OGD/R. In parallel, lipopolysaccharide (LPS)-induced nitric-oxide release in astrocyte cultures was significantly reduced by miR-182 inhibition, translating to reduced injury in primary neuronal cultures subjected to conditioned medium from LPS-treated astrocytes. These findings identify miR-182 and/or cortactin as potential clinical targets to preserve mitochondrial structure and mitigate neuroinflammation and cell death after ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data from this study are available for review upon request.

References

  1. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    Article  PubMed  CAS  Google Scholar 

  3. Ouyang YB et al (2013) microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets 14(1):90–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Saito Y, Saito H (2012) MicroRNAs in cancers and neurodegenerative disorders. Front Genet 3:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Duan X et al (2019) Identification and functional analysis of microRNAs in rats following focal cerebral ischemia injury. Mol Med Rep 19(5):4175–4184

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Bernstock JD et al (2016) A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation. J Cereb Blood Flow Metab 36(2):426–441

    Article  PubMed  CAS  Google Scholar 

  8. Schnoor M, Stradal TE, Rottner K (2018) Cortactin: cell functions of a multifaceted actin-binding protein. Trends Cell Biol 28(2):79–98

    Article  PubMed  CAS  Google Scholar 

  9. Li Y et al (2018) miR-182 suppresses invadopodia formation and metastasis in non-small cell lung cancer by targeting cortactin gene. J Exp Clin Cancer Res 37(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  10. Long HC et al (2016) miR-542-3p inhibits the growth and invasion of colorectal cancer cells through targeted regulation of cortactin. Int J Mol Med 37(4):1112–1118

    Article  PubMed  CAS  Google Scholar 

  11. Decourt B et al (2005) Expression analysis of neuroleukin, calmodulin, cortactin, and Rho7/Rnd2 in the intact and injured mouse brain. Brain Res Dev Brain Res 159(1):36–54

    Article  PubMed  CAS  Google Scholar 

  12. Bourguignon LY et al (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 101(4):1002–1017

    Article  PubMed  CAS  Google Scholar 

  13. Lapetina S et al (2009) Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion. J Cell Biol 185(3):503–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu SL et al (2011) Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J Biol Chem 286(19):17039–17046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. LeClaire LL 3rd et al (2008) Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments. J Cell Biol 182(4):647–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xu LJ et al (2015) Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 264:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Yang G et al (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25(1):165–170

    Article  PubMed  Google Scholar 

  18. Stary CM et al (2017) Inhibition of miR-181a protects female mice from transient focal cerebral ischemia by targeting astrocyte estrogen receptor-alpha. Mol Cell Neurosci 82:118–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ouyang YB et al (2012) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45(1):555–563

    Article  PubMed  CAS  Google Scholar 

  20. Xiong X et al (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42(7):2026–2032

    Article  PubMed  PubMed Central  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  22. Sun X et al (2019) Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Front Cell Neurosci 13:394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Voloboueva LA et al (2008) Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28(5):1009–1016

    Article  PubMed  CAS  Google Scholar 

  24. Hung CC et al (2016) Astrocytic GAP43 induced by the TLR4/NF-kappaB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci 36(6):2027–2043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Valente AJ et al (2017) A simple imageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119(3):315–326

    Article  PubMed  CAS  Google Scholar 

  26. Griffiths BB et al (2019) Postinjury inhibition of miR-181a promotes restoration of hippocampal CA1 neurons after transient forebrain ischemia in rats. eNeuro. https://doi.org/10.1523/ENEURO.0002-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Zhao CS (2019) Sigma-1 receptor activation ameliorates LPS-induced NO production and ROS formation through the Nrf2/HO-1 signaling pathway in cultured astrocytes. Neurosci Lett 711:134387

    Article  PubMed  CAS  Google Scholar 

  28. Rickert U et al (2018) Anti-inflammatory properties of Honokiol in activated primary microglia and astrocytes. J Neuroimmunol 323:78–86

    Article  PubMed  Google Scholar 

  29. Li S et al (2015) Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J Cell Biol 208(1):109–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Moore AS et al (2016) Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat Commun 7:12886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vitale ML, Akpovi CD, Pelletier RM (2009) Cortactin/tyrosine-phosphorylated cortactin interaction with connexin 43 in mouse seminiferous tubules. Microsc Res Tech 72(11):856–867

    Article  PubMed  CAS  Google Scholar 

  32. Lee YJ, Johnson KR, Hallenbeck JM (2012) Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS ONE 7(10):e47787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Blaya D et al (2016) Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut 65(9):1535–1545

    Article  PubMed  Google Scholar 

  34. Ibanez F et al (2019) TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J Neuroinflammation 16(1):136

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yi H et al (2017) MicroRNA-182 aggravates cerebral ischemia injury by targeting inhibitory member of the ASPP family (iASPP). Arch Biochem Biophys 620:52–58

    Article  PubMed  CAS  Google Scholar 

  36. Jessick VJ et al (2013) Investigating the role of the actin regulating complex ARP2/3 in rapid ischemic tolerance induced neuro-protection. Int J Physiol Pathophysiol Pharmacol 5(4):216–227

    PubMed  PubMed Central  Google Scholar 

  37. Le HT et al (2014) Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J Biol Chem 289(3):1345–1354

    Article  PubMed  CAS  Google Scholar 

  38. Watabe M, Nakaki T (2011) Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. J Cell Sci 124(Pt 9):1519–1532

    Article  PubMed  CAS  Google Scholar 

  39. Hyun HW, Min SJ, Kim JE (2017) CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res 119:24–37

    Article  PubMed  CAS  Google Scholar 

  40. Wu LY, Yu XL, Feng LY (2015) Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery. Acta Pharmacol Sin 36(8):928–938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bartolak-Suki E et al (2017) Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int J Mol Sci. https://doi.org/10.3390/ijms18081812

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shi P et al (2019) Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution. J Cell Sci 132:6

    Google Scholar 

Download references

Funding

American Heart Association Grant #14FTF19970029 and NIH Grant #NS119462 to CS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Creed M. Stary.

Ethics declarations

Competing interest

The authors have not disclosed any competing interest.

Disclosure

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhadidi, Q.M., Xu, L., Sun, X. et al. MiR-182 Inhibition Protects Against Experimental Stroke in vivo and Mitigates Astrocyte Injury and Inflammation in vitro via Modulation of Cortactin Activity. Neurochem Res 47, 3682–3696 (2022). https://doi.org/10.1007/s11064-022-03718-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03718-6

Keywords

Navigation