Skip to main content
Log in

The Role of Acetylcholine on the Effects of Different Doses of Sulfite in Learning and Memory

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study, the effects of different doses of sulfite on learning, memory, and long term potentiation as well as the relationship of these effects with acetylcholine pathways, Arc and synapsin 1 levels were investigated. Sixty male Wistar albino rats were randomly divided into three groups as control, S100, and S260. Sodiummetabisulfite (S100;100 mg/kg/day, S260;260 mg/kg/day) was given by oral administration. Behavioral changes were evaluated. After long term potentiation recordings from the perforant pathway—dentate gyrus synapses, animals were sacrificed. Acetylcholinesterase activity, choline acetyltransferase activity, acetylcholine level as well as Arc and Synapsin 1 expressions were analyzed on the hippocampi. The total distance and average velocity values in the open field and Morris water maze tests increased in the sulfite groups, while the discrimination index in the novel object recognition test decreased compared to controls. Acetylcholine levels and choline acetyltransferase activity were also increased in the sulfite groups, while acetylcholinesterase activity was decreased compared to controls. Sulfite intake attenuated long term potentiation in the hippocampus. It has been observed that the excitatory postsynaptic potential slope and population spike amplitude of the field potentials obtained in sulfite groups decreased. This impairment was accompanied by a decrease in Arc and synapsin 1 expressions. In conclusion, it has been shown that sulfite intake in adults impairs learning and memory, possibly mediated by the cholinergic pathway. It is considered that the decrement in Arc and synapsin expressions may play a role in the mechanism underlying the impairment in long term potentiation caused by toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

We declare that all data supporting the findings of this study are available.

References

  1. Taylor SL, Higley NA, Bush RK (1986) Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res 30:1–76. https://doi.org/10.1016/S0065-2628(08)60347-X

    Article  CAS  PubMed  Google Scholar 

  2. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) (1994) Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JEFCA). International Life Sciences Institute, Washington, DC

    Google Scholar 

  3. Cohen HJ, Fridovich I. (1971) Hepatic sulfite oxidase. Purification and properties. J Biol Chem 246:359–366. https://doi.org/10.1016/S0021-9258(18)62499-8

    Article  CAS  PubMed  Google Scholar 

  4. Simon RA (1989) Sulfite challenge for the diagnosis of sensitivity. In: Allergy and asthma proceedings. OceanSide Publications. https://doi.org/10.2500/108854189778959858

  5. Rencüzoǧullari E, İla HB, Kayraldiz A, Topaktaş M (2001) Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative. Mutat Res 490:107–112. https://doi.org/10.1016/S1383-5718(00)00142-X

    Article  PubMed  Google Scholar 

  6. Akdogan I, Kocamaz E, Kucukatay V, Yonguc NG, Ozdemir MB, Murk W (2011) Hippocampal neuron number loss in rats exposed to ingested sulfite. Toxicol Ind Health 27:771–778. https://doi.org/10.1177/0748233710397418

    Article  CAS  PubMed  Google Scholar 

  7. Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B, Agar A (2013) Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain. Food Chem Toxicol 52:129–136. https://doi.org/10.1016/j.fct.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  8. Noorafshan A, Asadi-Golshan R, Karbalay-Doust S, Abdollahifar MA, Rashidiani-Rashidabadi A (2013) Curcumin, the main part of turmeric, prevents learning and memory changes induced by sodium metabisulfite, a preservative agent, in rats. Exp Neurobiol 22(1):23–30. https://doi.org/10.5607/en.2013.22.1.23

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kandel E, Siegelbaum AS (2013) Cellular mechanisms of implicit memory storage and biological basis of individuality. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science, 5th edn. McGraw-Hill, New York, pp 1462–1476

    Google Scholar 

  10. Hebb DO (1949) Summation and learning in perception. The organization of behavior: a neuropsychological theory, 1st edn. Chapman-Hall Companies, New York, pp 17–38

    Google Scholar 

  11. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766. https://doi.org/10.1038/nature02617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bliss TV, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clinics 66:3–17. https://doi.org/10.1590/s1807-59322011001300002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285(5435):1870–1874. https://doi.org/10.1126/science.285.5435.1870

    Article  CAS  PubMed  Google Scholar 

  14. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 36:31–39. https://doi.org/10.1038/361031a0

    Article  Google Scholar 

  15. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125. https://doi.org/10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  16. Messaoudi E, Kanhema T, Soulé J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3. 1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27:10445–10455. https://doi.org/10.1523/JNEUROSCI.2883-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steward O, Worley PF (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–240. https://doi.org/10.1016/S0896-6273(01)00275-6

    Article  CAS  PubMed  Google Scholar 

  18. Gil-Bea FJ, Solas M, Mateos L, Winblad B, Ramírez MJ, Cedazo-Mínguez A (2011) Cholinergic hypofunction impairs memory acquisition possibly through hippocampal Arc and BDNF downregulation. Hippocampus 21:999–1009. https://doi.org/10.1002/hipo.20812

    Article  CAS  PubMed  Google Scholar 

  19. Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785. https://doi.org/10.1126/science.8430330

    Article  CAS  PubMed  Google Scholar 

  20. Llinas R, McGuinness T, Leonard C, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci 82:3035–3039. https://doi.org/10.1073/pnas.82.9.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nayak AS, Moore CI, Browning MD (1996) Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proc Natl Acad Sci 93:15451–15456. https://doi.org/10.1073/pnas.93.26.15451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grothe M, Zaborszky L, Atienza M, Gil-Neciga E, Rodriguez-Romero R, Teipel SJ, Amunts K, Suarez-Gonzalez A, Cantero JL (2010) Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer’s disease. Cereb Cortex 20:1685–1695. https://doi.org/10.1093/cercor/bhp232

    Article  PubMed  Google Scholar 

  23. Teipel S, Heinsen H, Amaro E Jr., Grinberg LT, Krause B, Grothe M (2014) Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer’s disease. Neurobiol Aging 35:482–491. https://doi.org/10.1016/j.neurobiolaging.2013.09.029

    Article  CAS  PubMed  Google Scholar 

  24. Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15:181–192. https://doi.org/10.1038/nrn3677

    Article  CAS  PubMed  Google Scholar 

  25. Gunnison AF, Palmes ED (1973) Persistence of plasma S-sulfonates following exposure of rabbits to sulfite and sulfur dioxide. Toxicol Appl Pharmacol 24(2):266–278. https://doi.org/10.1016/0041-008x(73)90147-6

    Article  CAS  PubMed  Google Scholar 

  26. Scheff SW, Roberts KN (2016) Cognitive assessment of pycnogenol therapy following traumatic brain injury. Neurosci Lett 634:126–131. https://doi.org/10.1016/j.neulet.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Navarro AAL, Sikoglu EM, Heinze CR, Rogan RC, Russell VA, King JA, Moore CM (2014) Effect of diet on brain metabolites and behavior in spontaneously hypertensive rats. Behav Brain Res 270:240–247. https://doi.org/10.1016/j.bbr.2014.05.013

    Article  CAS  Google Scholar 

  28. Roozendaal B, Hernandez A, Cabrera SM, Hagewoud R, Malvaez M, Stefanko DP, Haettig J, Wood MA (2010) Membrane-associated glucocorticoid activity is necessary for modulation of long-term memory via chromatin modification. J Neurosci 30:5037–5046. https://doi.org/10.1523/JNEUROSCI.5717-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, Komaki A  (2020) Effects of Hypericum scabrum extract on dentate gyrus synaptic plasticity in high fat diet-fed rats. J Physiol Sci 70:19. https://doi.org/10.1186/s12576-020-00747-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nazari M, Komaki A, Salehi I, Sarihi A, Shahidi S, Komaki H, Ganji A (2016) Interactive effects of AM251 and baclofen on synaptic plasticity in the rat dentate gyrus. Brain Res 1651:53–60. https://doi.org/10.1016/j.brainres.2016.09.029

    Article  CAS  PubMed  Google Scholar 

  31. Süer C, Dolu N, Artis AS, Sahin L, Yilmaz A, Cetin A (2011) The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats. Neurosci Res 70:71–77. https://doi.org/10.1016/j.neures.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  32. Santos-Fandila A, Zafra-Gómez A, Barranco A, Navalon A, Rueda R, Ramirez M (2013) Quantitative determination of neurotransmitters, metabolites and derivates in microdialysates by UHPLC–tandem mass spectrometry. Talanta 114:79–89. https://doi.org/10.1016/j.talanta.2013.03.082

    Article  CAS  PubMed  Google Scholar 

  33. McGovern S, Maguire ME, Gurd RS, Mahler HR, Moore WJ (1973) Seperation of adrenergic and cholinergic synaptosomes from immature rat brain. FEBS Lett 32(2):193–198. https://doi.org/10.1016/0014-5793(73)80101-2

    Article  Google Scholar 

  34. Vandevijvere S, Temme E, Andjelkovic M, De Wil M, Vinkx C, Goeyens L, Van Loco J (2010) Estimate of intake of sulfites in the Belgian adult population. Food Addit Contam 27:1072–1083. https://doi.org/10.1080/19440041003754506

    Article  CAS  Google Scholar 

  35. Hui JY, Beery JT, Higley NA, Taylor SL (1989) Comparative subchronic oral toxicity of sulphite and acetaldehyde hydroxysulphonate in rats. Food Chem Toxicol 27(6):349–359. https://doi.org/10.1016/0278-6915(89)90140-3

    Article  CAS  PubMed  Google Scholar 

  36. Ozturk N, Yargicoglu P, Derin N, Akpinar D, Agar A, Aslan M (2011) Dose-dependent effect of nutritional sulfite intake on visual evoked potentials and lipid peroxidation. Neurotoxicol Teratol 33:244–254.https://doi.org/10.1016/j.ntt.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  37. Gunnison A (1981) Sulphite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol 19:667–682. https://doi.org/10.1016/0015-6264(81)90519-8

    Article  CAS  PubMed  Google Scholar 

  38. Lester MR (1995) Sulfite sensitivity: significance in human health. J Am Coll Nutr 14:229–232. https://doi.org/10.1080/07315724.1995.10718500

    Article  CAS  PubMed  Google Scholar 

  39. Til HP, Feron VJ, De Groot AP (1972) The toxicity of sulphite. I. Long-term feeding and multigeneration studies in rats. Food Cosmet Toxicol 10:291–310. https://doi.org/10.1016/S0015-6264(72)80250-5

    Article  CAS  PubMed  Google Scholar 

  40. Green LF (1976) Sulphur dioxide and food preservation-a review. Food Chem 1:103–124

    Article  CAS  Google Scholar 

  41. Basaranlar G, Derin N, Kencebay-Manas C, Tanriover G, Aslan M (2019) The effects of sulfite on cPLA2, caspase-3, oxidative stress and locomotor activity in rats. Food Chem Toxicol 123:453–458. https://doi.org/10.1016/j.fct.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  42. Paredes D, Rada P, Bonilla E, Gonzalez LE, Parada M, Hernandez L (1999) Melatonin acts on the nucleus accumbens to increase acetylcholine release and modify the motor activity pattern of rats. Brain Res 850:14–20. https://doi.org/10.1016/S0006-8993(99)01992-7

    Article  CAS  PubMed  Google Scholar 

  43. Day J, Damsma G, Fibiger HC (1991) Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity: an in vivo microdialysis study. Pharmacol Biochem and Behav. 38:723–729. https://doi.org/10.1016/0091-3057(91)90233-r

    Article  CAS  Google Scholar 

  44. Kruk-Słomka M, Michalak A, Budzyńska B, Biała G (2014) A comparison of mecamylamine and bupropion effects on memory-related responses induced by nicotine and scopolamine in the novel object recognition test in mice. Pharmacol Rep 66:638–646. https://doi.org/10.1016/j.pharep.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  45. Sun J, Sakamoto T, Chung KF (1995) Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro. Thorax 50:875–879. https://doi.org/10.1136/thx.50.8.875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356. https://doi.org/10.1113/jphysiol.1973.sp010273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuazaga C, Steinacker A, Castillo Jd (1984) The role of sulfhydryl and disulfide groups of membrane proteins in electrical conduction and chemical transmission. PR Health Sci J. 3:125–139

    CAS  Google Scholar 

  48. Sato K, Morimoto K, Suemaru S, Sato T, Yamada N (2000) Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus. Brain Res 872(1–2):219–222. https://doi.org/10.1016/S0006-8993(00)02460-4

    Article  CAS  PubMed  Google Scholar 

  49. Orta-Salazar E, Cuellar-Lemus C, Díaz-Cintra S, Feria-Velasco A (2014) Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer’s disease. Neurología (English Edition) 29:497–503. https://doi.org/10.1016/j.nrl.2012.10.007

    Article  CAS  Google Scholar 

  50. Mineur YS, Picciotto MR (2021) The role of acetylcholine in negative encoding bias: Too much of a good thing? Eur J Neurosci 53(1):114–125. https://doi.org/10.1111/ejn.14641

    Article  CAS  PubMed  Google Scholar 

  51. Steinacker A (1982) Presynaptic effects of sodium bisulfite at the frog neuromuscular junction. Prog Neurobiol 7:313–319. https://doi.org/10.1002/jnr.490070309

    Article  CAS  Google Scholar 

  52. Rojas L, Zuazaga C, Steinacker A (1991) Acetylcholine receptor channel gating and conductance involve extracellular disulfide bond (s). Brain Res 551:10–15. https://doi.org/10.1016/0006-8993(91)90906-C

    Article  CAS  PubMed  Google Scholar 

  53. Inoue H, Li YP, Wagner JA, Hersh LB (1995) Expression of the choline acetyltransferase gene depends on protein kinase A activity. J Neurochem 64:985–990. https://doi.org/10.1046/j.1471-4159.1995.64030985.x

    Article  CAS  PubMed  Google Scholar 

  54. Guesmi F, Bellamine H, Landoulsi A (2018) Hydrogen peroxide-induced oxidative stress, acetylcholinesterase inhibition, and mediated brain injury attenuated by Thymus algeriensis. Appl Physiol Nutr Metab 43:1275–1281. https://doi.org/10.1139/apnm-2018-0107

    Article  CAS  PubMed  Google Scholar 

  55. Derin N, Yargiçoğlu P, Aslan M, Elmas O, Agar A, Alicigüzel Y (2006) The effect of sulfite and chronic restraint stress on brain lipid peroxidation and anti-oxidant enzyme activities. Toxicol Ind Health 22(6):233–240. https://doi.org/10.1191/0748233706th264oa

    Article  CAS  PubMed  Google Scholar 

  56. Shad MA, Zafar ZI, Nawaz H, Anwar F (2012) Effect of sorbic acid and some other food preservatives on human serum cholinesterase activity. Afr J Biotechnol 11:11280–11286. https://doi.org/10.5897/AJB11.4037

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Research Foundation of Akdeniz University, Antalya, Turkey (Grant number [TDK-2018-3762]). Author Narin Derin has received research support from Akdeniz University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BD, GA, DK, ÇGS and MA. The first draft of the manuscript was written by BD and supervision, project administration is ND. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Narin Derin.

Ethics declarations

Competing interest

The authors declare that they have no relevant financial or non-financial interest to disclose.

Ethical Approval

Approval was granted by the Ethics Committee of Akdeniz University (Date 24.01.2018/No 24).”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danışman, B., Akçay, G., Gökçek-Saraç, Ç. et al. The Role of Acetylcholine on the Effects of Different Doses of Sulfite in Learning and Memory. Neurochem Res 47, 3331–3343 (2022). https://doi.org/10.1007/s11064-022-03684-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03684-z

Keywords

Navigation