Skip to main content

Advertisement

Log in

Unraveling the Mechanisms of Clinical Drugs-Induced Neural Tube Defects Based on Network Pharmacology and Molecular Docking Analysis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chemotherapeutic agents such as methotrexate (MTX), raltitrexed (RTX), 5-fluorouracil (5-FU), hydroxyurea (HU), and retinoic acid (RA), and valproic acid (VPA), an antiepileptic drug, all can cause malformations in the developing central nervous system (CNS), such as neural tube defects (NTDs). However, the common pathogenic mechanisms remain unclear. This study aimed to explore the mechanisms of NTDs caused by MTX, RTX, 5-FU, HU, RA, and VPA (MRFHRV), based on network pharmacology and molecular biology experiments. The MRFHRV targets were integrated with disease targets, to find the potential molecules related to MRFHRV-induced NTDs. Protein–protein interaction analysis and molecular docking were performed to analyze these common targets. Utilizing the kyoto encyclopedia of genes and genomes (KEGG) signaling pathways, we analyzed and searched the possible causative pathogenic mechanisms by crucial targets and the signaling pathway. Results showed that MRFHRV induced NTDs through several key targets (including TP53, MAPK1, HSP90AA1, ESR1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN) and multiple signaling pathways such as PI3K/Akt pathway, suggesting that abnormal proliferation and differentiation could be critical pathogenic contributors in NTDs induced by MRFHRV. These results were further validated by CCK8 assay in mouse embryonic stem cells and GFAP staining in embryonic brain tissue. This study indicated that chemotherapeutic and antiepileptic agents induced NTDs might through predicted targets TP53, MAPK1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN and multiple signaling pathways. More caution was required for the clinical administration for women with childbearing potential and pregnant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the finding of this study are available from the corresponding author upon request.

References

  1. de Haan J, Verheecke M, Van Calsteren K, Van Calster B, Shmakov RG, Gziri MM, Halaska MJ, Fruscio R, Lok CA, Boere IA (2018) Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol 19:337–346

    Article  PubMed  Google Scholar 

  2. Lee J-M, Yan P, Xiao Q, Chen S, Lee K-Y, Hsu CY, Xu J (2008) Methylprednisolone protects oligodendrocytes but not neurons after spinal cord injury. J Neurosci 28:3141–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Şanlı AM, Serbes G, Sargon MF, Çalışkan M, Kılınç K, Bulut H, Şekerci Z (2012) Methothrexate attenuates early neutrophil infiltration and the associated lipid peroxidation in the injured spinal cord but does not induce neurotoxicity in the uninjured spinal cord in rats. Acta Neurochir 154:1045–1054

    Article  PubMed  Google Scholar 

  4. Sulpher J, Dattilo F, Dent S, Turek M, Reaume MN, Johnson C (2014) Acute cardiogenic shock induced by infusional 5-fluorouracil. Case Rep Oncol Med 2014:1–3

    Google Scholar 

  5. Cunningham D, Zalcberg J, Maroun J, James R, Clarke S, Maughan T, Vincent M, Schulz J, Barón MG, Facchini T (2002) Efficacy, tolerability and management of raltitrexed (Tomudex™) monotherapy in patients with advanced colorectal cancer: A review of phase II/III trials. Eur J Cancer 38:478–486

    Article  CAS  PubMed  Google Scholar 

  6. Pennell PB, French JA, Harden CL, Davis A, Bagiella E, Andreopoulos E, Lau C, Llewellyn N, Barnard S, Allien S (2018) Fertility and birth outcomes in women with epilepsy seeking pregnancy. JAMA Neurol 75:962–969

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lu R-B, Chang Y-H, Lee S-Y, Wang T-Y, Cheng S-L, Chen P-S, Yang Y-K, Hong J-S, Chen S-L (2020) Dextromethorphan protect the valproic acid induced downregulation of neutrophils in patients with bipolar disorder. Clinic Psychopharmacol Neurosci 18:145

    Article  CAS  Google Scholar 

  8. Collins MD, Mao GE (1999) Teratology of retinoids. Annu Rev Pharmacol Toxicol 39:399–430

    Article  CAS  PubMed  Google Scholar 

  9. Skalko RG, Gold MP (1974) Teratogenicity of methotrexate in mice. Teratology 9:159–163

    Article  CAS  PubMed  Google Scholar 

  10. Wilson KS, Malfair Taylor SC (2009) Raltitrexed: optimism and reality. Expert Opin Drug Metab Toxicol 5:1447–1454

    Article  CAS  PubMed  Google Scholar 

  11. Dagg C, Schlager G, Doerr A (1966) Polygenic control of the teratogenicity of 5-fluorouracil in mice. Genetics 53:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson JG, Scott WJ, Ritter EJ, Fradkin R (1975) Comparative distribution and embryotoxicity of hydroxyurea in pregnant rats and rhesus monkeys. Teratology 11:169–178

    Article  CAS  PubMed  Google Scholar 

  13. Błaszczyk B, Miziak B, Pluta R, Czuczwar SJ (2022) Epilepsy in pregnancy—management principles and focus on valproate. Int J Mol Sci 23:1369

    Article  PubMed  PubMed Central  Google Scholar 

  14. Al-Saleh E, Al-Harmi J, Al-Rashdan I, Al-Shammari M, Nandakumaran M (2007) Maternal–fetal transport kinetics of methotrexate in perfused human placenta: In vitro study. J Matern Fetal Neonatal Med 20:411–418

    Article  CAS  PubMed  Google Scholar 

  15. Boike GM, Deppe G, Young JD, Malone JM Jr, Malviya VK, Sokol RJ (1989) Chemotherapy in a pregnant rat model: 2.5-Fluorouracil: Nonlinear kinetics and placental transfer. Gynecol Oncol 34:191–194

    Article  CAS  PubMed  Google Scholar 

  16. Semczuk-Sikora A, Czuczwar S, Semczuk A, Kwasniewska A, Semczuk M (2010) Valproic acid transfer across human placental cotyledon during dual perfusion in vitro. Ann Agric Environ Med 17:153–157

    CAS  PubMed  Google Scholar 

  17. Liu D, Xue J, Liu Y, Gu H, Wei X, Ma W, Luo W, Ma L, Jia S, Dong N (2018) Inhibition of NRF2 signaling and increased reactive oxygen species during embryogenesis in a rat model of retinoic acid-induced neural tube defects. Neurotoxicology 69:84–92

    Article  CAS  PubMed  Google Scholar 

  18. Wei X, Ma W, Gu H, Liu D, Luo W, Bai Y, Wang W, Lui VCH, Yang P, Yuan Z (2020) Transamniotic mesenchymal stem cell therapy for neural tube defects preserves neural function through lesion-specific engraftment and regeneration. Cell Death Dis 11:1–16

    Article  Google Scholar 

  19. Shan L, Fan Y, Li H, Liu W, Gu H, Zhou F, Yuan Z (2012) Proteomic analysis of amniotic fluid of pregnant rats with spina bifida aperta. J Proteomics 75:1181–1189

    Article  CAS  PubMed  Google Scholar 

  20. An D, Wei X, Li H, Gu H, Huang T, Zhao G, Liu B, Wang W, Chen L, Ma W (2015) Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci Rep 5:1–11

    Article  Google Scholar 

  21. Zhao J, Guan T, Wang J, Xiang Q, Wang M, Wang X, Guan Z, Xie Q, Niu B, Zhang T (2013) Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915–923

    Article  CAS  PubMed  Google Scholar 

  22. Dong Y, Wang X, Zhang J, Guan Z, Xu L, Wang J, Zhang T, Niu B (2015) Raltitrexed’s effect on the development of neural tube defects in mice is associated with DNA damage, apoptosis, and proliferation. Mol Cell Biochem 398:223–231

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Guan Z, Dong Y, Zhu Z, Wang J, Niu B (2018) Inhibition of thymidylate synthase affects neural tube development in mice. Reprod Toxicol 76:17–25

    Article  CAS  PubMed  Google Scholar 

  24. Guan Z, Wang X, Dong Y, Xu L, Zhu Z, Wang J, Zhang T, Niu B (2015) dNTP deficiency induced by HU via inhibiting ribonucleotide reductase affects neural tube development. Toxicology 328:142–151

    Article  CAS  PubMed  Google Scholar 

  25. Zhao L, Liu D, Ma W, Gu H, Wei X, Luo W, Yuan Z (2021) Bhlhe40/Sirt1 axis-regulated mitophagy is implicated in all-trans retinoic acid-induced spina bifida aperta. Fronti Cell Develop Biol 9:1025

    Google Scholar 

  26. Steele JW, Lin YL, Chen N, Wlodarczyk BJ, Chen Q, Attarwala N, Venkatesalu M, Cabrera RM, Gross SS, Finnell RH (2022) Embryonic hypotaurine levels contribute to strain-dependent susceptibility in mouse models of valproate-induced neural tube defects. Fronti Cell Develop Biol. https://doi.org/10.3389/fcell.2022.832492

    Article  Google Scholar 

  27. Bhandari J, Thada PK (2021) Neural tube disorders. In: StatPearls [Internet]. StatPearls Publishing

  28. Okano H (2002) Stem cell biology of the central nervous system. J Neurosci Res 69:698–707

    Article  CAS  PubMed  Google Scholar 

  29. Hsu Y-C, Lee D-C, Chiu I-M (2007) Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant 16:133–150

    Article  PubMed  Google Scholar 

  30. Finkel Z, Esteban F, Rodriguez B, Fu T, Ai X, Cai L (2021) Diversity of adult neural stem and progenitor cells in physiology and disease. Cells 10:2045

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen N, Xu J, Zhang X, Li S, Zhu W, Cui H, Sun Y, Han B, Ma A (2021) Effect of Notch1 on neural tube defects and neural stem cell differentiation induced by all-trans retinoic acid. Mol Med Rep 23:1–1

    Article  Google Scholar 

  32. Lowery LA, Sive H (2004) Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev 121:1189–1197

    Article  CAS  PubMed  Google Scholar 

  33. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ (2017) Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144:552–566

    Article  CAS  PubMed  Google Scholar 

  34. Oh KK, Adnan M, Cho DH (2020) Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus. PLoS ONE 15:e0240873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oh KK, Adnan M, Cho DH (2021) Active ingredients and mechanisms of Phellinus linteus (grown on Rosa multiflora) for alleviation of Type 2 diabetes mellitus through network pharmacology. Gene 768:145320

    Article  CAS  PubMed  Google Scholar 

  36. Hähnke VD, Kim S, Bolton EE (2018) PubChem chemical structure standardization. Journal of cheminformatics 10:1–40

    Article  Google Scholar 

  37. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:W32–W38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Consortium U (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  Google Scholar 

  39. Ray HJ, Niswander LA (2016) Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 143:1192–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian T, Lai X, Xiang K, Han X, Yin S, Cabrera RM, Steele JW, Lei Y, Cao X, Finnell RH (2022) Hypermethylation of PI3K-AKT signalling pathway genes is associated with human neural tube defects. Epigenetics 17:133–146

    Article  PubMed  Google Scholar 

  41. Yu M, Li W, Luo S, Zhang Y, Liu H, Gao Y, Wang X, Wilson JX, Huang G (2014) Folic acid stimulation of neural stem cell proliferation is associated with altered methylation profile of PI3K/Akt/CREB. J Nutr Biochem 25:496–502

    Article  CAS  PubMed  Google Scholar 

  42. Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, Hattori D, Ge W, Shen Y, Wu H (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345

    Article  CAS  PubMed  Google Scholar 

  43. Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A (2001) Mice lacking the homologue of the human 22q11. 2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 27:293–298

    Article  CAS  PubMed  Google Scholar 

  44. Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103:73–76

    PubMed  PubMed Central  Google Scholar 

  45. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    PubMed  PubMed Central  Google Scholar 

  46. Robaey P, Krajinovic M, Marcoux S, Moghrabi A (2008) Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy. Dev Disabil Res Rev 14:211–220

    Article  PubMed  Google Scholar 

  47. Ouzir M, El Bairi K, Amzazi S (2016) Toxicological properties of fenugreek (Trigonella foenum graecum). Food Chem Toxicol 96:145–154

    Article  CAS  PubMed  Google Scholar 

  48. Feiock C, Yagi M, Maidman A, Rendahl A, Hui S, Seelig D (2016) Central nervous system injury–a newly observed bystander effect of radiation. PLoS ONE 11:e0163233

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang M, Kim J-S, Kim J, Jang S, Kim S-H, Kim J-C, Shin T, Wang H, Moon C (2012) Acute treatment with methotrexate induces hippocampal dysfunction in a mouse model of breast cancer. Brain Res Bull 89:50–56

    Article  CAS  PubMed  Google Scholar 

  50. Yamada S, Yamazaki D, Kanda Y (2018) 5-Fluorouracil inhibits neural differentiation via Mfn1/2 reduction in human induced pluripotent stem cells. J Toxicol Sci 43:727–734

    Article  CAS  PubMed  Google Scholar 

  51. Zhao H, Wang Q, Yan T, Zhang Y, Xu H-j, Yu H-p, Tu Z, Guo X, Jiang Y-h, Li X-j (2019) Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl Psychiatry 9:1–13

    Article  Google Scholar 

  52. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Ronowska A, Pawełczyk T (2015) Retinoic acid as a therapeutic option in Alzheimer’s disease: a focus on cholinergic restoration. Expert Rev Neurother 15:239–249

    Article  CAS  PubMed  Google Scholar 

  53. Pennimpede T, Cameron DA, MacLean GA, Li H, Abu-Abed S, Petkovich M (2010) The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth Defects Res A 88:883–894

    Article  CAS  Google Scholar 

  54. Neary J, Norenberg L, Norenberg M (1988) Protein kinase C in primary astrocyte cultures: cytoplasmic localization and translocation by a phorbol ester. J Neurochem 50:1179–1184

    Article  CAS  PubMed  Google Scholar 

  55. Fedoroff S, Vernadakis A (1986) Astrocytes: Biochemistry, physiology, and pharmacology of astrocytes. Academic Press

    Google Scholar 

  56. Ruutiainen J, Newcombe J, Salmi A, Dahl D, Frey H (1981) Measurement of glial fibrillary acidic protein (GFAP) and anti-GFAP antibodies by solid-phase radioimmunoassays. Acta Neurol Scand 63:297–305

    Article  CAS  PubMed  Google Scholar 

  57. Bovolenta P, Liem RK, Mason CA (1984) Development of cerebellar astroglia: transitions in form and cytoskeletal content. Dev Biol 102:248–259

    Article  CAS  PubMed  Google Scholar 

  58. Sun X, Jiang R, Zhang Y, Chen M, Xiang P, Qi Y, Gao Q, Huang B, Ge J (2009) Gene expression and differentiation characteristics in mice E13.5 and E17.5 neural retinal progenitors. Mol Vis 15:2503

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kessaris N, Pringle N, Richardson WD (2008) Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Phil Trans Royal Soc B 363:71–85

    Article  CAS  Google Scholar 

  60. Oria M, Figueira RL, Scorletti F, Sbragia L, Owens K, Li Z, Pathak B, Corona MU, Marotta M, Encinas JL (2018) CD200-CD200R imbalance correlates with microglia and pro-inflammatory activation in rat spinal cords exposed to amniotic fluid in retinoic acid-induced spina bifida. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  61. Oria M, Pathak B, Li Z, Bakri K, Gouwens K, Varela MF, Lampe K, Murphy KP, Lin C-Y, Peiro JL (2022) Premature neural progenitor cell differentiation into astrocytes in retinoic acid-induced spina bifida rat model. Fronti Mol Neurosci. https://doi.org/10.3389/fnmol.2022.888351

    Article  Google Scholar 

  62. Yang S-L, Yang M, Herrlinger S, Liang C, Lai F, Chen J-F (2015) MiR-302/367 regulate neural progenitor proliferation, differentiation timing, and survival in neurulation. Dev Biol 408:140–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhong W, Jiang M-M, Schonemann MD, Meneses JJ, Pedersen RA, Jan LY, Jan YN (2000) Mouse numb is an essential gene involved in cortical neurogenesis. Proc Natl Acad Sci 97:6844–6849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gottlieb E, Haffner R, King A, Asher G, Gruss P, Lonai P, Oren M (1997) Transgenic mouse model for studying the transcriptional activity of the p53 protein: age-and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 16:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR, Chin DM, Bacus SS, Stark GR, Gudkov AV (1997) Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16:1391–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Louis JM, McFarland VW, May P, Mora PT (1988) The phosphoprotein p53 is down-regulated post-transcriptionally during embryogenesis in vertebrates. Biochem Biophys Acta 950:395–402

    CAS  PubMed  Google Scholar 

  67. Schmid P, Lorenz A, Hameister H, Montenarh M (1991) Expression of p53 during mouse embryogenesis. Development 113:857–865

    Article  CAS  PubMed  Google Scholar 

  68. Armesilla-Díaz A, Bragado P, Del Valle I, Cuevas E, Lázaro I, Martin C, Cigudosa J, Silva A (2009) p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience 158:1378–1389

    Article  PubMed  Google Scholar 

  69. Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28:6983–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ménard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, Barnabé-Heider F, Mir AA, Sterneck E, Peterson AC (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36:597–610

    Article  PubMed  Google Scholar 

  71. Conti L, De Fraja C, Gulisano M, Migliaccio E, Govoni S, Cattaneo E (1997) Expression and activation of SH2/PTB-containing ShcA adaptor protein reflects the pattern of neurogenesis in the mammalian brain. Proc Natl Acad Sci 94:8185–8190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shengkai D, Qianqian L (2022) The Effects and Regulatory Mechanism of Flavonoids from Stems and Leaves of Scutellaria baicalensis Georgi in Promoting Neurogenesis and Improving Memory Impairment Mediated by the BDNF-ERK-CREB Signaling Pathway in Rats. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)

  73. Liu H, Wu H, Wang Y, Wang Y, Wu X, Ju S, Wang X (2012) Inhibition of class II histone deacetylase blocks proliferation and promotes neuronal differentiation of the embryonic rat neural progenitor cells. Acta Neurobiol Exp (Wars) 72:365–376

    PubMed  Google Scholar 

  74. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, Van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schwindt TT, Motta FL, Gabriela FB, Cristina GM, Guimarães AO, Calcagnotto ME, Pesquero JB, Mello LE (2009) Effects of FGF-2 and EGF removal on the differentiationof mouse neural precursor cells. An Acad Bras Ciênc 81:443–452

    Article  CAS  PubMed  Google Scholar 

  76. Schrage K, Koopmans G, Joosten EA, Mey J (2006) Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injury. Eur J Neurosci 23:285–295

    Article  PubMed  Google Scholar 

  77. Mey J (2006) New therapeutic target for CNS injury? The role of retinoic acid signaling after nerve lesions. J Neurobiol 66:757–779

    Article  CAS  PubMed  Google Scholar 

  78. Wahane SD, Hellbach N, Prentzell MT, Weise SC, Vezzali R, Kreutz C, Timmer J, Krieglstein K, Thedieck K, Vogel T (2014) PI3K-p110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC 2. J Neurochem 130:255–267

    Article  CAS  PubMed  Google Scholar 

  79. Osterhout DJ, Wolven A, Wolf RM, Resh MD, Chao MV (1999) Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase. J Cell Biol 145:1209–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sperber BR, Boyle-Walsh EA, Engleka MJ, Gadue P, Peterson AC, Stein PL, Scherer SS, McMorris FA (2001) A unique role for Fyn in CNS myelination. J Neurosci 21:2039–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang B, Zhang Y, Dong H, Gong S, Wei B, Luo M, Wang H, Wu X, Liu W, Xu X (2018) Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice. Cell Death Dis 9:1–12

    Google Scholar 

  82. Wilson NR, Olm-Shipman AJ, Acevedo DS, Palaniyandi K, Hall EG, Kosa E, Stumpff KM, Smith GJ, Pitstick L, Liao EC (2016) SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Sci Rep 6:1–15

    Article  Google Scholar 

  83. Otaegi G, Yusta-Boyo MJ, Vergaño-Vera E, Méndez-Gómez HR, Carrera AC, Abad JL, González M, De la Rosa EJ, Vicario-Abejón C, de Pablo F (2006) Modulation of the PI 3-kinase–Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. J Cell Sci 119:2739–2748

    Article  CAS  PubMed  Google Scholar 

  84. Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X, Dai J (2008) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 39:118–124

    Article  CAS  PubMed  Google Scholar 

  85. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc Natl Acad Sci 103:111–116

    Article  CAS  PubMed  Google Scholar 

  86. Paling NR, Wheadon H, Bone HK, Welham MJ (2004) Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem 279:48063–48070

    Article  CAS  PubMed  Google Scholar 

  87. Watanabe S, Umehara H, Murayama K, Okabe M, Kimura T, Nakano T (2006) Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25:2697–2707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the help offered by Prof. Jing Pan during the process. This study was supported by Beijing Natural Science Foundation (No.7222016), National Natural Science Foundation of China (No. 81700777); Research Foundation of Capital Institute of Pediatrics (CXYJ-2021-03).

Funding

National Natural Science Foundation of China, No. 81700777, Beijing Municipal Natural Science Foundation, No.7222016, Research Foundation of Capital Institute of Pediatrics, CXYJ-2021-03.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZG, YL, XW, BN, JW. Data curation: ZG, JW. Formal analysis: ZG, YL, XW, ZZ, JY. Funding acquisition: ZG, JW. Methodology: ZG, YL. Supervision: JW. Writing – original draft: ZG, YL. Writing – review & editing: ZG, YL, XW, JW, BN, SL, ZZ, AY, JY.

Corresponding authors

Correspondence to Bo Niu or Jianhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiment procedures were approved by the Animal Ethics Committee of Capital Institute of Pediatrics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Liang, Y., Wang, X. et al. Unraveling the Mechanisms of Clinical Drugs-Induced Neural Tube Defects Based on Network Pharmacology and Molecular Docking Analysis. Neurochem Res 47, 3709–3722 (2022). https://doi.org/10.1007/s11064-022-03717-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03717-7

Keywords

Navigation